
1/19

Elastic catches DPRK passing out KANDYKORN
elastic.co/security-labs/elastic-catches-dprk-passing-out-kandykorn

Subscribe

Preamble

Elastic Security Labs is disclosing a novel intrusion targeting blockchain engineers of a crypto exchange platform. The intrusion leveraged a
combination of custom and open source capabilities for initial access and post-exploitation.

We discovered this intrusion when analyzing attempts to reflectively load a binary into memory on a macOS endpoint. The intrusion was traced
to a Python application posing as a cryptocurrency arbitrage bot delivered via a direct message on a public Discord server.

We attribute this activity to DPRK and recognize overlaps with the Lazarus Group based on our analysis of the techniques, network
infrastructure, code-signing certificates, and custom Lazarus Group detection rules; we track this intrusion set as REF7001.

Key takeaways

Threat actors lured blockchain engineers with a Python application to gain initial access to the environment
This intrusion involved multiple complex stages that each employed deliberate defense evasion techniques
The intrusion set was observed on a macOS system where an adversary attempted to load binaries into memory, which is atypical of
macOS intrusions

Execution flow

https://www.elastic.co/security-labs/elastic-catches-dprk-passing-out-kandykorn
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/rss/feed.xml

2/19

REF7001 Execution Flow

Attackers impersonated blockchain engineering community members on a public Discord frequented by members of this community. The
attacker social-engineered their initial victim, convincing them to download and decompress a ZIP archive containing malicious code. The
victim believed they were installing an arbitrage bot, a software tool capable of profiting from cryptocurrency rate differences between
platforms.

This execution kicked off the primary malware execution flow of the REF7001 intrusion, culminating in KANDYKORN:

Stage 0 (Initial Compromise) - Watcher.py
Stage 1 (Dropper) - testSpeed.py and FinderTools
Stage 2 (Payload) - .sld and .log - SUGARLOADER
Stage 3 (Loader)- Discord (fake) - HLOADER
Stage 4 (Payload) - KANDYKORN

Stage 0 Initial compromise: Watcher.py

The initial breach was orchestrated via a camouflaged Python application designed and advertised as an arbitrage bot targeted at blockchain
engineers. This application was distributed as a .zip file titled Cross-Platform Bridges.zip. Decompressing it reveals a Main.py script
accompanied by a folder named order_book_recorder, housing 13 Python scripts.

https://wundertrading.com/en/crypto-arbitrage-bot

3/19

 Cross-Platform Bridges.zip folder structure

The victim manually ran the Main.py script via their PyCharm IDE Python interpreter.

Initially, the Main.py script appears benign. It imports the accompanying Python scripts as modules and seems to execute some mundane
functions.

While analyzing the modules housed in the order_book_recorder folder, one file -- Watcher.py -- clearly stood out and we will see why.

Main.py acts as the initial trigger, importing Watcher.py as a module that indirectly executes the script. The Python interpreter runs every top-
level statement in Watcher.py sequentially.

The script starts off by establishing local directory paths and subsequently attempts to generate a _log folder at the specified location. If the
folder already exists, the script remains passive.

 Creating a folder

within the Python application directory structure and name it _log

The script pre-defines a testSpeed.py file path (destined for the just created _log folder) and assigns it to the output variable. The function
import_networklib is then defined. Within it, a Google Drive URL is initialized.

Utilizing the Python urllib library, the script fetches content from this URL and stashes it in the s_args variable. In case of retrieval errors, it
defaults to returning the operating system's name. Subsequently, the content from Google Drive (now in s_args) is written into the
testSpeed.py file.

4/19

Malicious downloader function import_networklib

Connect to Google Drive url and download data saved to a variable s_args

Write data from s_args to testSpeed.py file in newly created _log directory

The next function, get_modules_base_version, probes the Python version and invokes the import_networklib function if it detects version 3.
This call sets the entire sequence in motion.

 Check if Python version 3, calls the

import_networklib function

Watcher.py imports testSpeed.py as a module, executing the contents of the script.

 Import testSpeed.py to execute it

5/19

Concluding its operation, the malicious script tidies up, deleting the testSpeed.py file immediately after its one-time execution.

