
1/25

20 November 2023

DarkGate Internals
blog.sekoia.io/darkgate-internals/

Pierre Le Bourhis and Threat & Detection Research Team - TDR November 20 2023
354 0

Read it later Remove

19 minutes reading

Introduction & Objectives

DarkGate is sold as Malware-as-a-Service (MaaS) on various cybercrime forums by
RastaFarEye persona, in the past months it has been used by multiple threat actors such as
TA577 and Ducktail. DarkGate is a loader with RAT capabilities developed in Delphi with
modules developed in C++, which gained notoriety in the second half of 2023, due to its
capability to operate covertly and its agility to evade detection by antivirus systems. This
technical report delves into an in-depth analysis of DarkGate, shedding light on its inner
workings, evasion techniques, and potential impacts.

The analysis starts from the following AutoIt script: SHA-256
b049b7e03749e7f0819f551ef809e63f8a69e38a0a70b697f8a5a82a792a1df9

https://blog.sekoia.io/darkgate-internals/
https://bazaar.abuse.ch/sample/b049b7e03749e7f0819f551ef809e63f8a69e38a0a70b697f8a5a82a792a1df9/

2/25

Figure 1. Overview of DarkGate infection chains

Data obfuscation

Unusual base64 encoding

The loader uses various techniques to obfuscate data, including strings and configuration
encoding using the base64 algorithm with a first unordered alphabet.

Figure 2. The two alphabets used for data encoding/decoding
The second alphabet is used to decode the list of Command and Control (C2) URLs and the
C2 HTTP messages, while the first one is used everywhere in the binary to decrypt the
configuration and other strings employed for dynamic API resolution.

As introduced, the configuration of DarkGate is obfuscated in the PE, it uses a TStringList to
store it, TStringList which can be seen as a hashtable in the C world.

https://www.delphibasics.co.uk/RTL.php?Name=TStringList

3/25

Figure 3. DarkGate configuration decoded
There are many tools to extract this configuration of DarkGate:

Message obfuscations

The communication between the bot and the server is made over HTTP. More details about
the C2 communication are provided in the “Command and Control” section of this report. The
content of the communication is obfuscated with base64 encoding (with the first alphabet)
and a single byte XOR operation where the XOR key is derived from the Bot ID. For further
information on the process of computing the BotID, an in depth analysis is provided in a
recent DCSO CyTec report.

digest = MD5(product_id+processor+user+computer)

The digest is encoded using a custom alphabet, which is leveraged as lookup table nibble-
wise according to DCSO CyTec.

https://medium.com/@DCSO_CyTec/shortandmalicious-darkgate-d9102a457232

4/25

Figure 4. IDA decompiled function used to XOR data
The following is a Python version of the XOR key derivation used by DarkGate. The seed of
the key corresponds to the length of the bot identifier, and the key is XORed with each
character to build the final XOR key:

xorKey = len(botID)
for char in xorKey:
 xorKey ^= ord(char)

The following CyberChef recipe implements the deobfuscation function for the C2 messages.

5/25

Figure 5. Message deobfuscation using CyberChef
NB: the first string is a wide string in hexadecimal representation.
(500072006F006700720061006D0020004D0061006E006100670065007200 = Program
Manager).

File obfuscation

The malware encrypts some of the files it creates using the Rijndael algorithm with a key
length of 160 bits. It uses a stream cipher called CFB8Bit instead of the commonly used
block cipher. Again, the process used to create the key is explained in the DCSO CyTec
report2

digest = MD5(product_id+processor+user+computer)
bot_id = custom_encode(digest)
digest2 = MD5("mainhw"+bot_id+internal_mutex)
encoded = custom_encode(digest2)
aes_key = encoded[:7].lower()

As shown above in the extract of code used to build the AES secret key, it uses string
concatenation and custom encoding to generate both the AES key and the bot identifier. For
instance, this function is used to encrypt the content of its logs, e.g. crash log.

RAT TTPs

Reverse shell

DarkGate implements a reverse shell that is started in a dedicated process, using pipes to
redirect the standard input, output and error data streams (e.g. stdin, stdout, stderr).

