
1/12

Osama Ellahi November 26, 2023

Unfolding Remcos RAT- 4.9.2 Pro
infosecwriteups.com/unfolding-remcos-rat-4-9-2-pro-dfb3cb25bbd1

Executive Summary

SHA256 hash:

2e5c4d023167875977767da513d8889f1fc09fb18fdadfd95c66a6a890b5ca3f

Remcos is a commercially available Remote Access Tool (RAT) marketed for legitimate use in
surveillance and penetration testing. However, it has been leveraged in various unauthorized hacking
initiatives. When deployed, Remcos establishes a backdoor, allowing comprehensive remote control
over the affected system. The tool is a product of BreakingSecurity, a company specializing in
cybersecurity solutions.

Hackers are getting smarter by using tricks like hiding their code and adding fake code, which
makes it harder for security experts to figure out how their attacks work. They’re using things like
image files and compression to disguise their activities.

YARA signature rules are attached in Appendix A. Malware sample and hashes have been submitted
to VirusTotal for further examination.

High-Level Technical Summary

Remcos is an advanced remote access tool that breaks into computers using a series of hidden
codes, starting with a malicious file which can be delivered from mail or dropper. It cleverly
disguises its next steps within an image file, and then uses another DLL to make sure it stays on
the computer even after it’s restarted. Remcos can record keystrokes to steal passwords and other

https://infosecwriteups.com/unfolding-remcos-rat-4-9-2-pro-dfb3cb25bbd1

2/12

private information, which it logs into a file. It stays in contact with the hacker’s server to send out
this stolen information and to get new orders, allowing the hacker to keep a close watch and control
over the infected computer.

Malware Composition

This composition of remcos consists of the following components:

2e5c4d023167875977767da513d8889f1fc09fb18fdadfd95c66a6a890b5ca3f

Embedded_Remcos.exe

In a C# dropper, there’s a sneaky way that malware developers are hiding bad code. They put this
code inside the InitializeComponent() method. This method is normally used just for setting up how
the app looks, like buttons and menus. But now, it’s being used to hide something harmful. The tricky
part is that this bad code looks just like regular setup code, so it’s hard to spot. It’s like hiding
something bad inside something good, so people don’t notice it.

This makes it hard to find and fix the problem. It’s a clever trick by hackers, and it shows how they
can use parts of an app we usually trust to do sneaky things.

It is extracting a byte array from a resource, possibly a file or other data embedded in the application
and generating another byte array from a hard coded string.

The code is setting up a user interface for a form and then performing an operation on a data
resource (“SHP”) using a generated key.

The _data before the encryption looks like this.

The for loop processes the Data_ array in a complex way. It goes through each byte of Data_ and
modifies it based on a calculation involving both Data_ and KeyGen.

The calculation inside the loop involves bitwise XOR (^), addition, and modulo operations. It appears
to be some form of data manipulation or encryption/decryption, where Data_ is being altered using
the KeyGen byte array.

First, a MethodBase object named methodBase is assigned the value kb. The MethodBase class in
C# is part of the reflection namespace and is used to discover information about methods (like
constructors and other methods) at runtime.

Then, an array of objects named array is created and initialized with string values. This array
includes this.VC, this.VR, and the literal string “Boilerplate”. VC and VR are private string fields of the
class, initialized to “57775972” and “6C7978”, respectively. Therefore, the array contains these two
strings along with “Boilerplate”.

Finally, the Invoke method on methodBase is called, passing obj and array as arguments. This
means the method represented by methodBase is being executed with obj as the target and the
string array as the parameters.

3/12

Before the inoke there was binary loaded successfully in modules.

And if look closely it in kb.Fullname it is calling dr,hA.wP method in Ben dll.

Ben DLL

By adding breakpoint after loading from module we catch the debugger.

The code performs image processing, uses reflection to invoke a method, and dynamically loads an
assembly from a byte array. This kind of operation is typical in applications that need to manipulate
images, dynamically execute code, and potentially load plugins or modules at runtime.

