
1/12

Matthew November 6, 2023

Malware Unpacking With Hardware Breakpoints - Cobalt
Strike Shellcode Loader

embee-research.ghost.io/unpacking-malware-with-hardware-breakpoints-cobalt-strike/

Intermediate
Unpacking a simple Cobalt Strike loader using Debuggers and Hardware breakpoints.

In previous posts here and here, we explored methods for extracting cobalt strike shellcode
from script-based malware.

In this post, we'll explore a more complex situation where Cobalt Strike shellcode is loaded
by a compiled executable .exe file. This will require the use of a debugger (x64dbg) in
conjunction with Static Analysis (Ghidra) in order to perform a complete analysis.

Overview

The executable is a compiled exe containing hidden and obfuscated Shellcode. The
shellcode is decoded using a simple XOR routine and a 4-byte key, is then written to a
simple buffer created with VirtualAlloc.

We will explore methods for obtaining the decoded shellcode using a debugger, and we will
then explore methods for manually locating the Shellcode and associated decryption keys
using Ghidra.

https://embee-research.ghost.io/unpacking-malware-with-hardware-breakpoints-cobalt-strike/
https://embee-research.ghost.io/tag/intermediate/
https://embee-research.ghost.io/decoding-a-cobalt-strike-vba-loader-with-cyberchef/
https://embee-research.ghost.io/malware-analysis-decoding-a-simple-hta-loader/


2/12

We'll also look at a way to pivot between X64dbg and Ghidra, as well as a method for
identifying and analysing Ghidra output using ChatGPT.

Obtaining the Sample

You can follow along by downloading the sample here on Malware Bazaar (pw:infected)

SHA256: 99986d438ec146bbb8b5faa63ce47264750a8fdf508a4d4250a8e1e3d58377fd

Analysis

We can begin by saving the file to an analysis machine and unzipping it with the password
infected. From here we can also create a copy with a shorter file name.

Since the file is a compiled executable, we can attempt to analyse it using a debugger. In this
case x64dbg.

We can go ahead and open the file with x64dbg, clicking through until we reach the entry
point.

We can now go ahead and create some breakpoints on API's that are commonly (but not
always) used when malware is unpacking.

We can go ahead and create 2 breakpoints by running bp VirtualAlloc and bp
VirtualProtect

https://bazaar.abuse.ch/sample/99986d438ec146bbb8b5faa63ce47264750a8fdf508a4d4250a8e1e3d58377fd?ref=embee-research.ghost.io


3/12

After creating the breakpoints, we can go ahead and allow the malware to continue (F9)

The malware will continue to run and trigger a breakpoint on VirtualAlloc.

Our primary purpose here is to obtain the buffer being created by VirtualAlloc, we can do this
by using Execute Until Return.

"Execute Until Return" will allow the VirtualAlloc function to complete, but won't allow any
further actions to occur. This means we can easily obtain the address of the buffer that was
created.

Viewing Memory Created by VirtualAlloc

After hitting execute until return. We can observe the address of the newly created buffer
inside of RAX.

We want to go ahead and monitor this buffer for suspicious content and unpacked malware.



4/12

We can begin the monitoring process by right-clicking on the address contained inside of
RAX.

From here we can select Follow in Dump. This will open the content of the buffer in the
bottom-left window.



5/12

By clicking "Follow In Dump", we can observe the contents of the dump in the bottom-left
window.

We can note here that the buffer is empty and contains only 00.

Monitoring Memory With Hardware Breakpoints

VirtualAlloc has finished creating an empty buffer and we have successfully found it.



6/12

We can now go ahead and monitor for changes to this buffer by creating a Hardware
Breakpoint.

A hardware breakpoint can be created by selecting the first byte in the memory dump and
Right Click -> Breakpoint -> Hardware, Access -> Byte

From here we can allow the malware to continue to execute.

We should soon see our hardware breakpoint triggered. With an FC byte contained in the first
part of the buffer.

We can recall from previous blogs that FC is a very common first byte in shellcode.



7/12

At this point we want the malware to continue to fill up the buffer, but we don't want it to do
anything after that.

We can go ahead and use another Execute Until Return . Which will allow the buffer to fill
up. At which point we can monitor it's contents.

Below we can see the buffer after it has filled. We can see the first byte is 0xFC and there is a
wininet string present in the initial bytes. From previous blogs (1, 2)we know that this could
indicate shellcode.

Validating Shellcode Using a Disassembler

Now that we have a reasonable assumption that the buffer contains shellcode, we can go
ahead and try to disassemble it using X64dbg.

If we disassemble the code and there are no glaring errors, then there is a very high chance
that we are looking at shellcode.

We can achieve this by selecting the first FC byte and Follow in Disassembler.

https://embee-research.ghost.io/malware-analysis-decoding-a-simple-hta-loader/
https://embee-research.ghost.io/decoding-a-cobalt-strike-vba-loader-with-cyberchef/


8/12

X64dbg will now attempt to disassemble the bytes from our buffer.

Below, we can observe the buffer disassembled in the top disassembly window. There
appear to be no glaring errors, and there are valid function calls, loops and overall "normal"
looking instructions.



9/12

Final Validation Using SpeakEasy Emulator

We now have a very high suspicion that the buffer contains shellcode. So we can go ahead
and emulate it using Speakeasy.

We could also achieve the same thing with X64dbg, but for shellcode, this is a much
more involved process that will be covered in a later blog.

To emulate the shellcode using speakeasy, we first need to save it.

We can select our first FC byte, right-click and go to Follow in Memory Map

From here we can save the memory buffer to a file.

I will go ahead and save my file as memdump.bin.



10/12

Emulating the Unpacked Shellcode with Speakeasy

With the shellcode buffer now saved to a file memdump.bin. We can go ahead and emulate
the shellcode using Speakeasy.

We can do this with the command speakeasy -t memdump.bin -r -a x64

speakeasy - Runs the speakeasy tool
-t - Which file we want to use
-r - (Raw) - Indicates that we are using shellcode
-a x64 - Indicates that our file contains 64-bit instructions. (we know this as we're using
x64dbg and not x32dbg)

Upon running this command, the shellcode is emulated successfully and we are given a lot
of information about it's functionality.



11/12

The Speakeasy output shows a C2 address of 116.62[.]138.47, as well as a partial url of
/8yHd.

We can also see references to a user agent of User-Agent: Mozilla/4.0 (compatible;
MSIE 8.0; Windows NT 5.1; Trident/4.0; InfoPath.2; .NET CLR 2.0.50727)\r\n

(This user agent would be a great place to go hunting in proxy logs if you had them
available)

Locating the Shellcode Decryption Function In Ghidra



12/12

At the point where the hardware breakpoint was first triggered, the primary executable was
likely in the middle of the decryption function. We can use this information to locate the same
decryption function within Ghidra.

From here, we can do some interesting things which are covered in the next 7 sections.
Locating the Shellcode Decryption Function In Ghidra
Identifying Decryption Routine Logic With ChatGPT
Identifying the Decryption Key Using Ghidra
Locating the Encrypted Shellcode Using Entropy
Performing Manual Decoding Using Cyberchef
Hunting For Additional Samples Using Decryption Bytes
Creating a Yara Rule Using Decryption Code

These remaining sections are available for paid members of the site.

You can subscribe using the button below.

Paid members will receive priority access to posts about Ghidra, Static Analysis and
Advanced Debugging techniques. 

 

This post is for paying subscribers only

Subscribe now
Already have an account? Sign in