6/25

Figure 6. DarkGate function used to set up the reverse shell, leveraging standard
input/output to create interactive shell
Once the connection is established, the commands are redirected to the local pipes of the
victim’s machine. These commands are executed on the victim’s system via a command
interpreter, and the results are sent back to the attacker through the pipe. Essentially, this
allows the attacker to interact with the victim’s system as if it has a command prompt or shell
on that machine.

The connection is bidirectional, meaning the attackers can send commands and receive
responses in real-time, enabling them to navigate the victim’s system, exfiltrate data, or
perform other malicious actions.

PowerShell script execution

To facilitate the post compromise stage, DarkGate provides the capability to execute
PowerShell files and commands.

7/25

Figure 7. DarkGet code used to 1) execute (if the file already exists) or 2) download and
execute PowerShell script
As shown in the figure 7, the function allows the download of a new PowerShell script if
needed (by sending the action id 1489). Then, the function configures the PowerShell
environment by searching the powershell.exe binary in its dedicated directory (it uses the
directory alias Synactive to avoid basic detection of the PowerShell path).

Figure 8. function used to

execute the PowerShell script
The output of this execution is sent to “c:\temp\tskm” before being sent to the Command and
Control.

Keylogger

https://learn.microsoft.com/en-us/windows/win32/winprog64/file-system-redirector

8/25

To perform advanced keylogging activities on the infected host, the malware retrieves the
foreground windows (the one the user is interacting with) to retrieve its process identifier.
Then it combines the two Windows functions GetAsyncKeyState and GetKeyNameText
aiming at capturing users’ keystrokes and writes them to the log file “masteroflog”.

Discord token hunting

Another functionality provided by DarkGate is to collect Discord tokens. To do it, it searches
for the Discord process using a well documented technique that involves the windows API
functions: CreateToolhelp32Snapshot, Process32First and Process32Next.

Then it attempts to open the process memory with access rights:
PROCESS_QUERY_LIMITED_INFORMATION | PROCESS_DUP_HANDLE

Once the memory is acquired, the malware searches for this first string:

"events":[{"type":"channel_opened","properties":{"client_track_timestamp

Then, it looks for the following string:

{“token”: “

And it extracts all the characters until it matches another double quote, that terminates the
token.

In short, this method is used to search for the JSON discord token built in memory of the
process.

Remote access

In addition to the reverse shell functionality, DarkGate also provides remote desktop
access using hidden Virtual Network Computing (hVNC). To set up the access, the loader
first checks if the software is installed on the infected machine and if not, it downloads it. If
the software is already installed and configured with an access, DarkGate substitutes it with
the following login / password default combination: SafeMode / darkgatepassword0

For the software the user SafeMode is created with the following command line:

cmd.exe “/c cmdkey /generic:\"127.0.0.2\" /user:\"SafeMode\"
/pass:\"darkgatepassword0\"”

Privilege escalation

DarkGate uses different techniques to elevate its privileges on the infected host from
standard user to local admin to system. For that purpose, the malware implements three
techniques:

9/25

Restarts itself using PsExec from the Sysinternal suite;
Executes a raw stub that contains some privilege escalation code (we are not able to
provide more information on this technique because no code related to this technique
was found on the analysed samples);
Executes an embedded executable to elevate its privileges.

Persistence

To keep access upon reboot on the infected host, DarkGate implements a set of persistence
methods depending on the bot configuration. Attackers can configure the bot persistence
using one of these techniques:

1. Create a LNK file in the Startup folder that executes AutoIt3.exe with the AU3 script
2. Set the registry key CurrentVersion\Run with the LNK file.
3. Use one of the three DLLs loaded using Extexport.exe (more detail in the section:

“LOLBAS DLL loading”)

Figure 9. Lnk executing the Autoit.exe with DarkGate AU3 script to maintain the persistence
In case a file is removed or the registry key is deleted by an antivirus software, the loader
raises a critical error (BSOD: Blue Screen Of Death). The BSOD is triggered by a call to
NtRaiseHardError with the ErrorCode value of 0xC0000350 corresponding to
STATUS_HOST_DOWN.

