
1/18

November 1, 2023

Popping Blisters for research: An overview of past payloads and exploring recent
developments

blog.fox-it.com/2023/11/01/popping-blisters-for-research-an-overview-of-past-payloads-and-exploring-recent-developments/

Authored by Mick Koomen

Summary

Blister is a piece of malware that loads a payload embedded inside it. We provide an overview of payloads dropped by the Blister loader based
on 137 unpacked samples from the past one and a half years and take a look at recent activity of Blister. The overview shows that since its
support for environmental keying, most samples have this feature enabled, indicating that attackers mostly use Blister in a targeted manner.
Furthermore, there has been a shift in payload type from Cobalt Strike to Mythic agents, matching with previous reporting. Blister drops the
same type of Mythic agent which we thus far cannot link to any public Mythic agents. Another development is that its developers started
obfuscating the first stage of Blister, making it more evasive. We provide YARA rules and scripts to help analyze the Mythic agent and the
packer we observed with it.

Recap of Blister

Blister is a loader that loads a payload embedded inside it and in the past was observed with activity linked to Evil Corp . Matching with
public reporting, we have also seen it as a follow-up in SocGholish infections. In the past, we observed Blister mostly dropping Cobalt Strike
beacons, yet current developments show a shift to Mythic agents, another red teaming framework.

Elastic Security first documented Blister in December 2021 in a campaign that used malicious installers . It used valid code signatures
referencing the company Blist LLC to pose as a legitimate executable, likely leading to the name Blister. That campaign reportedly dropped
Cobalt Strike and BitRat.

In 2022, Blister started solely using the x86-64 instruction set, versus including 32-bit as well. Furthermore, RedCanary wrote observing
SocGholish dropping Blister , which was later confirmed by other vendors as well .

In August the same year, we observed a new version of Blister. This update included more configuration options, along with an optional
domain hash for environmental keying, allowing attackers to deploy Blister in a targeted manner. Elastic Security recently wrote about this
version .

2023 initially did not bring new developments for Blister. However, similar to its previous update, we observed development activity in August.
Notably, we saw samples with added obfuscation to the first stage of Blister, i.e. the loader component that is injected into a legitimate
executable. Additionally, in July, Unit 42 observed SocGholish dropping Blister with a Mythic agent.

In summary, 2023 brought new developments for Blister, with added obfuscations to the first stage and a new type of payload. The next part of
this blog is divided into two parts: firstly, we look back at previous Blister payloads and configurations, and in the second part, we discuss the
recent developments.

Looking back at Blister

In early 2023, we observed a SocGholish infection at our security operations center (SOC). We notified the customer and were given a binary
that was related to the infection. This turned out to be a Blister sample, with Cobalt Strike as its payload.

We wrote an extractor that worked on the sample encountered at the SOC, but for certain other Blister samples it did not. It turned out that the
sample from the SOC investigation belonged to a version of Blister that was introduced in August, 2022, while older samples had a different
configuration. After writing an extractor for these older versions, we made an overview of what Blister had been dropping in roughly the past
two years.

The samples we analyzed are all available on VirusTotal, the platform we used to find samples. We focus on 64-bit Blister samples, newer
samples are not using 32-bit anymore, as far as we know. In total, we found 137 samples we could unpack, 33 samples with the older version
and 104 samples with the newer version from 2022.

In the Appendix, we list these samples, where version 1 and 2 refer to the old and new version respectively. The table is sorted on the first
seen date of a sample in VirusTotal, where you clearly see the introduction of the update.

Because we want to keep the tables comprehensible, we have split up the data into four tables. For now, it is important to note that Table 2
provides information per Blister sample we unpacked, including the date it was first uploaded to VirusTotal, the version, the label of the payload
it drops, the type of payload, and two configuration flags. Furthermore, to have a list of Blister and payload hashes in clear text in the blog, we
included these in Table 6. We also included a more complete data set at https://github.com/fox-it/blister-research.

1

2,3

4

5 6

7

8

https://blog.fox-it.com/2023/11/01/popping-blisters-for-research-an-overview-of-past-payloads-and-exploring-recent-developments/
https://github.com/fox-it/blister-research

2/18

Discussing payloads

Looking at the dropped payloads, we see that it mostly conforms with what has already been reported. In Figure 1, we provide a timeline
based on the first seen date of a sample in VirusTotal and the family of the payload. The observed payloads consist of Cobalt Strike, Mythic,
Putty, and a test application. Initially, Blister dropped various flavors of Cobalt Strike and later dropped a Mythic agent, which we refer to as
BlisterMythic. Recently, we also observed a packer that unpacks BlisterMythic, which we refer to as MythicPacker. Interestingly, we did not
observe any samples drop BitRat.

Figure 1, Overview of Blister samples we were able to unpack, based on the first seen date reported in VirusTotal.

From the 137 samples, we were able to retrieve 74 unique payloads. This discrepancy in amount of unique Blister samples versus unique
payloads is mainly caused by various Blister samples that drop the same Putty or test application, namely 18 and 22 samples, respectively.
This summer has shown a particular increase in test payloads.

Cobalt Strike

Cobalt Strike was dropped through three different types of payloads, generic shellcode, DLL stagers, or obfuscated shellcode. In total, we
retrieved 61 beacons, in Table 1 we list the Cobalt Strike watermarks we observed. Watermarks are a unique value linked to a license key. It
should be noted that Cobalt Strike watermarks can be changed and hence are not a sound way to identify clusters of activity.

Watermark (decimal) Watermark (hexadecimal) Nr. of beacons

206546002 0xc4fa452 2

1580103824 0x5e2e7890 21

1101991775 0x41af0f5f 38

Table 1, Counted Cobalt Strike watermarks observed in beacons dropped by Blister.
The watermark 206546002, though only used twice, shows up in other reports as well, e.g. a report on an Emotet intrusion and a report
linking it to Royal, Quantum, and Play ransomware activity . The watermark 1580103824 is mentioned in reports on Gootloader , but also
Cl0p and also is the 9th most common beacon watermark, based on our dataset of Cobalt Strike beacons . Interestingly, 1101991775, the
watermark that is most common, is not mentioned in public reporting as far as we can tell.

Cobalt Strike profile generators

In Table 3, we list information on the extracted beacons. In there, we also list the submission path. Most of the submission paths contain
/safebrowsing/ and /rest/2/meetings, matching with paths found in SourcePoint , a Cobalt Strike command-and-control (C2) profile
generator. This is only, however, for the regular shellcode beacons, when we look at the obfuscated shellcode and the DLL stager beacons, it
seems to use a different C2 profile. The C2 profiles for these payloads match with another public C2 profile generator .

Domain fronting

Some of the beacons are configured to use “domain fronting”, which is a technique that allows malicious actors to hide the true destination of
their network traffic and evade detection by security systems. It involves routing malicious traffic through a content delivery network (CDN) or
other intermediary server, making it appear as if the traffic is going to a legitimate or benign domain, while in reality, it’s communicating with a
malicious C2 server.

9

10,11 12

13 14

15

16

3/18

Certain beacons have subdomains of fastly[.]net as their C2 server, e.g. backend.int.global.prod.fastly[.]net or
python.docs.global.prod.fastly[.]net. However, the domains they connect to are admin.reddit[.]com or admin.wikihow[.]com, which are
legitimate domains hosted on a CDN.

Obfuscated shellcode

In five cases, we observed Blister drop Cobalt Strike by first loading obfuscated shellcode. We included a YARA rule for this particular
shellcode in the Appendix.

Performing a retrohunt on VirusTotal yielded only 12 samples, with names indicating potential test files and at least one sample dropping
Cobalt Strike. We are unsure whether this is an obfuscator solely used by Evil Corp or whether it is used by other threat actors as well.

Figure 2, Layout of particular shellcode, with denoted steps.