 Delete the downloaded testSpeed.py file following its import and execution

Watcher.py deletes the testSpeed.py immediately following its execution

Stage 1 droppers testSpeed.py and FinderTools

When executed, testSpeed.py establishes an outbound network connection and fetches another Python file from a Google Drive URL, named
FinderTools. This new file is saved to the /Users/Shared/ directory, with the method of retrieval mirroring the Watcher.py script.

testSpeed.py network connection

_FinderTools file creation _

After download, testSpeed.py launches FinderTools, providing a URL (tp-
globa[.]xyz//OdhLca1mLUp/lZ5rZPxWsh/7yZKYQI43S/fP7savDX6c/bfC) as an argument which initiates an outbound network connection.

FinderTools execution

FinderTools network connections

FinderTools is yet another dropper, downloading and executing a hidden second stage payload .sld also written to the /Users/Shared/
directory.

6/19

FinderTools executes .sld

Stage 2 payload .sld and .log: SUGARLOADER

Stage 2 involves the execution of an obfuscated binary we have named SUGARLOADER, which is utilized twice under two separate names
(.sld and .log).

SUGARLOADER is first observed at /Users/shared/.sld. The second instance of SUGARLOADER, renamed to .log, is used in the
persistence mechanism REF7001 implements with Discord.

Obfuscation

SUGARLOADER is used for initial access on the machine, and initializing the environment for the final stage. This binary is obfuscated using a
binary packer, limiting what can be seen with static analysis.

The start function of this binary consists of a jump (JMP) to an undefined address. This is common for binary packers.

HEADER:00000001000042D6 start:
HEADER:00000001000042D6 jmp 0x10000681E

Executing the macOS file object tool otool -l ./log lists all the sections that will be loaded at runtime.

Section
 sectname __mod_init_func
 segname lko2
 addr 0x00000001006983f0
 size 0x0000000000000008
 offset 4572144
 align 2^3 (8)
 reloff 0
 nreloc 0
 flags 0x00000009
reserved1 0
reserved2 0

__mod_init_func contains initialization functions. The C++ compiler places static constructors here. This is the code used to unpack the
binary in memory.

A successful method of reverse engineering such files is to place a breakpoint right after the execution of initialization functions and then take
a snapshot of the process's virtual memory. When the breakpoint is hit, the code will already be decrypted in memory and can be analyzed
using traditional methods.

Adversaries commonly use obfuscation techniques such as this to bypass traditional static signature-based antimalware capabilities. As of this
publication, VirusTotal shows 0 detections of this file, which suggests these defense evasions continue to be cost-effective.

SUGARLOADER VirusTotal Detections

Execution

https://www.virustotal.com/gui/file/3ea2ead8f3cec030906dcbffe3efd5c5d77d5d375d4a54cca03bfe8a6cb59940

7/19

The primary purpose of SUGARLOADER is to connect to a Command and Control server (C2), in order to download a final stage payload we
refer to as KANDYKORN, and execute it directly in memory.

SUGARLOADER checks for the existence of a configuration file at /Library/Caches/com.apple.safari.ck. If the configuration file is
missing, it will be downloaded and created via a default C2 address provided as a command line argument to the .sld binary. In our sample,
the C2 address was 23.254.226[.]90 over TCP port 443. We provide additional information about the C2 in the Network Infrastructure section
below.

SUGARLOADER C2 established and configuration file download

SUGARLOADER writing configuration file

The configuration file is encrypted using RC4 and the encryption key (in the Observations section) is hardcoded within SUGARLOADER itself.
The com.apple.safari.ck file is utilized by both SUGARLOADER and KANDYKORN for establishing secure network communications.

struct MalwareConfig
{
 char computerId[8];
 _BYTE gap0[12];
 Url c2_urls[2];
 Hostname c2_ip_address[2];
 _BYTE proxy[200];
 int sleepInterval;
};

computerId is a randomly generated string identifying the victim’s computer.

A C2 server can either be identified with a fully qualified URL (c2_urls) or with an IP address and port (c2_ip_ddress). It supports two C2
servers, one as the main server, and the second one as a fallback. The specification or hardcoding of multiple servers like this is commonly
used by malicious actors to ensure their connection with the victim is persistent should the original C2 be taken down or blocked.
sleepInterval is the default sleeping interval for the malware between separate actions.

Once the configuration file is read into memory and decrypted, the next step is to initialize a connection to the remote server. All the
communication between the victim’s computer and the C2 server is detailed in the Network Protocol section.