Of note, this feature was announced earlier this year on a top-tier cybercrime forum, by
“RastaFarEye” (the presumed DarkGate author).

https://learn.microsoft.com/en-us/sysinternals/downloads/psexec

10/25

Figure 10. DarkGate advertisement on the XSS forum, announcing its BSOD feature

Defense evasion

Union Api – Call Native Api using syscall

The developer of DarkGate highly likely borrows a technique detailed in a Malaysian article
dating back to 2012 which is a copy of GameDeception.]net that is down since 2013. Anti-
virus (AV) solutions often hook calls to ntdll to identify potential malicious behaviour. This
section covers the technique dubbed “Union API” in the CyberCoding article and used by
DarkGate.

This technique consists in retrieving the handle of ntdll by inspecting the PEB (Process
Environment Block) structure, specifically in the InMemoryOrderModuleList. Then, it
searches by hash where 0x240C0388 is the adler-32 hash of ntdll. Once the handle is
retrieved, the module copies its content, section by section, in a newly dedicated memory.

https://cybercoding.wordpress.com/2012/12/01/union-api/
https://en.wikipedia.org/wiki/Adler-32

11/25

Figure 11. Union-API lazy loading of the DLL
Whereafter, the loader sets the way syscall must be invoked regarding the CPU architecture.
The loader is CPU architecture agnostic, it configures a redirect function concerning the type
of architecture that is detected, using WOW32Reserved function where for x64 it uses:

lea edx, [esp + argX]
call large dword ptr fs:0C0h

and x86 architecture uses:

__asm { sysenter }

Each syscall has its own number of parameters, callee function pushes an array of
parameters and calls the unioned API function with the array of parameters and the number
of parameters (which is predefined by the callee). The number of parameters is used in a
switch case to dispatch the call to the ntdll api with the correct amount of parameters. E.g.:

ApiCall32(“NtfunctionName”, [1, 2, 3], 3)

12/25

Figure 12. Switch case used to invoke the conform version of ntdll Api call
Each parameters are previously push on the stack before calling the system call stubs. And
the

 syscall number is moved into EAX register.
 To get the syscall number corresponding to the provided ntdll function name, the module

loops
 over the IMAGE_DIRECTORY_EXPORT->AdddressOfNames until the provided hash match

the hash obtains from the function name in IMAGE_DIRECTORY_EXPORT-
>AddressOfNameOrdinals.

13/25

Figure 13. Get syscall number
Here is an example of code used by DarkGate to write executable code into another process

 memory using the union API:

14/25

Figure 14. Example of callee function using the union API technique
Malware author(s) use(s) this technique in conjunction with code obfuscation to make the
analysis and detection of the malicious code even more challenging.

Dynamic API resolution

As many other malware, DarkGate also uses dynamic API resolution:

1. Dynamic Loading: Dynamic API resolution involves loading external libraries or APIs
into a program’s memory during runtime.

2. Function Pointers: To access functions within dynamically loaded libraries or APIs,
the malware uses function pointers. Function pointers are variables that store the
memory address of a function within the loaded library. These pointers are assigned
and invoked at runtime.

Each time DarkGate calls a function from DLLs usually tracked by AV, it dynamically loads
the function using GetProcAddress from Kernel32 DLL. The function takes the name of the
function to load as a parameter (the name is decoded from its base64 form using the first
alphabet) and returns the address of the desired function that is assigned to a function
pointer. The function pointer is invoked just after being assigned with its custom parameters.

15/25

Figure 15.

Example of code calling a DLL function using Dynamic API resolution
1. The caller function passes the parameters of the function to resolve, then the function

decodes the function name (base64 with the custom alphabet).
2. Uses GetProcAddress from Kernel32.dll to get the address (type FARPROC) of the

function
3. Calls the function pointer with the parameters pushed by the caller function.

Token thief via UpdateProcThreadAttribute

Many security solutions based on behaviour analytics leverage detection rules based on the
parent-child process relationship. As part of its MaaS kit, DarkGate provides to its customers
the possibility to spoof a specific process identifier to execute a cmd.exe.