The shellcode is fairly simple, we provide an overview of it in Figure 2. The entrypoint is at the start of the buffer, which calls into the decoding
stub. This call instruction automatically pushes the next instruction’s address on the stack, which the decoding stub uses as a starting point to
start mutating memory. Figure 3 shows some of these instructions, which are quite distinctive.

Figure 3, Decoding instructions observed in particular shellcode.

At the end of the decoding stub, it either jumps or calls back and then invokes the decryption function. This decryption function uses RC4, but
the S-Box is already initialized, thus no key-scheduling algorithm is implemented. Lastly, it jumps to the final payload.

BlisterMythic

Matching with what was already reported by Unit 42 , Blister recently started using Mythic agents as its payload. Mythic is one of the many red
teaming frameworks on GitHub . You can use various agents, which are listed on GitHub as well and can roughly be compared to a Cobalt
Strike beacon. It is possible to write your own Mythic agent, as long as you comply with a set of constraints. Thus far, we keep seeing the
same Mythic agent, which we discuss in more detail later on. The first sample dropping Mythic agents was uploaded to VirusTotal on July 24th
2023, just days before initial reportings of SocGholish infections leading to Mythic. In Table 4, we provide the C2 information from the observed
Mythic agents.

We observed Mythic either as a Portable Executable (PE) or as shellcode. The shellcode seems to be rare and unpacks a PE file which thus
far always resulted in a Mythic agent, in our experience. We discuss this packer later on as well and provide scripts that help with retrieving the
PE file it packs. We refer to this specific Mythic agent as BlisterMythic and to the packer as MythicPacker.

In Table 5, we list the BlisterMythic C2 servers we were able to find. Interestingly, the domains were all registered at DNSPod. We also
observed this in the past with Cobalt Strike domains we linked to Evil Corp. Apart from this, we also see similarities in the domain names used,
e.g. domains consisting of two or three words concatenated to each other and using com as top-level domain (TLD).

Test payloads

Besides red team tooling like Mythic and Cobalt Strike, we also observed Putty and a test application as payloads. Running Putty through
Blister does not seem logical and is likely linked to testing. It would only result in Putty not touching the disk and running in memory, which in
itself is not useful. Additionally, when we look at the domain hashes in the Blister samples, only the Putty and test application samples in some
cases share their domain hash.

Blister configurations

8

18 19

4/18

We also looked at the configurations of Blister, from this we can to some extent derive how it is used by attackers. Note that the collection also
contains “test samples” from the attacker. Except for the more obvious Putty and test application, some samples that dropped Mythic, for
instance, could also be linked to testing. We chose to leave out samples that drop Putty or the test application, leaving 97 samples in total.
This means that the samples paint a partly biased picture, though we think it is still valuable and provides a view into how Blister is used.

Environmental keying

Since its update in 2022, Blister includes an optional domain hash, that it computes over the DNS search domain of the machine
(ComputerNameDnsDomain). It only continues executing if the hash matches with its configuration, enabling environmental keying.

By looking at the amount of samples that have domain hash verification enabled, we can say something about how Blister is deployed. From
the 66 Blister samples, only 6 samples did not have domain hash verification enabled. This indicates it is mostly used in a targeted manner,
corresponding with using SocGholish for initial access and reconnaissance and then deploying Blister, for example.

Persistence

Of the 97 samples, 70 have persistence enabled. For persistence, Blister still uses the same method as described by Elastic Security . It
mostly uses IFileOperation COM interface to copy rundll32.exe and itself to the Startup folder, this is significant for detection, as it means that
these operations are done by the process DllHost.exe, not the rundll32.exe process that hosts Blister.

Blister trying new things

Blister’s previous update altered the core payload, however, the loader that is injected into the legitimate executable remained unchanged. In
August this year, we observed experimental samples on VirusTotal with an obfuscated loader component, hinting at developer activity.
Interestingly, we could link these samples to another sample on VirusTotal which solely contained the function body of the loader and another
sample that contained a loader with a large set of INT 3 instructions added to it. Perhaps the developer was experimenting with different
mutations to see how it influences the detection rate.

Obfuscating the first stage

Recent samples from September 2023 have the loader obfuscated in the same manner, with bogus instructions and excessive jump
instructions. These changes make it harder to detect Blister using YARA, as the loader instructions are now intertwined with junk instructions
and sometimes are followed by junk data due to the added jump instructions.

Figure 4, Comparison of two loader components from recent Blister samples, left is without obfuscation and right is with obfuscation.

In Figure 4, we compare the two function bodies of the loader, one body which is normally seen in Blister samples and one obfuscated function
body, observed in the recent samples. The comparison shows that naive YARA rules are less likely to trigger on the obfuscated function body.
In the Appendix, we provide a Blister rule that tries to detect these obfuscated samples. The added bogus instructions include instructions,
such as btc, bts, lahf and cqo, bogus instructions we also observed in the Blister core before, see the core component of SHA256
4faf362b3fe403975938e27195959871523689d0bf7fba757ddfa7d00d437fd4, for example.

Dropping Mythic agents

20

5/18

Apart from an obfuscated loader, Mythic agents currently are the payload of choice. In September and October, we found obfuscated Blister
samples only dropping Mythic. Certain samples have low or zero detections on VirusTotal at the time of writing, showing that obfuscation
does pay off.

We now discuss one sample that drops a shellcode eventually executing a Mythic agent. The shellcode unpacks a PE file and executes it.
We provide a YARA rule for this packer in the Appendix, which we refer to as MythicPacker. Based on this rule, we did not find other samples,
suggesting it is a custom packer. Until now, we have only seen this packer unpacking Mythic agents.

The dropped Mythic agents are all similar and we cannot link them to any public agents thus far. This could mean that Blister developers
created their own Mythic agent, though this is uncertain. We provided a YARA rule that matches on all agents we encountered, a VirusTotal
retrohunt over the past year resulted in only four samples, all linked to Blister. We think this Mythic agent is likely custom-made.

Figure 5, BlisterMythic configuration decryption.

The agents all share a similar structure, namely an encrypted configuration in the .bss section of the executable. The agent has an encrypted
configuration which is decrypted by XORing the size of the configuration with a constant that differs per sample, it seems. For PE files, we
have a Python script that can decrypt a configuration. Figure 5 denotes this decryption loop, where the XOR constant is 0x48E12000.

Figure 6, Decrypted BlisterMythic configuration

Dumping the configuration results in a binary blob that contains various information, including the C2 server. Figure 6 shows a hexdump of a
snippet from the decrypted configuration. We created a script to dump the decrypted configuration of the BlisterMythic agent in PE format and
also a script that unpacks MythicPacker shellcode and outputs a reconstructed PE file, see https://github.com/fox-it/blister-research.

Conclusion

In this post, we provided an overview of observed Blister payloads from the past one and a half years on VirusTotal and also gave insight into
recent developments. Furthermore, we provided scripts and YARA rules to help analyze Blister and the Mythic agent it drops.

From the analyzed payloads, we see that Cobalt Strike was the favored choice, but that lately this has been replaced by Mythic. Cobalt Strike
was mostly dropped as shellcode and briefly run through obfuscated shellcode or a DLL stager. Apart from Cobalt Strike and Mythic, we saw
that Blister test samples are uploaded to VirusTotal as well.

21

22

https://github.com/fox-it/blister-research

6/18

The custom Mythic agent together with the obfuscated loader, are new Blister developments that happened in the past months. It is likely that
its developers were aware that the loader component was still a weak spot in terms of static detection. Additionally, throughout the years,
Cobalt Strike has received a lot of attention from the security community, with available dumpers and C2 feeds readily available. Mythic is not
as popular and allows you to write your own agent, making it an appropriate replacement for now.