The last step taken by SUGARLOADER is to download a final stage payload from the C2 server and execute it. REF7001 takes advantage of
a technique known as reflective binary loading (allocation followed by the execution of payloads directly within the memory of the process) to
execute the final stage, leveraging APIs such as NSCreateObjectFileImageFromMemory or NSLinkModule. Reflective loading is a powerful
technique. If you'd like to learn more about how it works, check out this research by slyd0g and hackd.

This technique can be utilized to execute a payload from an in-memory buffer. Fileless execution such as this has been observed previously in
attacks conducted by the Lazarus Group.

SUGARLOADER reflectively loads a binary (KANDYKORN) and then creates a new file initially named appname which we refer to as HLOADER
which we took directly from the process code signature’s signing identifier.

SUGARLOADER reflective binary load alert

https://attack.mitre.org/techniques/T1620/
https://slyd0g.medium.com/understanding-and-defending-against-reflective-code-loading-on-macos-e2e83211e48f
https://hackd.net/posts/macos-reflective-code-loading-analysis/
https://objective-see.org/blog/blog_0x51.html

8/19

SUGARLOADER creates HLOADER

 HLOADER code signature identifier

 Pseudocode for SUGARLOADER (stage2)

Stage 3 loader Discord: HLOADER

HLOADER (2360a69e5fd7217e977123c81d3dbb60bf4763a9dae6949bc1900234f7762df1) is a payload that attempts to masquerade as the
legitimate Discord application. As of this writing, it has 0 detections on VirusTotal.

HLOADER VirusTotal Detections

HLOADER was identified through the use of a macOS binary code-signing technique that has been previously linked to the DPRK’s Lazarus
Group 3CX intrusion. In addition to other published research, Elastic Security Labs has also used the presence of this technique as an
indicator of DPRK campaigns, as seen in our June 2023 research publication on JOKERSPY.

Persistence

We observed the threat actor adopting a technique we have not previously seen them use to achieve persistence on macOS, known as
execution flow hijacking. The target of this attack was the widely used application Discord. The Discord application is often configured by users
as a login item and launched when the system boots, making it an attractive target for takeover. HLOADER is a self-signed binary written in
Swift. The purpose of this loader is to execute both the legitimate Discord bundle and .log payload, the latter of which is used to execute
Mach-O binary files from memory without writing them to disk.

The legitimate binary /Applications/Discord.app/Contents/MacOS/Discord was renamed to .lock, and replaced by HLOADER.

Discord replaced by HLOADER

https://www.virustotal.com/gui/file/2360a69e5fd7217e977123c81d3dbb60bf4763a9dae6949bc1900234f7762df1
https://objective-see.org/blog/blog_0x73.html
https://www.eset.com/int/about/newsroom/press-releases/research/eset-research-discovers-new-lazarus-dreamjob-campaign-and-links-it-to-phone-provider-3cx-supply-chai/
https://www.elastic.co/security-labs/inital-research-of-jokerspy#the-xcc-binary
https://attack.mitre.org/techniques/T1574/

9/19

Below is the code signature information for HLOADER, which has a self-signed identifier structure consistent with other Lazarus Group samples.

Executable=Applications/Discord.app/Contents/MacOS/Discord
Identifier=HLOADER-5555494485b460f1e2343dffaef9b94d01136320
Format=bundle with Mach-O universal (x86_64 arm64)
CodeDirectory flags=0x2(adhoc) hashes=12+7 location=embedded

When executed, HLOADER performs the following operations:

Renames itself from Discord to MacOS.tmp
Renames the legitimate Discord binary from .lock to Discord
Executes both Discord and .log using NSTask.launchAndReturnError
Renames both files back to their initial names

HLOADER execution event chain

HLOADER Discord Application Hijack

The following process tree also visually depicts how persistence is obtained. The root node Discord is actually HLOADER disguised as the
legitimate app. As presented above, it first runs .lock, which is in fact Discord, and, alongside, spawns SUGARLOADER as a process named
.log.

10/19

Process Tree Analyzer

As seen in stage 2, SUGARLOADER reads the configuration file, connects to the C2 server, and waits for a payload to be received. Another
alert is generated when the new payload (KANDYKORN) is loaded into memory.

Reflective Dylib Load Alert for KANDYKORN

Stage 4 Payload: KANDYKORN

KANDYKORN is the final stage of this execution chain and possesses a full-featured set of capabilities to access and exfiltrate data from the
victim’s computer. Elastic Security Labs was able to retrieve this payload from one C2 server which hadn’t been deactivated yet.