Windows introduced the PROC_THREAD_ATTRIBUTE_PARENT_PROCESS attribute in
Windows 8.1 and Windows Server 2012 R2, which allows programmers to specify a parent
process handle when creating a new process. This is used for purposes like creating child
processes in job objects, but it does not directly allow spoofing the parent PID. It’s mainly
designed for creating child processes that inherit some characteristics from their parents.

16/25

Figure 16. Code used by DarkGate to exploit the parent PID spoofing technique
Furthermore, the technique implemented here, in addition to the technique of spoofing a
parent process PID, allows an attacker to elevate its privileges. For instance, targeting a
process owned by NT\SYSTEM allows a local administrator to grant its privileges to the
SYSTEM one.

In addition to privilege escalation via the token thief, the code in the Figure 16 is used to
execute a payload into process memory using NtCreateThreadEx with the Union API.

Of note, this technique is detailed in the a ”APT techniques: Token thief via
UpdateProcThreadAttribute” article written by Cocomelonc.

LOLBAS DLL loading

Extexport is a binary executable that can be found in some Windows systems. It is a
legitimate part of the Microsoft Windows operating system and is used for extracting and
exporting data from Exchange Server databases. This binary is part of the LOLBAS (Living
Off the Land Binaries and Scripts). The binary can be used to load additional DLLs located
in the c:\test\ directory without explicitly importing or executing them. For the loading process
to occur, the DLL file must have one of the following names: sqlite3.dll, mozcrt19.dll,
mozsqlite3.dll. Extexport is a valuable tool for attackers looking to fly under the radar.

https://cocomelonc.github.io/tutorial/2021/12/06/malware-injection-9.html
https://cocomelonc.github.io/tutorial/2022/10/28/token-theft-2.html
https://lolbas-project.github.io/lolbas/Binaries/Extexport/

17/25

Figure 17. Function that searches extexport.exe to silently load attackers DLL
This DLLs loading is one of the exploit implements used by DarkGate to leverage its
compromission, the loader used this technique in addition to the token thief via
UpdateProcThreadAttribute details in the previous section to have an elevated DLL
execution.

APC injection via NtTestAlert

To reduce its footprint on the system and to evade detection, the loader uses APC injection
(Asynchronous Process Call) via the NtTestAlert function from ntdll. The technique is used to
execute arbitrary code within the address space of another process.

Asynchronous Procedure Call is a function that gets executed asynchronously within the
context of a specific thread. It’s a way to queue a function for execution in the context of
another thread.

APC Queuing, the NtQueueApcThread system calls are often used to insert an APC into a
target thread. These calls allow malware authors to specify the target thread handle and the
address of the function (the APC) to be executed within that thread’s context.

18/25

To perform APC Injection, the attacker first allocates memory within the target process and
writes the malicious code (here cmd.exe) into that memory space. Then, it uses
NtQueueApcThread, to queue the address of this memory as an APC in the target thread.To
trigger the execution of the injected code, the attacker typically relies on a mechanism that
triggers the target thread to execute APCs. While there are several methods to achieve this,
in the case of DarkGate, it uses NtTestAlert.

Figure 18. Function used to create Process in SUSPENDED status
As highlighted in the figure above, a new process is created in SUSPENDED state, the
handler of the process is appended to a newly created APC queue. To resume the thread in
order to execute the cmd.exe, the loader executes the syscall NtTestAlert which causes it to
execute any pending APCs.

Figure 19. Code used to create the APC Queue and call NtTestAlert to start the
SUSPENDED process
As a copycat of the DarkGate code, here is the functionality re-coded in C++ reproducing the
parent ID spoofing.

19/25

Figure 20. Example of the PoC to spoof the parent PID part of the token thief technique
More details and a proof of concept of this technique is available in the article “APC injection
via NtTestAlert. Simple C++ malware”.

This technique is used by the malware to inject a payload into other process memory, where
the payload could be a PE or command line.

Environment detection

As other malware, DarkGate has an environment detection capability, as it attempts to detect
numerous artefacts on the infected host.