References

Appendix

YARA rules

7/18

rule shellcode_obfuscator
{
 meta:
 os = "Windows"
 arch = "x86-64"
 description = "Detects shellcode packed with unknown obfuscator observed in Blister samples."
 reference_sample = "178ffbdd0876b99ad1c2d2097d9cf776eca56b540a36c8826b400cd9d5514566"
 strings:
 $rol_ror = { 48 C1 ?? ?? ?? 48 C1 ?? ?? ?? 48 C1 ?? ?? ?? }
 $mov_rol_mov = { 4d ?? ?? ?? 49 c1 ?? ?? ?? 4d ?? ?? ?? }
 $jmp = { 49 81 ?? ?? ?? ?? ?? 41 ?? }
 condition:
 #rol_ror > 60 and $jmp and filesize < 2MB and #mov_rol_mov > 60
}

import "pe"
import "math"

rule blister_x64_windows_loader {
 meta:
 os = "Windows"
 arch = "x86-64"
 family = "Blister"
 description = "Detects Blister loader component injected into legitimate executables."
 reference_sample = "343728792ed1e40173f1e9c5f3af894feacd470a9cdc72e4f62c0dc9cbf63fc1,
8d53dc0857fa634414f84ad06d18092dedeb110689a08426f08cb1894c2212d4, a5fc8d9f9f4098e2cecb3afc66d8158b032ce81e0be614d216c9deaf20e888ac"
 strings:
 // 65 48 8B 04 25 60 00 00 00 mov rax, gs:60h
 $inst_1 = {65 48 8B 04 25 60 00 00 00}
 // 48 8D 87 44 6D 00 00 lea rax, [rdi+6D44h]
 $inst_2 = {48 8D 87 44 6D 00 00}
 // 44 69 C8 95 E9 D1 5B imul r9d, eax, 5BD1E995h
 $inst_3 = {44 ?? ?? 95 E9 D1 5B}
 // 41 81 F9 94 85 09 64 cmp r9d, 64098594h
 $inst_4 = {41 ?? ?? 94 85 09 64}
 // B8 FF FF FF 7F mov eax, 7FFFFFFFh
 $inst_5 = {B8 FF FF FF 7F}
 // 48 8D 4D 48 lea rcx, [rbp+48h]
 $inst_6 = {48 8D 4D 48}
 condition:
 uint16(0) == 0x5A4D and
 all of ($inst_*) and
 pe.number_of_resources > 0 and
 for any i in (0..pe.number_of_resources - 1):
 ((math.entropy(pe.resources[i].offset, pe.resources[i].length) > 6) and
 pe.resources[i].length > 200000
)
}

rule blister_mythic_payload {
 meta:
 os = "Windows"
 arch = "x86-64"
 family = "BlisterMythic"
 description = "Detects specific Mythic agent dropped by Blister."
 reference_samples = "2fd38f6329b9b2c5e0379a445e81ece43fe0372dec260c1a17eefba6df9ffd55,
3d2499e5c9b46f1f144cfbbd4a2c8ca50a3c109496a936550cbb463edf08cd79, ab7cab5192f0bef148670338136b0d3affe8ae0845e0590228929aef70cb9b8b,
f89cfbc1d984d01c57dd1c3e8c92c7debc2beb5a2a43c1df028269a843525a38"
 strings:
 $start_inst = { 48 83 EC 28 B? [4-8] E8 ?? ?? 00 00 }
 $for_inst = { 48 2B C8 0F 1F 00 C6 04 01 00 48 2D 00 10 00 00 }
 condition:
 all of them
}

rule mythic_packer
{
 meta:
 os = "Windows"
 arch = "x86-64"
 family = "MythicPacker"
 description = "Detects specific PE packer dropped by Blister."
 reference_samples = "9a08d2db7d0bd7d4251533551d4def0f5ee52e67dff13a2924191c8258573024,
759ac6e54801e7171de39e637b9bb525198057c51c1634b09450b64e8ef47255"
 strings:
 // 41 81 38 72 47 65 74 cmp dword ptr [r8], 74654772h
 $a = { 41 ?? ?? 72 47 65 74 }
 // 41 81 38 72 4C 6F 61 cmp dword ptr [r8], 616F4C72h
 $b = { 41 ?? ?? 72 4C 6F 61 }

8/18

 // B8 01 00 00 00 mov eax, 1
 // C3 retn
 $c = { B8 01 00 00 00 C3 }
 condition:
 all of them and uint8(0) == 0x48
}