Execution

KANDYCORN processes are forked and run in the background as daemons before loading their configuration file from
/Library/Caches/com.apple.safari.ck. The configuration file is read into memory then decrypted using the same RC4 key, and parsed for
C2 settings. The communication protocol is similar to prior stages using the victim ID value for authentication.

Command and control

Once communication is established, KANDYKORN awaits commands from the server. This is an interesting characteristic in that the malware
waits for commands instead of polling for commands. This would reduce the number of endpoint and network artifacts generated and provide a
way to limit potential discovery.

Each command is represented by an integer being transmitted, followed by the data that is specific to each action. Below is a list of the
available commands KANDYKORN provides.

Command 0xD1

Action: Exit command where the program gracefully exists.

Command 0xD2

Name: resp_basicinfo Action: Gathers information about the system such as hostname, uid, osinfo, and image path of the current process,
and reports back to the server.

11/19

 resp_basicinfo routine

Command 0xD3

Name: resp_file_dir Action: Lists content of a directory and format the output similar to ls -al, including type, name, permissions, size, acl,
path, and access time.

 resp_file_dir routine

Command 0xD4

Name: resp_file_prop

Action: Recursively read a directory and count the number of files, number of subdirectories, and total size.

 resp_file_prop routine

Command 0xD5

Name: resp_file_upload

Action: Used by the adversary to upload a file from their C2 server to the victim’s computer. This command specifies a path, creates it, and
then proceeds to download the file content and write it to the victim’s computer.

Command 0xD6

Name: resp_file_down

12/19

Action: Used by the adversary to transfer a file from the victim’s computer to their infrastructure.

Command 0xD7

Name: resp_file_zipdown

Action: Archive a directory and exfiltrate it to the C2 server. The newly created archive’s name has the following pattern/tmp/tempXXXXXXX.

 _resp_file_zipdown routine _

Command 0xD8

Name: resp_file_wipe Action: Overwrites file content to zero and deletes the file. This is a common technique used to impede recovering the
file through digital forensics on the filesystem.

 resp_file_wipe routine

Command 0xD9

Name: resp_proc_list

Action: Lists all running processes on the system along with their PID, UID and other information.

Command 0xDA

Name: resp_proc_kill

Action: Kills a process by specified PID.

 resp_proc_kill routine

Command 0xDB

Name: resp_cmd_send

Action: Executes a command on the system by using a pseudoterminal.

Command 0xDC

Name: resp_cmd_recv

Action: Reads the command output from the previous command resp_cmd_send.

Command 0xDD

13/19

Name: resp_cmd_create

Action: Spawns a shell on the system and communicates with it via a pseudoterminal. Once the shell process is executed, commands are read
and written through the /dev/pts device.

 resp_cmd_create routine (interactive shell)

Command 0xDE

Name: resp_cfg_get

Action: Sends the current configuration to the C2 from /Library/Caches/com.apple.safari.ck.

Command 0xDF

Name: resp_cfg_set

Action: Download a new configuration file to the victim’s machine. This is used by the adversary to update the C2 hostname that should be
used to retrieve commands from.

Command 0xE0

Name: resp_sleep

Action: Sleeps for a number of seconds.

Summary

KANDYKORN is an advanced implant with a variety of capabilities to monitor, interact with, and avoid detection. It utilizes reflective loading, a
direct-memory form of execution that may bypass detections.

14/19

Network protocol

All the executables that communicate with the C2 (both stage 3 and stage 4) are using the same protocol. All the data is encrypted with RC4
and uses the same key previously referenced in the configuration file.

Both samples implement wrappers around the send-and-receive system calls. It can be observed in the following pseudocode that during the
send routine, the buffer is first encrypted and then sent to the socket, whereas when data is received it is first decrypted and then processed.

 send routine

 recv routine

When the malware first connects to the C2 during the initialization phase, there is a handshake that needs to be validated in order to proceed.
Should the handshake fail, the attack would stop and no other commands would be processed.

On the client side, a random number is generated and sent to the C2, which replies with a nonce variable. The client then computes a
challenge with the random number and the received nonce and sends the result back to the server. If the challenge is successful and the
server accepts the connection, it replies with a constant such as 0x41C3372 which appears in the analyzed sample.