Sleep for 16sec

new MemoryStream(array2): This creates a new MemoryStream object using array2 as its
buffer. array2 is assumed to be a byte array (byte[]) that contains data compressed using the
GZip algorithm. The MemoryStream is a stream based on a memory buffer, allowing for
reading from and writing to memory.
new GZipStream(…): This creates a new GZipStream object. The GZipStream class is used to
compress and decompress data in the GZip data format. In this case, it’s constructed with the
previously created MemoryStream and the CompressionMode.Decompress. This indicates that
the GZipStream should be used for decompression, i.e., to decompress the data contained in
array2.

It’s part of a process involving dynamic loading and reflection. It reads and possibly processes data
from a MemoryStream, uses that data to load an assembly or access its contents, and then retrieves
a specific type from that assembly.

Rd is designed to dynamically load a .NET assembly from a byte array, denoted as \u0020. It
employs a nested, infinite loop structure with a switch statement for control flow. Initially, it attempts
to load the assembly using Assembly.Load(\u0020). The code’s flow is influenced by the result of
global::dr.hA.EV(), a method call whose purpose is unclear. If EV() returns a non-null value, the
method exits the loop prematurely via a go to statement. The method’s coding style, characterized
by unconventional variable naming and complex looping, suggests a potential for obfuscation,
possibly to conceal the actual functionality or make reverse-engineering more challenging.

ReactionDiffusion

After loading assembly we get a new binary in modules with the name of ReactionDiffusion.

Then it disposes the “memorystream” which means the work of the memory stream is done here.
Probably it will now move on to the next binary.

After that it also dispose the gzip stream which was used to get the binary.

Now let’s track where it would go next in ReactionDiffusion. If we investigate the object where it is
pointing its type show us the destination namespace and class.

4/12

Since there were no method calls from previous binary. So, we created break point at constructor at
it hit exact on it.

There was nothing useful in ReactionDiffusion there, maybe it was all decoy code. Let’s see what
next the Ben binary does, in case 8 it gets bitmap from resources.

RS Method

The RS method in C# is designed to retrieve a Bitmap image from resources using reflection
and obfuscated code patterns. It starts by declaring a ResourceManager to access embedded
resources, using a dynamically constructed resource name from the first-string parameter, \u0020.
This parameter, along with a similarly named second parameter, is used in a nested, infinite loop
structure with a switch statement. Bitmap is obtained by the method global::dr.hA.rY, which likely
extracts the image from the resources. The control flow includes checks with global::dr.hA.EV() and
global::dr.hA.m3(), whose purposes are unclear, but they seem to influence the flow and decision-
making within the method. The use of obfuscated names (like \u0020) and complex control flow
suggests an intent to mask the code’s functionality or purpose.

Loading the assembly from byte array

1. It defines a private static method named Rd that takes a byte array \u0020 as its parameter.
2. It initializes an integer variable num with the value 1.
3. Inside an infinite loop (for (;;)), the code performs the following actions: a. It declares a variable

num2 and assigns it the value of num. b. It enters another loop (for (;;)). c. Within the inner
loop, there is a switch statement with two cases:

Case 1:
It attempts to load an assembly using Assembly.Load(\u0020), where \u0020 represents the
byte array passed as a parameter to the method.
If the assembly is successfully loaded, it sets num2 to 0.
It then checks whether global::dr.hA.EV() is not null. If it’s not null, the code proceeds to the
Block_1 label.
If global::dr.hA.EV() is null, it effectively exits the loop and returns the loaded assembly.
Default case:

If none of the cases match, it returns the assembly variable, which would have been assigned earlier
in the code.

 d. The Block_1 label is used to indicate the point where the code should continue if
global::dr.hA.EV() is not null. It doesn’t contain any specific code logic in the provided snippet.

Tyrone

It looks like another binary is coming. Another DLL loaded in modules with the name Tyrone.

Invoking AJBqklj3Jn from tyorne { YcMqTyPiynJnoycycL.MhMHeAYqAZ6AJWSu3o}

This is more obfuscated than previous binaries.

5/12

Checking for the presence of a named mutex, which may be used by malware for synchronization or
coordination purposes. “wnmJOXavioKPdkNYG”

It tried to open but since if there is no mutex it goes to exception. If it exists it will end itself in second
line.

Creating Mutex

It creates a new Mutex object with the name “wnmJOXavioKPdkNYG”. Mutexes are
synchronization primitives used to control access to shared resources among multiple threads or
processes.

This was all to get path of appdata and then append it with “EiHjExP.exe”.

“C:\Users\username\AppData\Roaming\EiHjExP.exe”

Check if not there Copy it.

Change Directory Permission

It adds access control entries to the directorySecurity object using the
MhMHeAYqAZ6AJWSu3o.PR6qMi9p2U method. These entries seem to define permissions for
specific file system rights (e.g., Read, ReadAndExecute, Delete, Write, etc.) with different access
control types (e.g., Allow, Deny). The permissions are set for various inheritance flags and
propagation flags, which determine how permissions are inherited by child objects.

It removes “currentuser” security to change file and write permission.

As you can see the permission are denied now

Remcos is doing this because it makes it safe from being changed or deleted from disc.

Then it gets a base64 encoded text fetched from modules of this tyrone binary with this code.

I decode this string from https://www.base64decode.org/ and it turns out that it is xml.

There is code for decoding also in the remcos.

Then this function is called to play with Microsoft Security. This function decodes the text which was
fetched from module.

It then creates a new process, assign a new stratinfo with it and give file name “powershell” which
it gets from the module. In arguments of process, it gives @”Add-MpPreference -ExclusionPath
“”C:\Users\shaddy\AppData\Roaming\EiHjExP.exe”””

Set process’s window hidden.

Windows Exclusion

https://www.base64decode.org/

6/12

It will be added to the exclusion but keep in mind that I was running it from admin, if not performing
analysis from admin it will be able to add since so far there was not privilege escalation performed.

Path.GetTempFileName(); it will return a string that represents a unique temporary file name. This
file name is generated using a combination of a temporary directory path and a unique identifier,
making it highly unlikely to clash with other temporary files in the system.

It gets the identity of current user, exe path to update the xml. In the breakpoint it is updating the xml
and saving it in text variable.

The clean xml code.

Persistence

After that it is writing all xml in tmp file.

It then loads the command of scheduling task from modules and sets startupinfo of process.
Process is executed with window style hidden, Filename “schtask.exe” and with following
arguments.

@”/Create /TN “”Updates\EiHjExP”” /XML
“”C:\Users\shaddy\AppData\Local\Temp\tmp66E3.tmp”””

This command appears to be creating a new scheduled task with the name “Updates\EiHjExP” and
configuring it using an XML file located at “C:\Users\shaddy\AppData\Local\Temp\tmp66E3.tmp.”

It is triggering the exe after every system restarts.

Then it deletes the tmp file.

After that it loads new assembly “xF7siMsac” from its resource manager.

It is injecting this final binary and executing it. Let’s see its injection inside process hacker.

Another binary which is extracted and DE obfuscated from resources.

Remcos / 5thstage

After saving the binary from \u0020 it looks exactly like client agent built from the original remcos
agent from hxxps://breakingsecurity.net/remcos/. The logo is also the same, but its signature was not
present in any online threat intelligence.

This final stage was developed in c++ language. And before analysis when we perform strings filter
there was something linking to remcos, this pattern comes almost in every remcos rat.

Now let’s start the debugger to look more into it. We can see some more identifications.

It starts with calling GetAddrInfoW API which is pointing to rungmotors20.ddns.net:60247.

https://breakingsecurity.net/remcos/

7/12

GetAddrInfoW is a Windows API function that is used for network operations. It’s part of the Windows
Sockets (Winsock) API and is typically called to resolve network addresses or to perform name
resolution, converting a hostname like a domain or a URL into an IP address that can be used to
establish network connections.

If running from admin privileges, it creates a directory [C:\\ProgramData\\remcos] using
CreateDirectoryW API.

CreateDirectoryW is a function in the Windows API that is used to create a new directory. The W at
the end of CreateDirectoryW indicates that this function uses wide characters (Unicode), as opposed
to CreateDirectoryA, which uses ANSI characters.

After creating Directory, it creates file with name logs.dat using CretaeFileW api.

There are privileges check also it is handling both cases smoothly. It is just paths which it used
separately.

While executed from admin it uses [C:\\ProgramData\\remcos folder]. It creates thread and that
thread in loop performs these steps.

If executed from normal permission, it uses
[C:\\Users\\username\\Local\\VirtualStore\\ProgramData\\remcos\\logs.dat]

It sets its mark on the system in registry. It sets exepath, licence and time for thread.

Patching TLS

All traffic was encrypted so we must check what is being sent. There was TLS check which was on in
our client rate.

Since we cannot see what it is sending to server, because of TLS flag is on. It will send all the traffic
encrypted. After patching this, we can analyze the traffic.

After finding the check I was able to turn off the TLS and see all the traffic clearly. It was sending the
device identification after every few seconds to server.

This was sample data that rat was sending.

$ KRemoteHost||DESKTOP-002IHON/shaddy||US||Windows 10 Enterprise (64
bit)||||8588939264||4.9.2
Pro||C:\ProgramData\remcos\logs.dat||C:\Users\shaddy\Desktop\5thstage.exe||||5thstage.exe
— PID: 3308 — Module: 5thstage.exe — Thread: Main Thread 6232 — x32dbg
[Elevated]||1||47||48556593||1||rungmotors20.ddns.net||Rmc-
ZT6SIL||0||C:\Users\shaddy\Desktop\5thstage.exe||12th Gen Intel(R) Core(TM) i7–
12700KF||Exe||||

Clipboard and Process recording

8/12

Inside the thread it was performing three major activities because the one who built it, he/she only
want to record clipboards, records keylogging and setting some registries. It records all the
clipboards data inside the same logs.dat file. Only it appends [Text copied to clipboard] at initial and
[End of clipboard] at end.

It also keeps recording the process which spawns, its architecture, its user access and all the
keystrokes also.

Rules & IOCs

Yara Rules

9/12

rule remcos_pro_4_9_2

{

meta:

author = “Osama Ellahi”

description = “Remcos RAT 4.9.2 pro version from breakpoint”

strings:

$string_match1 = “© by P.J. Plauger, licensed by Dinkumware, Ltd. ALL RIGHTS RESERVED”
ascii fullword

$string_match2 = “\tRemcos v” ascii fullword

$string_match3 = “BreakingSecurity.net” ascii fullword

$string_match4 = “4.9.2 Pro” ascii fullword

$string_match6 = “[Text pasted from clipboard]” ascii fullword

$string_match7 = “[End of clipboard]” ascii fullword

$string_match8 = “[End of clipboard]” ascii fullword

$string_match9 = “[Text copied to clipboard]” ascii fullword

$string_match11 = “Offline Keylogger Started” ascii fullword

$string_match12 = “Offline Keylogger Stopped” ascii fullword

$string_match13 = “Online Keylogger Started” ascii fullword

$string_match14 = “Online Keylogger Stopped” ascii fullword

$string_match15 = “Remcos restarted by watchdog!” ascii fullword

$string_match16 = “Watchdog module activated” ascii fullword

$string_match17 = “Watchdog launch failed!” ascii fullword

$string_match18 = “[Chrome StoredLogins not found]” ascii fullword

$string_match19 = “[Chrome StoredLogins found, cleared!]” ascii fullword

$string_match20 = “[Chrome Cookies not found]” ascii fullword

$string_match21 = “[Chrome Cookies found, cleared!]” ascii fullword

$string_match22 = “[Firefox StoredLogins not found]” ascii fullword

10/12

$string_match23 = “[Firefox Cookies not found]” ascii fullword

$string_match24 = “[Firefox cookies found, cleared!]” ascii fullword

$string_match25 = “[Firefox StoredLogins Cleared!]” ascii fullword

$string_match26 = [IE cookies not found] ascii fullword

$string_match27 = [IE cookies cleared!] ascii fullword

$string_match28 = [Cleared browsers logins and cookies.] ascii fullword

$string_paths1 = “\\AppData\\Local\\Google\\Chrome\\User Data\\Default\\Cookies” ascii
fullword

$string_paths2 = “\\AppData\\Roaming\\Mozilla\\Firefox\\Profiles\\” ascii fullword

$string_paths3 = “Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\User Shell Folders”
ascii fullword

$string_paths4 = “Software\\Microsoft\\Windows\\CurrentVersion\\Run\\” ascii fullword

$string_paths5 = = “\\AppData\\Local\\Google\\Chrome\\User Data\\Default\\Login Data” ascii
fullword

$string_paths6 = “Software\\Microsoft\\EventSounds\\Sounds” ascii fullword

$string_paths7 =
“System\\CurrentControlSet\\Control\\MediaProperties\\PrivateProperties\\Joystick\\Winmm”
ascii fullword

$string_commands1 = “CreateObject(\”WScript.Shell\”).Run \”cmd /c \”\”” ascii fullword

$string_commands2 =
“CreateObject(\”Scripting.FileSystemObject\”).DeleteFile(Wscript.ScriptFullName)” ascii
fullword

$string_commands3 = “\\AppData\\Local\\Google\\Chrome\\User Data\\Default\\Login Data”
ascii fullword

$string_commands4 = “/k %windir%\\System32\\reg.exe ADD
HKLM\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Policies\\System /v EnableLUA /t
REG_DWORD /d 0 /f” ascii

$string_url1 = “http://geoplugin.net/json.gp" ascii fullword

$string_url2 = “rungmotors20.ddns.net” ascii fullword

condition:

uint16(0) == 0x5a4d and filesize < 600KB and filesize >200KB

11/12

and

(

any of ($string_url*)

or

3 of ($string_paths*)

or

5 of ($string_match*)

)

}

Callback URLs

URL: rungmotors20.ddns.net Port: 60247

URL: hxxp://geoplugin.net/json.gp Port: 443

IOC

1st

SHA256 —

2e5c4d023167875977767da513d8889f1fc09fb18fdadfd95c66a6a890b5ca3f

2nd

MD5 —

3125f77575829f3b710f5a15912dec20 *stage2.dll

SHA256 —

1cc58fba1d1b4c7e0b9d752ea7f03fa3c312ae2fc53796d5b3acea98e6ea3c0e *stage2.dll

3rd

SHA256 —

d01f3dea3851602ba5a0586c60430d286adf6fcc7e17aab080601a66630606e5 *stage3.dll

MD5 —

579197d4f760148a9482d1ebde113259 *stage3.dll

12/12

4th

SHA256 —

c5928572e371b0a5d3109d0a7431ca9e064216beb858f04dc8d0140ccaf44b84 *Tyrone.dll

MD5 —

dd76e11ff9b96efdcf3cd377126c8d96 *Tyrone.dll

5th

SHA256 —

f55fc4f4e1bcbe957d20750f56cd98869c717c18c14c8b6d42698557b254ad51 *5thstage.mal

MD5 —

dc05d4f2864dfafa9b91e8e0d79840e3 *5thstage.mal

References

https://www.joesandbox.com/analysis/1339230/0/html

https://www.jaiminton.com/reverse-engineering/remcos#part-2-decompiling-binary

https://www.joesandbox.com/analysis/1339230/0/html
https://www.jaiminton.com/reverse-engineering/remcos#part-2-decompiling-binary