Blister payloads listing

First seen Version Payload family Payload type Environmental keying Persistence

2021-12-03 1 Cobalt Strike shellcode N/a 0

2021-12-05 1 Cobalt Strike shellcode N/a 0

2021-12-14 1 Cobalt Strike shellcode N/a 0

2022-01-10 1 Cobalt Strike shellcode N/a 1

2022-01-11 1 Cobalt Strike shellcode N/a 1

2022-01-19 1 Cobalt Strike shellcode N/a 1

2022-01-19 1 Cobalt Strike shellcode N/a 1

2022-01-31 1 Cobalt Strike shellcode N/a 1

2022-02-14 1 Cobalt Strike shellcode N/a 1

2022-02-17 1 Cobalt Strike shellcode N/a 1

2022-02-22 1 Cobalt Strike shellcode N/a 1

2022-02-26 1 Cobalt Strike shellcode N/a 1

2022-03-10 1 Cobalt Strike shellcode N/a 1

2022-03-14 1 Cobalt Strike shellcode N/a 1

2022-03-15 1 Cobalt Strike shellcode N/a 0

2022-03-15 1 Cobalt Strike shellcode N/a 0

2022-03-18 1 Cobalt Strike shellcode N/a 0

2022-03-18 1 Cobalt Strike shellcode N/a 1

2022-03-24 1 Putty exe N/a 0

2022-03-24 1 Putty exe N/a 0

2022-03-30 1 Cobalt Strike shellcode N/a 1

2022-04-01 1 Cobalt Strike shellcode N/a 0

2022-04-11 1 Cobalt Strike shellcode N/a 1

2022-04-22 1 Cobalt Strike shellcode N/a 1

2022-04-25 1 Cobalt Strike shellcode N/a 0

2022-06-01 1 Cobalt Strike shellcode N/a 0

2022-06-02 1 Cobalt Strike shellcode N/a 1

2022-06-14 1 Cobalt Strike shellcode N/a 1

2022-07-04 1 Cobalt Strike shellcode N/a 1

2022-07-19 1 Cobalt Strike shellcode N/a 0

2022-07-21 1 Cobalt Strike shellcode N/a 0

2022-08-05 1 Cobalt Strike shellcode N/a 1

2022-08-29 2 Cobalt Strike shellcode 0 1

2022-09-02 2 Cobalt Strike shellcode 0 0

9/18

First seen Version Payload family Payload type Environmental keying Persistence

2022-09-29 2 Cobalt Strike shellcode 1 0

2022-10-18 2 Cobalt Strike shellcode 1 1

2022-10-18 2 Cobalt Strike shellcode 1 1

2022-10-18 2 Cobalt Strike shellcode 1 0

2022-10-18 2 Cobalt Strike shellcode 1 1

2022-10-21 2 Cobalt Strike shellcode 1 1

2022-10-21 2 Cobalt Strike shellcode 1 0

2022-10-24 2 Cobalt Strike shellcode 1 1

2022-10-26 2 Cobalt Strike shellcode 1 1

2022-10-26 2 Cobalt Strike shellcode 1 1

2022-10-28 2 Cobalt Strike shellcode 1 0

2022-10-31 2 Cobalt Strike shellcode 1 1

2022-11-02 2 Cobalt Strike shellcode 1 1

2022-11-03 2 Cobalt Strike shellcode 1 1

2022-11-07 2 Cobalt Strike shellcode 1 1

2022-11-08 2 Cobalt Strike shellcode 1 1

2022-11-17 2 Cobalt Strike shellcode 1 1

2022-11-22 2 Cobalt Strike shellcode 1 1

2022-11-30 2 Cobalt Strike shellcode 1 1

2022-12-01 2 Cobalt Strike shellcode 1 1

2022-12-01 2 Cobalt Strike shellcode 1 0

2022-12-01 2 Cobalt Strike shellcode 1 0

2022-12-02 2 Cobalt Strike shellcode 1 1

2022-12-05 2 Cobalt Strike shellcode 1 1

2022-12-12 2 Cobalt Strike shellcode 1 1

2022-12-13 2 Cobalt Strike shellcode 1 1

2022-12-23 2 Cobalt Strike shellcode 1 1

2023-01-06 2 Cobalt Strike shellcode 1 1

2023-01-16 2 Cobalt Strike obfuscated shellcode shellcode 1 1

2023-01-16 2 Cobalt Strike obfuscated shellcode shellcode 1 1

2023-01-16 2 Cobalt Strike obfuscated shellcode shellcode 1 1

2023-01-17 2 Cobalt Strike shellcode 0 1

2023-01-17 2 Cobalt Strike obfuscated shellcode shellcode 1 1

2023-01-20 2 Cobalt Strike obfuscated shellcode shellcode 1 1

2023-01-20 2 Cobalt Strike obfuscated shellcode shellcode 1 1

2023-01-24 2 Cobalt Strike shellcode 1 1

2023-01-26 2 Cobalt Strike shellcode 1 1

2023-01-26 2 Cobalt Strike shellcode 1 1

2023-02-02 2 Cobalt Strike shellcode 1 1

10/18

First seen Version Payload family Payload type Environmental keying Persistence

2023-02-02 2 Test application shellcode 1 0

2023-02-02 2 Test application shellcode 1 0

2023-02-02 2 Putty exe 1 0

2023-02-02 2 Test application shellcode 1 0

2023-02-15 2 Putty exe 1 0

2023-02-15 2 Test application shellcode 1 0

2023-02-15 2 Putty exe 1 0

2023-02-15 2 Test application shellcode 1 0

2023-02-17 2 Cobalt Strike stager exe 1 1

2023-02-27 2 Cobalt Strike stager exe 1 1

2023-02-28 2 Cobalt Strike stager exe 1 1

2023-03-06 2 Cobalt Strike stager exe 1 1

2023-03-06 2 Cobalt Strike stager exe 1 1

2023-03-06 2 Cobalt Strike stager exe 1 1

2023-03-15 2 Cobalt Strike stager exe 1 0

2023-03-19 2 Cobalt Strike stager exe 1 1

2023-03-23 1 Cobalt Strike shellcode N/a 1

2023-03-28 2 Cobalt Strike stager exe 1 1

2023-03-28 2 Cobalt Strike stager exe 1 0

2023-04-03 2 Cobalt Strike stager exe 1 1

2023-05-25 2 Cobalt Strike stager exe 0 1

2023-05-26 2 Cobalt Strike shellcode 1 1

2023-06-11 2 Test application shellcode 1 0

2023-06-11 2 Putty exe 1 0

2023-06-11 2 Putty exe 1 0

2023-07-24 2 BlisterMythic exe 1 1

2023-07-27 2 BlisterMythic exe 1 1

2023-08-09 2 Test application shellcode 1 0

2023-08-09 2 Test application shellcode 1 0

2023-08-09 2 Test application shellcode 1 0

2023-08-09 2 Test application shellcode 1 0

2023-08-09 2 Test application shellcode 1 0

2023-08-09 2 Test application shellcode 1 0

2023-08-09 2 Test application shellcode 1 0

2023-08-09 2 Test application shellcode 1 0

2023-08-09 2 Test application shellcode 1 0

2023-08-09 2 Test application shellcode 1 0

2023-08-09 2 Test application shellcode 1 0

2023-08-10 2 Putty shellcode 1 0

11/18

First seen Version Payload family Payload type Environmental keying Persistence

2023-08-10 2 Putty shellcode 1 0

2023-08-10 2 Putty shellcode 1 0

2023-08-10 2 Putty shellcode 1 0

2023-08-10 2 Putty shellcode 1 0

2023-08-10 2 Putty shellcode 1 0

2023-08-10 2 Putty shellcode 1 0

2023-08-10 2 Putty shellcode 1 0

2023-08-10 2 Putty shellcode 1 0

2023-08-11 2 BlisterMythic exe 1 0

2023-08-15 2 Test application shellcode 1 0

2023-08-17 2 BlisterMythic exe 1 1

2023-08-18 2 MythicPacker shellcode 1 0

2023-09-05 2 MythicPacker shellcode 0 0

2023-09-05 2 MythicPacker shellcode 0 1

2023-09-08 2 Test application shellcode 1 0

2023-09-08 2 Test application shellcode 1 0

2023-09-08 2 Test application shellcode 1 0

2023-09-08 2 Putty shellcode 1 0

2023-09-08 2 Putty shellcode 1 0

2023-09-08 2 Test application shellcode 1 0

2023-09-19 2 BlisterMythic exe 1 1

2023-09-21 2 MythicPacker shellcode 1 0

2023-09-21 2 MythicPacker shellcode 1 0

2023-10-03 2 MythicPacker shellcode 1 0

2023-10-10 2 MythicPacker shellcode 1 0

Table 2, Information on unpacked Blister samples.

Cobalt Strike beacons

Watermark Domain URI

1101991775 albertonne[.]com /safebrowsing/d4alBmGBO/HafYg4QZaRhMBwuLAjVmSPc

1101991775 astradamus[.]com /Collect/union/QXMY8BHNIPH7

1101991775 backend.int.global.prod.fastly[.]net /Detect/devs/NJYO2MUY4V

1101991775 cclastnews[.]com /safebrowsing/d4alBmGBO/UaIzXMVGvV3tS2OJiKxSzyzbh4u1

1101991775 cdp-
chebe6efcxhvd0an.z01.azurefd[.]net

/Detect/devs/NJYO2MUY4V

1101991775 deep-linking[.]com /safebrowsing/fDeBjO/2hmXORzLK7PkevU1TehrmzD5z9

1101991775 deep-linking[.]com /safebrowsing/fDeBjO/dMfdNUdgjjii3Ccalh10Mh4qyAFw5mS

1101991775 deep-linking[.]com /safebrowsing/fDeBjO/vnZNyQrwUjndCPsCUXSaI

1101991775 diggin-
fzbvcfcyagemchbq.z01.azurefd[.]net

/restore/how/3RG4G5T87

12/18

Watermark Domain URI

1101991775 edubosi[.]com /safebrowsing/bsaGbO6l/ybGoI3wmK2uF9w9aL5qKmnS8IZIWsJqhp

1101991775 e-sistem[.]com /Detect/devs/NJYO2MUY4V

1101991775 ewebsofts[.]com /safebrowsing/3Tqo/UMskN3Lh0LyLy8BfpG1Bsvp

1101991775 expreshon[.]com /safebrowsing/fDeBjO/2hmXORzLK7PkevU1TehrmzD5z9

1101991775 eymenelektronik[.]com /safebrowsing/dfKa/B58qAhJ0AEF7aNwauoqpAL8

1101991775 gotoknysna.com.global.prod.fastly[.]net /safebrowsing/fDeBjO/2hmXORzLK7PkevU1TehrmzD5z9

1101991775 henzy-
h6hxfpfhcaguhyf5.z01.azurefd[.]net

/Detect/devs/NJYO2MUY4V

1101991775 lepont-edu[.]com /safebrowsing/dfKa/9T1BuXpqEDg9tx53mQRU6

1101991775 lindecolas[.]com /safebrowsing/d4alBmGBO/UaIzXMVGvV3tS2OJiKxSzyzbh4u1

1101991775 lodhaamarathane[.]com /safebrowsing/dfKa/9T1BuXpqEDg9tx53mQRU6

1101991775 mail-adv[.]com /safebrowsing/bsaGbO6l/dl1sskHxt1uGDGUnLDB5gxn4vYZQK1kaG6

1101991775 mainecottagebythesea[.]com /functionalStatus/cjdl-CLe4j-XHyiEaDqQx

1101991775 onscenephotos[.]com /restore/how/3RG4G5T87

1101991775 promedia-usa[.]com /safebrowsing/d4alBmGBO/HafYg4QZaRhMBwuLAjVmSPc

1101991775 python.docs.global.prod.fastly[.]net /Collect/union/QXMY8BHNIPH7

1101991775 realitygangnetwork[.]com /functionalStatus/qPprp9dtVhrGV3R3re5Xy4M2cfQo4wB

1101991775 realitygangnetwork[.]com /functionalStatus/vFi8EPnc9zJTD0GgRPxggCQAaNb

1101991775 sanfranciscowoodshop[.]com /safebrowsing/dfKa/GgVYon5zhYu5L7inFbl1MZEv7RGOnsS00b

1101991775 sohopf[.]com /apply/admin_/99ZSSAHDH

1101991775 spanish-home-sales[.]com /safebrowsing/d4alBmGBO/EB-9sfMPmsHmH-A7pmll9HbV0g

1101991775 steveandzina[.]com /safebrowsing/d4alBmGBO/mr3lHbohEvZa0mKDWWdwTV5Flsxh

1101991775 steveandzina[.]com /safebrowsing/d4alBmGBO/YwTM1CK0mBV1Y7UDagpjP

1101991775 websterbarn[.]com /safebrowsing/fDeBjO/CGZcHKnX3arVCfFp98k8

1580103824 10.158.128[.]50

1580103824 bimelectrical[.]com /safebrowsing/7IAMO/hxNTeZ8lBNYqjAsQ2tBRS

1580103824 bimelectrical[.]com /safebrowsing/7IAMO/Jwee0NMJNKn9sDD8sUEem4g8jcB2v44UINpCIj

1580103824 bookmark-tag[.]com /safebrowsing/eMUgI4Z/3RzgDBAvgg3DQUn8XtN8l

1580103824 braprest[.]com /safebrowsing/d5pERENa/3tPCoNwoGwXAvV1w1JAS-
OOPyVYxL1K2styHFtbXar7ME

1580103824 change-land[.]com /safebrowsing/TKc3hA/DzwHHcc8y8O9kAS7cl4SDK0e6z0KHKIX9w7

1580103824 change-land[.]com /safebrowsing/TKc3hA/nLTHCIhzOKpdFp0GFHYBK-0bRwdNDlZz6Qc

1580103824 clippershipintl[.]com /safebrowsing/sj0IWAb/YhcZADXFB3NHbxFtKgpqBtK9BllJiGEL

1580103824 couponbrothers[.]com /safebrowsing/Jwjy4/mzAoZyZk7qHIyw3QrEpXij5WFhIo1z8JDUVA0N0

1580103824 electronic-infinity[.]com /safebrowsing/TKc3hA/t-nAkENGu9rpZ9ebRRXr79b

1580103824 final-work[.]com /safebrowsing/AvuvAkxsR/8I6ikMUvdNd8HOgMeD0sPfGpwSZEMr

1580103824 geotypico[.]com /safebrowsing/d5pERENa/f5oBhEk7xS3cXxstp6Kx1G7u3N546UStcg9nEnzJn2k

1580103824 imsensors[.]com /safebrowsing/eMUgI4Z/BOhKRIMsJsuPnn3IQvgrEc3XLQUB3W

1580103824 intradayinvestment[.]com /safebrowsing/dpNqi/nXeFgGufr9VqHjDdsIZbw-ZH0

1580103824 medicare-cost[.]com /safebrowsing/dpNqi/F3QExtY65SvTVK1ewA26

13/18

Watermark Domain URI

1580103824 optiontradingsignal[.]com /safebrowsing/dpNqi/7CtHhF-isMMQ6m7NmHYNb0N7E7Fe

1580103824 setechnowork[.]com /safebrowsing/fBm1b/JbcKDYjMWcQNjn69LnGggFe6mpjn5xOQ

1580103824 sikescomposites[.]com /safebrowsing/Jwjy4/cmr4tZ7IyFGbgCiof2tHMO

1580103824 technicollit[.]com /safebrowsing/b0kKKIjr/AzX9ZHB37oJfPsUBUaxBJjzzi132cYRZhUZc81g

1580103824 wasfatsahla[.]com /safebrowsing/IsXNCJJfH/5x0rUIrn–r85sLJIuEY7C9q

206546002 smutlr[.]com /functionalStatus/qPprp9dtVhrGV3R3re5Xy4M2cfQo4wB

206546002 spanish-home-sales[.]com /functionalStatus/fb8ClEdmm-WwYudk-zODoQYB7DX3wQYR

Table 3, Information on observed Cobalt Strike beacons dropped by Blister.

BlisterMythic payloads

Domain URI

139-177-202-78.ip.linodeusercontent[.]com /etc.clientlibs/sapdx/front-layer/dist/resources/sapcom/919.9853a7ee629d48b1ddbe.js

23-92-30-58.ip.linodeusercontent[.]com /etc.clientlibs/sapdx/front-layer/dist/resources/sapcom/919.9853a7ee629d48b1ddbe.js

aviditycellars[.]com /etc.clientlibs/sapdx/front-layer/dist/resources/sapcom/919.9853a7ee629d48b1ddbe.js

boxofficeseer[.]com /s/0.7.8/clarity.js

d1hp6ufzqrj3xv.cloudfront[.]net /organizations/oauth2/v2.0/authorize

makethumbmoney[.]com /s/0.7.8/clarity.js

rosevalleylimousine[.]com /login.sophos.com/B2C_1A_signup_signin/api/SelfAsserted/confirmed

Table 4, Information on observed Mythic agents dropped by Blister.

BlisterMythic C2 servers

IP Domain

37.1.215[.]57 angelbusinessteam[.]com

92.118.112[.]100 danagroupegypt[.]com

104.238.60[.]11 shchiswear[.]com

172.233.238[.]215 N/a

96.126.111[.]127 N/a

23.239.11[.]145 N/a

45.33.98[.]254 N/a

45.79.199[.]4 N/a

45.56.105[.]98 N/a

149.154.158[.]243 futuretechfarm[.]com

104.243.33[.]161 sms-atc[.]com

104.243.33[.]129 makethumbmoney[.]com

138.124.180[.]241 vectorsandarrows[.]com

94.131.101[.]58 pacatman[.]com

198.58.119[.]214 N/a

185.174.101[.]53 personmetal[.]com

185.45.195[.]30 aviditycellars[.]com

14/18

IP Domain

185.250.151[.]145 bureaudecreationalienor[.]com

23.227.194[.]115 bitscoinc[.]com

88.119.175[.]140 boxofficeseer[.]com

88.119.175[.]137 thesheenterprise[.]com

37.1.214[.]162 remontisto[.]com

45.66.248[.]99 N/a

88.119.175[.]104 visioquote[.]com

45.66.248[.]13 cannabishang[.]com

92.118.112[.]8 turanmetal[.]com

37.1.211[.]150 lucasdoors[.]com

185.72.8[.]219 displaymercials[.]com

172.232.172[.]128 N/a

82.117.253[.]168 digtupu[.]com

104.238.60[.]112 avblokhutten[.]com

173.44.141[.]34 hom4u[.]com

170.130.165[.]140 rosevalleylimousine[.]com

172.232.172[.]110 N/a

5.8.63[.]79 boezgrt[.]com

172.232.172[.]125 N/a

162.248.224[.]56 hatchdesignsnh[.]com

185.174.101[.]13 formulaautoparts[.]com

23.152.0[.]193 ivermectinorder[.]com

192.169.6[.]200 szdeas[.]com

194.87.32[.]85 licencesolutions[.]com

185.45.195[.]205 motorrungoli[.]com

Table 5, Detected BlisterMythic C2 servers

Blister samples

SHA256
Payload
family Payload SHA256

0a73a9ee3650821352d9c4b46814de8f73fde659cae6b82a11168468becb68d1 Cobalt Strike 397c08f5cdc59085a48541c89d23a8880d4155

0bbf1a3a8dd436fda213bc126b1ad0b8704d47fd8f14c75754694fd47a99526c BlisterMythic ab7cab5192f0bef148670338136b0d3affe8ae08

0e8458223b28f24655caf37e5c9a1c01150ac7929e6cb1b11d078670da892a5b Cobalt Strike 4420bd041ae77fce2116e6bd98f4ed6945514fa

0f07c23f7fe5ff918ee596a7f1df320ed6e7783ff91b68c636531aba949a6f33 Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

a3cb53ddd4a5316cb02b7dc4ccd1f615755b46e86a88152a1f8fc59efe170497 Cobalt Strike e85a2e8995ef37acf15ea79038fae70d4566bd9

a403b82a14b392f8485a22f105c00455b82e7b8a3e7f90f460157811445a8776 Cobalt Strike e0c0491e45dda838f4ac01b731dd39cc706467

a5fc8d9f9f4098e2cecb3afc66d8158b032ce81e0be614d216c9deaf20e888ac Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

a9ea85481e178cd35ae323410d619e97f49139dcdb2e7da72126775a89a8464f Cobalt Strike c7accad7d8da9797788562a3de228186290b0f

15/18

SHA256
Payload
family Payload SHA256

ac232e7594ce8fbbe19fc74e34898c562fe9e8f46d4bfddc37aefeb26b85c02b Cobalt Strike
obfuscated
shellcode

cef1a88dfc436dab9ae104f0770a434891bbd60

acdaac680e2194dd8fd06f937847440e7ab83ce1760eab028507ee8eba557291 Cobalt Strike b96d4400e9335d80dedee6f74ffaa4eca9ffce24

ae148315cec7140be397658210173da372790aa38e67e7aa51597e3e746f2cb2 Cobalt Strike f245b2bc118c3c20ed96c8a9fd0a7b659364f9e

aeecc65ac8f0f6e10e95a898b60b43bf6ba9e2c0f92161956b1725d68482721d Cobalt Strike 797abd3de3cb4c7a1ceb5de5a95717d84333be

b062dd516cfa972993b6109e68a4a023ccc501c9613634468b2a5a508760873e Cobalt Strike 122b77fd4d020f99de66bba8346961b565e804

b10db109b64b798f36c717b7a050c017cf4380c3cb9cfeb9acd3822a68201b5b Cobalt Strike 902d29871d3716113ca2af5caa6745cb4ab9d0

b1d1a972078d40777d88fb4cd6aef1a04f29c5dd916f30a6949b29f53a2d121c Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

b1f3f1c06b1cc9a249403c2863afc132b2d6a07f137166bdd1e4863a0cece5b1 Cobalt Strike e63807daa9be0228d90135ee707ddf03b00353

b4c746e9a49c058ae3843799cdd6a3bb5fe14b413b9769e2b5a1f0f846cb9d37 Cobalt Strike
stager

063191c49d49e6a8bdcd9d0ee2371fb1b90f178

b4f37f13a7e9c56ea95fa3792e11404eb3bdb878734f1ca394ceed344d22858f Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

b956c5e8ec6798582a68f24894c1e78b9b767aae4d5fb76b2cc71fc9c8befed8 Cobalt Strike 6fc283acfb7dda7bab02f5d23dc90b318f4c73a8

b99ba2449a93ab298d2ec5cacd5099871bacf6a8376e0b080c7240c8055b1395 Cobalt Strike 96fab57ef06b433f14743da96a5b874e96d8c97

b9e313e08b49d8d2ffe44cb6ec2192ee3a1c97b57c56f024c17d44db042fb9eb Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

bc238b3b798552958009f3a4ce08e5ce96edff06795281f8b8de6f5df9e4f0fe Cobalt Strike
stager

191566d8cc119cd6631d353eab0b8c1b8ba267

bcd64a8468762067d8a890b0aa7916289e68c9d8d8f419b94b78a19f5a74f378 Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

c113e8a1c433b4c67ce9bce5dea4b470da95e914de4dc3c3d5a4f98bce2b7d6c Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

c1261f57a0481eb5d37176702903025c5b01a166ea6a6d42e1c1bdc0e5a0b04b Cobalt Strike
obfuscated
shellcode

189b7afdd280d75130e633ebe2fcf8f54f28116a

c149792a5e5ce4c15f8506041e2f234a9a9254dbda214ec79ceef7d0911a3095 Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

c2046d64bcfbab5afcb87a75bf3110e0fa89b3e0f7029ff81a335911cf52f00a Cobalt Strike d048001f09ad9eedde44f471702a2a0f453c573

c3509ba690a1fcb549b95ad4625f094963effc037df37bd96f9d8ed5c7136d94 Cobalt Strike e0c0491e45dda838f4ac01b731dd39cc706467

c3cfbede0b561155062c2f44a9d44c79cdb78c05461ca50948892ff9a0678f3f Cobalt Strike bcb32a0f782442467ea8c0bf919a28b58690c68

c79ab271d2abd3ee8c21a8f6ad90226e398df1108b4d42dc551af435a124043c Cobalt Strike 749d061acb0e584df337aaef26f3b555d5596a9

cab95dc6d08089dcd24c259f35b52bca682635713c058a74533501afb94ab91f Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

cea5c060dd8abd109b478e0de481f0df5ba3f09840746a6a505374d526bd28dc MythicPacker 759ac6e54801e7171de39e637b9bb525198057

cfa604765b9d7a93765d46af78383978251486d9399e21b8e3da4590649c53e4 Cobalt Strike
stager

57acdb7a22f5f0c6d374be2341dbef97efbcc61f

d1afca36f67b24eae7f2884c27c812cddc7e02f00f64bb2f62b40b21ef431084 Cobalt Strike f570bd331a3d75e065d1825d97b922503c83a5

d1b6671fc0875678ecf39d737866d24aca03747a48f0c7e8855a5b09fc08712d Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

d3d48aa32b062b6e767966a8bab354eded60e0a11be5bc5b7ad8329aa5718c76 Cobalt Strike 60905c92501ec55883afc3f6402a05bddfd3353

d3eab2a134e7bd3f2e8767a6285b38d19cd3df421e8af336a7852b74f194802c BlisterMythic 2fd38f6329b9b2c5e0379a445e81ece43fe0372

d439f941b293e3ded35bf52fac7f20f6a2b7f2e4b189ad2ac7f50b8358110491 Cobalt Strike 18a9eafb936bf1d527bd4f0bfae623400d63671

dac00ec780aabaffed1e89b3988905a7f6c5c330218b878679546a67d7e0eef2 Cobalt Strike adc73af758c136e5799e25b4d3d69e462e090c

db62152fe9185cbd095508a15d9008b349634901d37258bc3939fe3a563b4b3c MythicPacker 7f71d316c197e4e0aa1fce9d40c6068ada42490

db81e91fc05991f71bfd5654cd60b9093c81d247ccd8b3478ab0ebef61efd2ad Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

16/18

SHA256
Payload
family Payload SHA256

dd42c1521dbee54173be66a5f98a811e5b6ee54ad1878183c915b03b68b7c9bb Cobalt Strike d988a867a53c327099a4c9732a1e4ced6fe6ec

e0888b80220f200e522e42ec2f15629caa5a11111b8d1babff509d0da2b948f4 Cobalt Strike 915503b4e985ab31bc1d284f60003240430b3b

e30503082d3257737bba788396d7798e27977edf68b9dba7712a605577649ffb Cobalt Strike df01b0a8112ca80daf6922405c3f4d1ff7a8ff052

e521cad48d47d4c67705841b9c8fa265b3b0dba7de1ba674db3a63708ab63201 Cobalt Strike
stager