 Handshake routine

Once the connection is established, the client sends its ID and awaits commands from the server. Any subsequent data sent or received from
here is serialized following a common schema used to serialize binary objects. First, the length of the content is sent, then the payload,
followed by a return code which indicates if any error occurred.

Overview of communication protocol

Network infrastructure

15/19

During REF7001, the adversary was observed communicating with network infrastructure to collect various payloads and loaders for different
stages of the intrusion.

As detailed in the Stage 1 section above, the link to the initial malware archive, Cross-Platform Bridges.zip, was provided in a direct
message on a popular blockchain Discord server. This archive was hosted on a Google Drive
(https://drive.google[.]com/file/d1KW5nQ8MZccug6Mp4QtKyWLT3HIZzHNIL2), but this was removed shortly after the archive was
downloaded.

Throughout the analysis of the REF7001 intrusion, there were two C2 servers observed.

tp-globa[.]xyz//OdhLca1mLUp/lZ5rZPxWsh/7yZKYQI43S/fP7savDX6c/bfC

23.254.226[.]90

tp-globa[.]xyz

The C2 domain tp-globa[.]xyz is used by FinderTools to download SUGARLOADER and is likely an attempt at typosquatting a legitimate
foreign exchange market broker. We do not have any information to indicate that the legitimate company is involved in this intrusion. This
typosquatted domain was likely chosen in an attempt to appear more legitimate to the victims of the intrusion.

tp-globa[.]xyz, as of this writing, resolves to an IP address (192.119.64[.]43) that has been observed distributing malware attributed to the
DPRK’s Lazarus Group (1, 2, 3).

23.254.226[.]90

23.254.226[.]90 is the C2 IP used for the .sld file (SUGARLOADER malware). How this IP is used for C2 is highlighted in the stage 2 section
above.

On October 14, 2023, 23.254.226[.]90 was used to register the subdomain, pesnam.publicvm[.]com. While we did not observe this domain
in our intrusion, it is documented as hosting other malicious software.

Campaign intersections

tp-globa[.]xyz, has a TLS certificate with a Subject CN of bitscrunnch.linkpc[.]net. The domain bitscrunnch.linkpc[.]net has been
attributed to other Lazarus Group intrusions.

As noted above, this is likely an attempt to typosquat a legitimate domain for a decentralized NFT data platform. We do not have any
information to indicate that the legitimate company is involved in this intrusion.

…
Issuer: C = US, O = Let's Encrypt, CN = R3
Validity
Not Before: Sep 20 12:55:37 2023 GMT
Not After : Dec 19 12:55:36 2023 GMT
Subject: CN = bitscrunnch[.]linkpc[.]net
…

The bitscrunnch.linkpc[.]net’s TLS certificate is also used for other additional domains, all of which are registered to the same IP address
reported above in the tp-globa[.]xyz section above, 192.119.64[.]43.

jobintro.linkpc[.]net

jobdescription.linkpc[.]net

docsenddata.linkpc[.]net

docsendinfo.linkpc[.]net

datasend.linkpc[.]net

exodus.linkpc[.]net

bitscrunnch.run[.]place

coupang-networks[.]pics

While LinkPC is a legitimate second-level domain and dynamic DNS service provider, it is well-documented that this specific service is used by
threat actors for C2. In our published research into RUSTBUCKET, which is also attributed to the DPRK, we observed LinkPC being used for
C2.

All registered domains, 48 as of this writing, for 192.119.64[.]43 are included in the observables bundle.

Finally, in late July 2023, there were reports on the Subreddits r/hacking, r/Malware, and r/pihole with URLs that matched the structure of tp-
globa[.]xyz//OdhLca1mLUp/lZ5rZPxWsh/7yZKYQI43S/fP7savDX6c/bfC. The user on Reddit reported that a recruiter contacted them to solve
a Python coding challenge as part of a job offer. The code challenge was to analyze Python code purported to be for an internet speed test.
This aligns with the REF7001 victim’s reporting on being offered a Python coding challenge and the script name testSpeed.py detailed earlier
in this research.