The loader looks at physical resources, like the RAM size, the number of CPU, which type of
graphical card is present (e.g.: is the card virtualized: vmware, Microsoft Hyper-V?).It also
verifies that no security solutions are installed on the victim’s machine by looking at the
running processes (uiseagnt.exe, superantispyware.exe, etc.) and also checks the path to
installed anti-virus solutions (e.g.: C:\Program Files\Malwarebytes,
C:\ProgramData\Kaspersky Lab, etc.).

Figure 21. Checking for virtual solution setup for the graphical card

https://cocomelonc.github.io/tutorial/2021/11/20/malware-injection-4.html#nttestalert

20/25

The list of paths and binaries checked by DarkGate is provided on our Github repository.

Command and Control

The communication with the attacker’s server is made over HTTP, where messages are
obfuscated. The HTTP requests rely on POST requests using HTML form.

The first version of DarkGate observed in the wild was communicating with their C2 on the
port 2351 (which is defined in the configuration) and 9999 (which is hardcoded in the
binary). This changed recently, where DarkGate customer can add alternative C2 (the
second one: 9999), as highlighted in this Tria.ge execution: 231025-ys84bsfb32.

Figure 22. Extract of DarkGate communication
The structure of the form data messages.

Form item Description

id Bot identifier generated at the infection

data Raw message (not always obfuscated)

act Action identifier

Table 1. Structure of the form data message
As introduced in the section “Data Obfuscation”, the form “data” is almost always
obfuscated.

 The form “data” is the base64 encoded version of XOR data. In this case, the base64 uses
the second alphabet and the XOR key is built from the bot identifier. For future investigation
Sekoia.io provides a script to deobfuscate the communication.

SEKOIA-IO/Community – DarkGate/scripts/DarkGate-C2-communication-deobfuscator.py

https://github.com/SEKOIA-IO/Community/blob/main/IOCs/DarkGate/scripts/AV_checked.txt
https://tria.ge/231025-ys84bsfb32
https://github.com/SEKOIA-IO/Community/blob/main/IOCs/DarkGate/scripts/DarkGate-C2-communication-deobfuscator.py

21/25

Based on the reverse engineering technique, we centralised in a table (Annex X) the action
identifier and the type of action executed by the malwareIt is worth mentioning that our
investigation did not cover the entire action ID range.

Somehow, DarkGate’s communication with the C2 is different compared to its standard
obfuscation method (base64 + XOR) on particular action IDs:

1. Base64 encoding (2sc alphabet) (see CyberChef recipe in Figure 23)
2. ZLib compressed data
3. Uncompressed data is a pseudo map where key are integer and value are base64

encoded again with the second alphabet (see CyberChef recipe in Figure 24)

Figure 23. CyberChef recipe to decode and decompress (Zlib) C2 message

Figure 24. CyberChef recipe to deobfuscate the decoded message in Figure 23
When it comes to the decoded data from the C2 communication, some data are represented
in their hexadecimal wide string format (for exemple action id: 3500).

A correspondence table of the action ID and what it does on the infected host is available
here.

Hunting for artefact on infected host

https://github.com/SEKOIA-IO/Community/blob/main/IOCs/DarkGate/scripts/action-id-documentations.md

22/25

Due to its extensive range of functionalities, DarkGate leaves a multitude of artefacts on the
infected host that can be helpful for post compromission hunting, such as registry keys, log
and debug files.

The temporary directory is frequently used to drop files (PE, DLL) but also text, logs and
debug files. Here is the list of files to look for when hunting for DarkGate infection traces:

C:\temp\tskm
C:\temp\id.txt
C:\darkgateminertest
C:\temp\testgpudec.txt
C:\temp\etc.txt
C:\temp\xmr.txt
C:\temp\a
c:\temp\PsExec.exe
C:\temp\anydesk.exe
C:\temp\rdpwrap.ini
C:\temp\test.rdp
C:\debug\data.bin
C:\test\sqlite.dll
C:\test\mozcrt19.dll
C:\test\mozsqlite3.dll

To leverage some of its functionalities, DarkGate overwrite files on the machine:

C:\Users\SafeMode\AppData\Roaming\AnysDesk\system.conf
C:\Users\<created user>\AppData\Roaming\AnysDesk\system.conf

While in the earliest version the loader created the user SafeMode, in the more recent one
the attacker can define a custom username.