40cac28490cddfa613fd58d1ecc8e676d9263a4

e62f5fc4528e323cb17de1fa161ad55eb451996dec3b31914b00e102a9761a52 Cobalt Strike 19e7bb5fa5262987d9903f388c4875ff2a37658

ebafb35fd9c7720718446a61a0a1a10d09bf148d26cdcd229c1d3d672835335c Cobalt Strike 5cb2683953b20f34ff26ddc0d3442d07b4cd863

ebf40e12590fcc955b4df4ec3129cd379a6834013dae9bb18e0ec6f23f935bba Cobalt Strike d99bac48e6e347fcfd56bbf723a73b0b6fb5272f

ef7ff2d2decd8e16977d819f122635fcd8066fc8f49b27a809b58039583768d2 Cobalt Strike adc73af758c136e5799e25b4d3d69e462e090c

efbffc6d81425ffb0d81e6771215c0a0e77d55d7f271ec685b38a1de7cc606a8 Cobalt Strike 47bd5fd96c350f5e48f5074ebee98e8b0f4efb8a

f08fdb0633d018c0245d071fa79cdc3915da75d3c6fc887a5ca6635c425f163a Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

f3bfd8ab9e79645babf0cb0138d51368fd452db584989c4709f613c93caf2bdc Cobalt Strike cd7135c94929f55e19e5d66359eab46422c3c5

f58de1733e819ea38bce21b60bb7c867e06edb8d4fd987ab09ecdbf7f6a319b9 MythicPacker 19eae7c0b7a1096a71b595befa655803c73500

f7fa532ad074db4a39fd0a545278ea85319d08d8a69c820b081457c317c0459e Cobalt Strike 902d29871d3716113ca2af5caa6745cb4ab9d0

fce9de0a0acf2ba65e9e252a383d37b2984488b6a97d889ec43ab742160acce1 Cobalt Strike
stager

40cac28490cddfa613fd58d1ecc8e676d9263a4

ffb255e7a2aa48b96dd3430a5177d6f7f24121cc0097301f2e91f7e02c37e6bf Cobalt Strike 5af6626a6bc7265c21adaffb23cc58bc52c4ebfe

1a50c358fa4b725c6e0e26eee3646de26ba38e951f3fe414f4bf73532af62455 Cobalt Strike 8f1cc6ab8e95b9bfdf22a2bde77392e706b6fb7d

1be3397c2a85b4b9a5a111b9a4e53d382df47a0a09065639d9e66e0b55fe36fc Cobalt Strike
stager

3f28a055d56f46559a21a2b0db918194324a13

1d058302d1e747714cac899d0150dcc35bea54cc6e995915284c3a64a76aacb1 Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

02b1bd89e9190ff5edfa998944fd6048d32a3bde3a72d413e8af538d9ad770b4 Cobalt Strike
obfuscated
shellcode

3760db55a6943f4216f14310ab10d404e5c0a53

2cf125d6f21c657f8c3732be435af56ccbe24d3f6a773b15eccd3632ea509b1a Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

2f2e62c9481ba738a5da7baadfc6d029ef57bf7a627c2ac0b3e615cab5b0cfa2 Cobalt Strike 39ed516d8f9d9253e590bad7c5daecce9df21f1

3bc8ce92409876526ad6f48df44de3bd1e24a756177a07d72368e2d8b223bb39 Cobalt Strike 20e43f60a29bab142f050fab8c5671a0709ee4e

3dffb7f05788d981efb12013d7fadf74fdf8f39fa74f04f72be482847c470a53 Cobalt Strike 8e78ad0ef549f38147c6444910395b053c533ac

3f6e3e7747e0b1815eb2a46d79ebd8e3cb9ccdc7032d52274bc0e60642e9b31e Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

3fff407bc45b879a1770643e09bb99f67cdcfe0e4f7f158a4e6df02299bac27e Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

4b3cd3aa5b961791a443b89e281de1b05bc3a9346036ec0da99b856ae7dc53a8 Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

4faf362b3fe403975938e27195959871523689d0bf7fba757ddfa7d00d437fd4 Cobalt Strike 60905c92501ec55883afc3f6402a05bddfd3353

5d72cc2e47d3fd781b3fc4e817b2d28911cd6f399d4780a5ff9c06c23069eae1 MythicPacker 9a08d2db7d0bd7d4251533551d4def0f5ee52e

5ea74bca527f7f6ea8394d9d78e085bed065516eca0151a54474fffe91664198 Cobalt Strike be314279f817f9f000a191efb8bcc2962fcc614b

5fc79a4499bafa3a881778ef51ce29ef015ee58a587e3614702e69da304395db BlisterMythic 3d2499e5c9b46f1f144cfbbd4a2c8ca50a3c109

06cd6391b5fcf529168dc851f27bf3626f20e038a9c0193a60b406ad1ece6958 Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

6a7ae217394047c17d56ec77b2243d9b55617a1ff591d2c2dfc01f2da335cbbf MythicPacker 1e3b373f2438f1cc37e15fdede581bdf2f7fc2206

6e75a9266e6bbfd194693daf468dd86d106817706c57b1aad95d7720ac1e19e3 Cobalt Strike 4adf3875a3d8dd3ac4f8be9c83aaa7e3e35a8d6

7e61498ec5f0780e0e37289c628001e76be88f647cad7a399759b6135be8210a Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

17/18

SHA256
Payload
family Payload SHA256

7f7b9f40eea29cfefc7f02aa825a93c3c6f973442da68caf21a3caae92464127 Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

8b6eb2853ae9e5faff4afb08377525c9348571e01a0e50261c7557d662b158e1 Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

8d53dc0857fa634414f84ad06d18092dedeb110689a08426f08cb1894c2212d4 Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

8e6c0d338f201630b5c5ba4f1757e931bc065c49559c514658b4c2090a23e57b Cobalt Strike f2329ae2eb28bba301f132e5923282b74aa7a9

8f9289915b3c6f8bf9a71d0a2d5aeb79ff024c108c2a8152e3e375076f3599d5 BlisterMythic f89cfbc1d984d01c57dd1c3e8c92c7debc2beb5

9c5c9d35b7c2c448a610a739ff7b85139ea1ef39ecd9f51412892cd06fde4b1b Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

13c7f28044fdb1db2289036129b58326f294e76e011607ca8d4c5adc2ddddb16 Cobalt Strike 19e7bb5fa5262987d9903f388c4875ff2a37658

19b0db9a9a08ee113d667d924992a29cd31c05f89582953eff5a52ad8f533f4b Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

19d4a7d08176119721b9a302c6942718118acb38dc1b52a132d9cead63b11210 Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

22e65a613e4520a6f824a69b795c9f36af02247f644e50014320857e32383209 Cobalt Strike 18a9eafb936bf1d527bd4f0bfae623400d63671

028da30664cb9f1baba47fdaf2d12d991dcf80514f5549fa51c38e62016c1710 Cobalt Strike 8e78ad0ef549f38147c6444910395b053c533ac

37b6fce45f6bb52041832eaf9c6d02cbc33a3ef2ca504adb88e19107d2a7aeaa Cobalt Strike 902d29871d3716113ca2af5caa6745cb4ab9d0

42beac1265e0efc220ed63526f5b475c70621573920968a457e87625d66973af Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

43c1ee0925ecd533e0b108c82b08a3819b371182e93910a0322617a8acf26646 Cobalt Strike 5cb2683953b20f34ff26ddc0d3442d07b4cd863

44ce7403ca0c1299d67258161b1b700d3fa13dd68fbb6db7565104bba21e97ae MythicPacker f3b0357562e51311648684d381a23fa2c1d0900

49ba10b4264a68605d0b9ea7891b7078aeef4fa0a7b7831f2df6b600aae77776 Cobalt Strike 0603cf8f5343723892f08e990ae2de8649fcb4f2