https://en.wikipedia.org/wiki/Typosquatting
https://twitter.com/TLP_R3D/status/1677617586349981696
https://twitter.com/_reboot_xxxx/status/1679054436289880065
https://twitter.com/KSeznec/status/1678319191110082560
https://www.virustotal.com/gui/domain/publicvm.com/detection
https://twitter.com/tiresearch1/status/1708141542261809360?s=20
https://www.virustotal.com/gui/search/entity%253Adomain%2520ssl_subject%253Abitscrunnch.linkpc.net/domains
https://www.virustotal.com/gui/domain/linkpc.net/community
https://www.elastic.co/security-labs/DPRK-strikes-using-a-new-variant-of-rustbucket
https://www.reddit.com/r/hacking/comments/15b4uti/comment/jtprebt/
https://www.reddit.com/r/Malware/comments/15b595e/looks_like_a_try_to_steel_some_data/
https://www.reddit.com/r/pihole/comments/15d11do/malware_project_mimics_pihole/jtzmpqh/

16/19

The domain reported on Reddit was group.pro-tokyo[.]top//OcRLY4xsFlN/vMZrXIWONw/6OyCZl89HS/fP7savDX6c/bfC which follows the
same structure as the REF7001 URL (tp-globa[.]xyz//OdhLca1mLUp/lZ5rZPxWsh/7yZKYQI43S/fP7savDX6c/bfC):

Two //’s after the TLD
5 subdirectories using an //11-characters/10-characters/10-characters/ structure
The last 2 subdirectories were /fP7savDX6c/bfC

While we did not observe GitHub in our intrusion, the Redditors who reported this did observe GitHub profiles being used. They have all been
deactivated.

Those accounts were:

https://github[.]com/Prtof

https://github[.]com/wokurks

Summary

The DPRK, via units like the LAZARUS GROUP, continues to target crypto-industry businesses with the goal of stealing cryptocurrency in
order to circumvent international sanctions that hinder the growth of their economy and ambitions. In this intrusion, they targeted blockchain
engineers active on a public chat server with a lure designed to speak to their skills and interests, with the underlying promise of financial gain.

The infection required interactivity from the victim that would still be expected had the lure been legitimate. Once executed, via a Python
interpreter, the REF7001 execution flow went through 5 stages:

Stage 0 (staging) - Main.py executes Watcher.py as an imported module. This script checks the Python version, prepares the local
system directories, then downloads, executes, and cleans up the next stage.
Stage 1 (generic droppers) - testSpeed.py and FinderTools are intermediate dropper Python scripts that download and execute
SUGARLOADER.
Stage 2 (SUGARLOADER) - .sld and .log are Mach-O executable payloads that establish C2, write the configuration file and
reflectively load KANDYKORN.
Stage 3 (HLOADER) - HLOADER/Discord(fake) is a simple loader used as a persistence mechanism masquerading as the legitimate
Discord app for the loading of SUGARLOADER.
Stage 4 (KANDYKORN) - The final reflectively loaded payload. KANDYKORN is a full-featured memory resident RAT with built-in
capabilities to:

Conduct encrypted command and control
Conduct system enumeration
Upload and execute additional payloads
Compress and exfil data
Kill processes
Run arbitrary system commands through an interactive pseudoterminal

Elastic traced this campaign to April 2023 through the RC4 key used to encrypt the SUGARLOADER and KANDYKORN C2. This threat is still
active and the tools and techniques are being continuously developed.

The Diamond Model

Elastic Security utilizes the Diamond Model to describe high-level relationships between adversaries, capabilities, infrastructure, and victims of
intrusions. While the Diamond Model is most commonly used with single intrusions, and leveraging Activity Threading (section 8) as a way to
create relationships between incidents, an adversary-centered (section 7.1.4) approach allows for an, although cluttered, single diamond.

17/19

REF7001 Diamond Model

[Malware] and MITRE ATT&CK

Elastic uses the MITRE ATT&CK framework to document common tactics, techniques, and procedures that advanced persistent threats used
against enterprise networks.

Tactics

Tactics represent the why of a technique or sub-technique. It is the adversary’s tactical goal: the reason for performing an action.

Techniques

Techniques represent how an adversary achieves a tactical goal by performing an action.

Malware prevention capabilities

Malware detection capabilities

Hunting queries

The events for EQL are provided with the Elastic Agent using the Elastic Defend integration. Hunting queries could return high signals or false
positives. These queries are used to identify potentially suspicious behavior, but an investigation is required to validate the findings.

EQL queries

Using the Timeline section of the Security Solution in Kibana under the “Correlation” tab, you can use the below EQL queries to hunt for similar
behaviors.