Modified registry keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKLM\Software\Policies\Microsoft\Windows NT\Terminal Services
HKLM\Software\Policies\Microsoft\Windows NT\Terminal
Services\DisableRemoteDesktopAntiAlias
HKLM\Software\Policies\Microsoft\Windows NT\Terminal
Services\DisableSecuritySettings
HKCU:\Software\Microsoft\Terminal Server Client\AuthenticationLevelOverride

Read registry keys:

HKCU\SOFTWARE\Microsoft\Windows NT\CurrentVersion\CurrentBuildNumber

23/25

HKCU\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductName
HKCU\SOFTWARE\Microsoft\Windows NT\CurrentVersion\CSDVersion

Final words

We assess with high confidence that the threat actors behind DarkGate have advanced
skills in malware developpement. However, some elements of their project rely on
techniques with PoCs are available in open source (e.g: Cocomelonc blog posts series on
malware developpement).

Furthermore, instead of developing its own modules for remote access or for credential
stealing, the malware uses legitimate tools (hVNC binary, Nirsoft toolset) that are well
detected by security solutions. Nevertheless, the wide range of techniques used make
DarkGate unique within the cybercrime landscape. It is also profitable from a threat actor’s
perspective, independently of their advancement (e.g.: TA577) and their objectives.

After examining the various DarkGate stages (the AutoIT script, its shellcode and also its
core), it becomes evident that DarkGate represents a significant threat. Consequently, it is
imperative to maintain continuous tracking and monitoring of DarkGate in both the short and
long term.

Finally, the analysis of the loader detailed in this report is not exhaustive. The sections of this
article related to the execution of piding.exe and to the inter process communication via
SendMessage are incomplete, mainly due to the absence, within our surveilled perimeter, of
of complete infection cases involving these functionalities.

Resources

MITRE ATT&CK TTPs

Tactic Technique

Resource
Development

T1608.002 – Stage Capabilities: Upload Tool

Execution T1059.001 – Command and Scripting Interpreter: PowerShell

Execution T1059.003 – Command and Scripting Interpreter: Windows
Command Shell

Execution T1106 – Native API

Persistence T1547.001 – Boot or Logon Autostart Execution: Registry Run Keys /
Startup Folder

24/25

Privilege
Escalation

T1548.002 – Bypass User Account Control

Privilege
Escalation

T1055.004 – Process Injection: Asynchronous Procedure Call

Privilege
Escalation

T1134 – Access Token Manipulation

Defense Evasion T1134.004 – Parent PID Spoofing

Defense Evasion T1027 – Obfuscated Files or Information

Defense Evasion T1027.007 – Obfuscated Files or Information: Dynamic API
Resolution

Defense Evasion T1027.009 – Obfuscated Files or Information: Embedded Payloads

Defense Evasion T1070.004 – Indicator Removal: File Deletion

Defense Evasion T1112 – Modify Registry

Defense Evasion T1140 – Deobfuscate/Decode Files or Information

Defense Evasion T1620 – Reflective Code Loading

Command and
Control

T1071.001 – Web Protocols

Command and
Control

T1090.001 – Internal Proxy

Command and
Control

T1104 – Multi-Stage Channels

Command and
Control

T1105 – Ingress Tool Transfer

Command and
Control

T1132.002 – Non-Standard Encoding

Command and
Control

T1219 – Remote Access Software

Command and
Control

T1571 – Non-Standard Port

Discovery T1010 – Application Window Discovery

Discovery T1057 – Process Discovery

Discovery T1082 – System Information Discovery

25/25

Discovery T1083 – File and Directory Discovery

Discovery T1217 – Browser Information Discovery

Collection T1056.001 – Keylogging

Table 2. MITRE ATT&CK TTPs