54c7c153423250c8650efc0d610a12df683b2504e1a7a339dfd189eda25c98d4 Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

58fdee05cb962a13c5105476e8000c873061874aadbc5998887f0633c880296a Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

73baa040cd6879d1d83c5afab29f61c3734136bffe03c72f520e025385f4e9a2 Cobalt Strike 17392d830935cfad96009107e8b034f952fb528

78d93b13efd0caa66f5d91455028928c3b1f44d0f2222d9701685080e30e317d Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

83c121db96d99f0d99b9e7a2384386f3f6debcb01d977c4ddca5bcdf2c6a2daa Cobalt Strike
stager

39323f9c0031250414cb4683662e1c533960de

84b245fce9e936f1d0e15d9fca8a1e4df47c983111de66fcc0ad012a63478c8d Cobalt Strike
stager

d961e9db4a96c87226dbc973658a14082324e9

84b2d16124b690d77c5c43c3a0d4ad78aaf10d38f88d9851de45d6073d8fcb65 Cobalt Strike 0091186459998ad5b699fdd54d57b1741af7383

85d3f81a362a3df9ba2f0a00dd12cd654e55692feffc58782be44f4c531d9bb9 Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

96e8b44ec061c49661bd192f279f7b7ba394d03495a2b46d3b37dcae0f4892f1 Cobalt Strike
stager

6f7d7da247cac20d5978f1257fdd420679d0ce1

96ebacf48656b804aed9979c2c4b651bbb1bc19878b56bdf76954d6eff8ad7ca Cobalt Strike d988a867a53c327099a4c9732a1e4ced6fe6ec

113c9e7760da82261d77426d9c41bc108866c45947111dbae5cd3093d69e0f1d Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

149c3d044abc3c3a15ba1bb55db7e05cbf87008bd3d23d7dd4a3e31fcfd7af10 Cobalt Strike e63807daa9be0228d90135ee707ddf03b00353

307fc7ebde82f660950101ea7b57782209545af593d2c1115c89f328de917dbb Cobalt Strike
stager

40cac28490cddfa613fd58d1ecc8e676d9263a4

356efe6b10911d7daaffed64278ba713ab51f7130d1c15f3ca86d17d65849fa5 Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

394ce0385276acc6f6c173a3dde6694881130278bfb646be94234cc7798fd9a9 Cobalt Strike 60e2fe4eb433d3f6d590e75b2a767755146aca7

396dce335b16111089a07ecb2d69827f258420685c2d9f3ea9e1deee4bff9561 Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

18/18

SHA256
Payload
family Payload SHA256

541eab9e348c40d510db914387068c6bfdf46a6ff84364fe63f6e114af8d79cf Cobalt Strike
stager

4e2a011922e0060f995bfde375d75060bed0017

745a3dcdda16b93fedac8d7eefd1df32a7255665b8e3ee71e1869dd5cd14d61c Cobalt Strike
obfuscated
shellcode

cef1a88dfc436dab9ae104f0770a434891bbd60

753f77134578d4b941b8d832e93314a71594551931270570140805675c6e9ad3 Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

863de84a39c9f741d8103db83b076695d0d10a7384e4e3ba319c05a6018d9737 Cobalt Strike 3a1e65d7e9c3c23c41cb1b7d1117be4355bebf0

902fa7049e255d5c40081f2aa168ac7b36b56041612150c3a5d2b6df707a3cff Cobalt Strike 397c08f5cdc59085a48541c89d23a8880d4155

927e04371fa8b8d8a1de58533053c305bb73a8df8765132a932efd579011c375 Cobalt Strike 2e0767958435dd4d218ba0bc99041cc9f12c94

2043d7f2e000502f69977b334e81f307e2fda742bbc5b38745f6c1841757fddc Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

02239cac2ff37e7f822fd4ee57ac909c9f541a93c27709e9728fef2000453afe Cobalt Strike 18a9eafb936bf1d527bd4f0bfae623400d63671

4257bf17d15358c2f22e664b6112437b0c2304332ff0808095f1f47cf29fc1a2 Cobalt Strike 3a1e65d7e9c3c23c41cb1b7d1117be4355bebf0

6558ac814046ecf3da8c69affea28ce93524f93488518d847e4f03b9327acb44 Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

8450ed10b4bef6f906ff45c66d1a4a74358d3ae857d3647e139fdaf0e3648c10 BlisterMythic ab7cab5192f0bef148670338136b0d3affe8ae08

9120f929938cd629471c7714c75d75d30daae1f2e9135239ea5619d77574c1fe Cobalt Strike 647e992e24e18c14099b68083e9b04575164ed

28561f309d208e885a325c974a90b86741484ba5e466d59f01f660bed1693689 Cobalt Strike 397c08f5cdc59085a48541c89d23a8880d4155

30628bcb1db7252bf710c1d37f9718ac37a8e2081a2980bead4f21336d2444bc Cobalt Strike
obfuscated
shellcode

13f23b5db4a3d0331c438ca7d516d565a08cac

53121c9c5164d8680ae1b88d95018a553dff871d7b4d6e06bd69cbac047fe00f Cobalt Strike 902d29871d3716113ca2af5caa6745cb4ab9d0

67136ab70c5e604c6817105b62b2ee8f8c5199a647242c0ddbf261064bb3ced3 Cobalt Strike
obfuscated
shellcode

0aecd621b386126459b39518f157ee240866c6

79982f39ea0c13eeb93734b12f395090db2b65851968652cab5f6b0827b49005 MythicPacker 152455f9d970f900eb237e1fc2c29ac4c726164

87269a95b1c0e724a1bfe87ddcb181eac402591581ee2d9b0f56dedbaac04ff8 Cobalt Strike f3d42e4c1a47f0e1d3812d5f912487d04662152

89196b39a0edebdf2026053cb4e87d703b9942487196ff9054ef775fdcad1899 Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

91446c6d3c11074e6ff0ff42df825f9ffd5f852c2e6532d4b9d8de340fa32fb8 Test
application

43308bde79e71b2ed14f318374a80fadf201cc3

96823bb6befe5899739bd69ab00a6b4ae1256fd586159968301a4a69d675a5ec Cobalt Strike 3b3bdd819f4ee8daa61f07fc9197b2b39d04342

315217b860ab46c6205b36e49dfaa927545b90037373279723c3dec165dfaf11 Cobalt Strike 96fab57ef06b433f14743da96a5b874e96d8c97

427481ab85a0c4e03d1431a417ceab66919c3e704d7e017b355d8d64be2ccf41 Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

595153eb56030c0e466cda0becb1dc9560e38601c1e0803c46e7dfc53d1d2892 Cobalt Strike f245b2bc118c3c20ed96c8a9fd0a7b659364f9e

812263ea9c6c44ef6b4d3950c5a316f765b62404391ddb6482bdc9a23d6cc4a6 Cobalt Strike 18a9eafb936bf1d527bd4f0bfae623400d63671

1358156c01b035f474ed12408a9e6a77fe01af8df70c08995393cbb7d1e1f8a6 Cobalt Strike b916749963bb08b15de7c302521fd0ffec1c666

73162738fb3b9cdd3414609d3fe930184cdd3223d9c0d7cb56e4635eb4b2ab67 Cobalt Strike 19e7bb5fa5262987d9903f388c4875ff2a37658

343728792ed1e40173f1e9c5f3af894feacd470a9cdc72e4f62c0dc9cbf63fc1 Putty 0581160998be30f79bd9a0925a01b0ebc4cb94

384408659efa1f87801aa494d912047c26259cd29b08de990058e6b45619d91a Cobalt Strike
stager

824914bb34ca55a10f902d4ad2ec931980f5607

49925637250438b05d3aebaac70bb180a0825ec4272fbe74c6fecb5e085bcf10 Cobalt Strike e0c0491e45dda838f4ac01b731dd39cc706467

Table 6, Hashes of Blister samples and of the payload it drops, including the payload label.