The following EQL query can be used to identify when a hidden executable creates and then immediately deletes a file within a temporary
directory:

sequence by process.entity_id, file.path with maxspan=30s
 [file where event.action == "modification" and process.name : ".*" and
 file.path : ("/private/tmp/*", "/tmp/*", "/var/tmp/*")]
 [file where event.action == "deletion" and process.name : ".*" and
 file.path : ("/private/tmp/*", "/tmp/*", "/var/tmp/*")]

https://attack.mitre.org/

18/19

The following EQL query can be used to identify when a hidden file makes an outbound network connection followed by the immediate
download of an executable file:

sequence by process.entity_id with maxspan=30s
[network where event.type == "start" and process.name : ".*"]
[file where event.action != "deletion" and file.Ext.header_bytes : ("cffaedfe*", "cafebabe*")]

The following EQL query can be used to identify when a macOS application binary gets renamed to a hidden file name within the same
directory:

file where event.action == "rename" and file.name : ".*" and
file.path : "/Applications/*/Contents/MacOS/*" and
file.Ext.original.path : "/Applications/*/Contents/MacOS/*" and
not startswith~(file.Ext.original.path,Effective_process.executable)

The following EQL query can be used to identify when an IP address is supplied as an argument to a hidden executable:

sequence by process.entity_id with maxspan=30s
[process where event.type == "start" and event.action == "exec" and process.name : ".*" and process.args regex~ "[0-9]{1,3}.[0-9]
{1,3}.[0-9]{1,3}.[0-9]{1,3}"]
[network where event.type == "start"]

The following EQL query can be used to identify the rename or modification of a hidden executable file within the /Users/Shared directory or
the execution of a hidden unsigned or untrusted process in the /Users/Shared directory:

any where
(
 (event.category : "file" and event.action != "deletion" and file.Ext.header_bytes : ("cffaedfe*", "cafebabe*") and
 file.path : "/Users/Shared/*" and file.name : ".*") or
 (event.category : "process" and event.action == "exec" and process.executable : "/Users/Shared/*" and
 (process.code_signature.trusted == false or process.code_signature.exists == false) and process.name : ".*")
)

The following EQL query can be used to identify when a URL is supplied as an argument to a python script via the command line:

sequence by process.entity_id with maxspan=30s
[process where event.type == "start" and event.action == "exec" and
process.args : "python*" and process.args : ("/Users/*", "/tmp/*", "/var/tmp/*", "/private/tmp/*") and process.args : "http*" and
process.args_count <= 3 and
not process.name : ("curl", "wget")]
[network where event.type == "start"]

The following EQL query can be used to identify the attempt of in memory Mach-O loading specifically by looking for the predictable temporary
file creation of "NSCreateObjectFileImageFromMemory-*":

file where event.type != "deletion" and
file.name : "NSCreateObjectFileImageFromMemory-*"

The following EQL query can be used to identify the attempt of in memory Mach-O loading by looking for the load of the
"NSCreateObjectFileImageFromMemory-*" file or a load with no dylib name provided:

any where ((event.action == "load" and not dll.path : "?*") or
 (event.action == "load" and dll.name : "NSCreateObjectFileImageFromMemory*"))

YARA

Elastic Security has created YARA rules to identify this activity. Below are YARA rules to identify the payloads:

Observations

All observables are also available for download in both ECS and STIX format.

The following observables were discussed in this research.

Observable

3ea2ead8f3cec030906dcbffe3efd5c5d77d5d375d4a54cca03bfe8a6cb59940

2360a69e5fd7217e977123c81d3dbb60bf4763a9dae6949bc1900234f7762df1

927b3564c1cf884d2a05e1d7bd24362ce8563a1e9b85be776190ab7f8af192f6

https://github.com/elastic/labs-releases/tree/main/indicators/ref7001

19/19

Observable

http://tp-globa[.]xyz//OdhLca1mLUp/lZ5rZPxWsh/7yZKYQI43S/fP7savDX6c/bfC

tp-globa[.]xyz

192.119.64[.]43

23.254.226[.]90

D9F936CE628C3E5D9B3695694D1CDE79E470E938064D98FBF4EF980A5558D1C90C7E650C2362A21B914ABD173ABA5C0E5837C47B89F74C5B23A7294CC1

References

The following were referenced throughout the above research:

