
1/12

A cascade of compromise: unveiling Lazarus’ new
campaign

securelist.com/unveiling-lazarus-new-campaign/110888/

Authors

 Seongsu Park

Earlier this year, a software vendor was compromised by the Lazarus malware delivered
through unpatched legitimate software. What’s remarkable is that these software
vulnerabilities were not new, and despite warnings and patches from the vendor, many of the
vendor’s systems continued to use the flawed software, allowing the threat actor to exploit
them. Fortunately, a proactive response by us detected an attack on another vendor and
effectively thwarted the attacker’s efforts.

Upon further investigation, we discovered that the software vendor that developed the
exploited software had previously fallen victim to Lazarus several times. This recurring
breach suggested a persistent and determined threat actor with the likely objective of
stealing valuable source code or tampering with the software supply chain, and they
continued to exploit vulnerabilities in the company’s software while targeting other software
makers.

https://securelist.com/unveiling-lazarus-new-campaign/110888/
https://securelist.com/author/seongsupark/

2/12

Infection timeline

The adversary demonstrated a high level of sophistication, employing advanced evasion
techniques and introducing SIGNBT malware for victim control. In addition, other malware
found in memory included Lazarus’ prominent LPEClient, a tool known for victim profiling and
payload delivery that has previously been observed in attacks on defense contractors and
the cryptocurrency industry.

Executive summary:

A software vendor was compromised through the exploitation of another high-profile
software.
The SIGNBT malware used in this attack employed a diverse infection chain and
sophisticated techniques.
LPEClient used in this attack was observed executing a range of targeted attacks
associated with the Lazarus group.

For more information, please contact: intelreports@kaspersky.com

SIGNBT loader

In mid-July 2023, we detected a series of attacks on several victims who had been targeted
through legitimate security software designed to encrypt web communications using digital
certificates. The exact method by which this software was exploited to deliver the malware
remains elusive. However, we identified post-exploitation activity within the processes of the
legitimate software. In one instance, while examining the memory of the compromised
security software from a victim’s system, we discovered the presence of the SIGNBT
malware accompanied by a shellcode. This shellcode was responsible for launching a
Windows executable file directly in memory.

The actor uses various tactics to establish and maintain persistence on compromised
systems. These include the creation of a file called ualapi.dll in the system folder, which is
automatically loaded by the spoolsv.exe process at each system boot. Additionally, in several

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/27053602/A_Cascade_of_Compromise_Unveiling_Lazarus_Campaign_06.png
mailto:intelreports@kaspersky.com

3/12

instances, registry entries were recorded to execute legitimate files for the purpose of
malicious side-loading, further ensuring a resilient persistence mechanism.

Methods for loading the final payload

Leveraging the spoolsv.exe process for hijacking purposes is a long-standing strategy for
Lazarus. Automatically loading the ualapi.dll file after each reboot is not a new technique for
this actor. We have seen similar tactics used by the Gopuram malware in the past.

The malicious ualapi.dll file was developed using a public source code known as Shareaza
Torrent Wizard. It follows a typical Lazarus group approach of utilizing public source code as
a foundation and injecting specific malicious functions into it. This loader malware has a
routine to verify the victim. It retrieves the victim’s MachineGuid by reading it from the
Windows registry and then compares it with an embedded MachineGuid value. To access
this embedded MachineGuid value, the malware locates the sequence “43 EB 8C BD 1D 98
3D 14” and reads the DWORD immediately following it. Only if the victim’s MachineGuid
matches the expected one does the malware proceed to the next step. The malware then
reads the payload from a hard-coded file path and continues its malicious activities.

Payload path: C:\Windows\system32\config\systemprofile\appdata\Local\tw-100a-a00-
e14d9.tmp

The loader process retrieves the first 32 bytes from tw-100a-a00-e14d9.tmp and uses this
data as an AES decryption key to decrypt the remaining contents. Once decrypted, the
payload, a Windows executable identified as SIGNBT, is loaded directly into memory. In this
case, the loaded payload also reads the configuration file from the same path, but with a
slightly different file name.

Config file: C:\Windows\system32\config\systemprofile\appdata\Local\tw-100b-a00-
e14d9.tmp

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/25075249/A_Cascade_of_Compromise_Unveiling_Lazarus_Campaign_01.png
https://securelist.com/gopuram-backdoor-deployed-through-3cx-supply-chain-attack/109344/
https://github.com/ivan386/Shareaza

4/12

Inside this file is a base64-encoded string, mirroring the approach used in the previous
SIGNBT malware method. The first 32 characters of this string serve as the AES decryption
key, while the subsequent data contains configuration information used by the malware. This
decrypted configuration data includes details such as three C2 addresses, which are referred
to as proxies, sleep intervals, version information, monitored targets, and various other
parameters critical to the malware’s operation.

SIGNBT

The majority of SIGNBT malware instances are launched through the malware loader, which
operates exclusively in memory. Upon execution, the malware begins communicating with
the C2 server by sending a beacon after initialization of its configuration data. In its C2
communication, the malware uses distinctive strings that start with SIGNBT. This unique
characteristic has earned it the designation of SIGNBT. In addition, the malware uses
different prefixes at each stage of its C2 operation to verify and maintain its activities.

Prefix name Description

SIGNBTLG Initial connection.

SIGNBTKE Success – update the key and ask for a profiling process.

SIGNBTGC Ask for commands.

SIGNBTFI Operation failed.

SIGNBTSR Operation success.

The malware employs a multi-step process to create a 24-byte value for various purposes.
First, it generates this value with the following components:

1. 8 bytes of hard-coded value (SIGNBTLG): this is a fixed part of the value and serves
to validate the legitimacy of the client’s connection.

2. 8 bytes from the MD5 hash of the hostname: the first 8 bytes of the MD5 hash of the
victim’s computer name are included, helping to distinguishing each victim.

3. 8 bytes of randomly generated identifier: another 8 bytes are randomly generated,
probably used for session identifiers.

After creating this 24-byte value, the malware generates an additional 24 bytes of random
data. These two sets of 24 bytes are then XORed together using another randomly
generated 24-byte key. Subsequently, both the resulting value and the 24-byte key are
encoded with base64. Finally, these encoded values are combined with either three or seven
randomly generated HTTP parameter names. In all future C2 communications, the malware
uses a similar structure, making it more challenging to detect and analyze its
communications.

5/12

Structure of HTTP POST data

The malware uses a mechanism to validate the response data received from the C2 server.
Specifically, it checks to see if the response data contains a hard-coded HTML script.

1

2

3

4

<!DOCTYPE html><html><head></head><body marginwidth="0" marginheight="0"

style="background-color:transparent"><script>

[delivered data]

</script></body></html>

During the validation process, the malware decodes the first 12 bytes from the C2 server
using base64, replacing the spaces with plus signs to create a seven-character string. This
process is then repeated with the next 12 bytes. The first seven characters from each set are
then XORed and compared to the “success” string. This repetitive procedure is applied to
every HTTP communication sequence to verify that the response aligns with the expected
“success” criterion.

Next, the malware sends HTTP requests with the SIGNBTKE header, and if it receives a
“success” message from the C2 server, it activates the getInfo function within the CCBrush
class. This function gathers various information about the victim’s computer, such as
computer name, product name, OS details, system uptime, CPU information, system locale,
time zone, network status, and malware configuration data. After sending this system-
specific information, the malware sends another HTTP request with the SIGNBTGC prefix,
this time using a randomly chosen embedded HTTP parameter from a list of 100 possible
parameter names.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/25075614/A_Cascade_of_Compromise_Unveiling_Lazarus_Campaign_02.png

6/12

1

2

3

4

5

6

7

client, output, h, slotname, adk, adf, pi, w, format, url, ea, flash, tt_state, dt, bpp,

bdt, idt, shv, ptt, saldr, frm, ife, pv, ga_vid, ga_sid, ga_hid, ga_fc, nhd, u_tz, u_his,

u_java, u_h, u_w, u_ah, u_aw, u_cd, u_nplug, u_nmime, adx, ady, biw, bih, isw, ish,
ifk,

scr_x, scr_y, eid, oid, pvsid, pem, loc, eae, brdim, vis, rsz, abl, pfx, fu, bc, ifi, uci,

fsb, dtd, atyp, ei, s, t, bl, imn, ima, imad, aftp, adh, conn, ime, imex, imeh, imea,

imeb, wh, scp, net, mem, sto, sys, rt, zx, su, tb, calp, rui, u, XU, TREX, UID, SID, dr,

XDR, dt

The data received from the C2 server is decrypted using AES with a decryption key obtained
from a SIGNBTLG HTTP request. If the decrypted data is “keep”, the malware responds with
an “OK” message using the SIGNBTSR prefix, indicating a successful communication. If
there are problems, the malware uses the SIGNBTFI prefix to convey the nature of the
problem or failure in communication. To summarize, the C2 communication process can be
described as follows:

C2 communication process

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/25075854/A_Cascade_of_Compromise_Unveiling_Lazarus_Campaign_03.png

7/12

If the delivered data does not equal “keep”, indicating that specific instructions or actions are
required, the malware proceeds to invoke the corresponding class and function for backdoor
behavior. The SIGNBT malware is equipped with an extensive set of functionalities designed
to exert control over the victim’s system. To perform these functions, the malware receives
instructions from the C2 server in the form of a class name, function name, and any
necessary parameters. It then executes the relevant function embedded in the malware’s
codebase.

Class name Function name

CCBrush getInfo, testConnect, setSleep, setHibernate, sendConfig, setConfig

CCList getProcessList, processKill, runFile, runAsUser, injectDll, freeDll

CCComboBox getDriveList, getFileDir, changeFileTime, secDelete, folderProperty,
changeFileName, makeNewFolder

CCButton startDownload, upFile, selfMemload, scrCapture

CCBitmap ping, netshAdvfirewall, netstat, reg, sc, whoami, arp, nslookup,
systeminfo, ipconfig, net, ver, wmic, deploy, copy

The name of each backdoor command is straightforward, implementing commonly used
Windows commands such as ping, netstat, and systeminfo. It’s important to note that the
backdoor is capable of implanting an additional payload for auto execution, internally named
“deploy”. This backdoor function receives file paths via command-line arguments decrypted
with AES. Using this command, SIGNBT has been observed to implant the phantom DLL we
already described in the SIGNBT loader section above.

Based on the analysis, it is evident that the actor’s initial compromise of the victim involved
exploiting vulnerabilities within the software exploit. They then proceeded to deploy the
SIGNBT malware using a DLL side-loading technique. Furthermore, the actor used the
backdoor capability “deploy” to implant an additional payload for automated execution. This
multifaceted attack demonstrates a high level of sophistication and a deliberate effort to
infiltrate and maintain control over the victim’s system.

LPEClient

Using the comprehensive backdoor as described above, the actor deploys additional
malware in the victim’s memory. Notably, these newly delivered malware variants
predominantly execute in the system’s memory only, without touching the disk. Based on our
telemetry, the actor has been observed to deliver such tools as LPEClient and credential
dumping utilities to the victim machines.

8/12

Additional payload delivered by SIGNBT

The LPEClient malware is not new and was first discovered during an investigation of a
defense contractor attack in 2020. It is designed to collect victim information and download
additional payloads from a remote server to run in memory. Although it has been previously
noted in our threat intelligence reports to our customers, recent discoveries indicate that
LPEClient has undergone significant evolution. It now employs advanced techniques to
improve its stealth and avoid detection, such as disabling user-mode syscall hooking and
restoring system library memory sections. This indicates a continued effort by the threat
actors to increase the sophistication and effectiveness of their malware.

Connections with other campaigns

One of the malware strains employed in this attack, known as LPEClient, has featured
prominently in recent activity attributed to the Lazarus group. This particular malware
consistently serves as the initial infection vector, enabling victim profiling and facilitating the
delivery of additional payloads. Over an extended period of time, one of these campaigns
specifically targeted defense contractors and nuclear engineers. In a recent incident, the
threat actor compromised a victim by delivering LPEClient via a Trojanized VNC or Putty
client for an intermediate infection. Another campaign targeting the cryptocurrency industry
was discovered in July 2023. In this financially motivated campaign, the actor leveraged the
Gopuram malware, associated with the 3CX supply chain attack. Interestingly, the actor also
used LPEClient malware in this case. Prior to the introduction of the Gopuram cluster,
LPEClient was used to deliver the subsequent malware. These three campaigns attributed to
Lazarus in 2023 illustrate different initial infection vectors and infection chains, but they
consistently relied on LPEClient malware to deliver the final payload.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/25080146/A_Cascade_of_Compromise_Unveiling_Lazarus_Campaign_04.png
https://securelist.com/lazarus-threatneedle/100803/
https://securelist.com/apt-trends-report-q3-2023/110752/#southeast-asia-and-korean-peninsula
https://securelist.com/gopuram-backdoor-deployed-through-3cx-supply-chain-attack/109344/

9/12

The infection chains of the three campaigns attributed to Lazarus in 2023

Conclusions

The Lazarus group remains a highly active and versatile threat actor in today’s cybersecurity
landscape. The threat actor has demonstrated a profound understanding of IT environments,
refining their tactics to include exploiting vulnerabilities in high-profile software. This
approach allows them to efficiently spread their malware once initial infections are achieved.
Moreover, the activities of this notorious actor transcend geographic boundaries and industry
sectors. They have targeted various industries, each with distinct objectives and using
different tools, tactics and techniques. This underscores their recent and ongoing activity
characterized by sophisticated methods and unwavering motivations.

Indicators of Compromise

SIGNBT loader
 9cd90dff2d9d56654dbecdcd409e1ef3 %system%\ualapi.dll

88a96f8730b35c7406d57f23bbba734d %system%\ualapi.dll
 54df2984e833ba2854de670cce43b823 %system%\ualapi.dll

Ae00b0f490b122ebab614d98bb2361f7 %system%\ualapi.dll
 e6fa116ef2705ecf9677021e5e2f691e

 31af3e7fff79bc48a99b8679ea74b589 C:\GoogleD\Coding\JS\Node\winhttp.dll

SIGNBT
 9b62352851c9f82157d1d7fcafeb49d3

LPEClient
 3a77b5054c36e6812f07366fb70b007d %systme%\wbem\wbemcomn.dll

 E89fa6345d06da32f9c8786b65111928

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/25080220/A_Cascade_of_Compromise_Unveiling_Lazarus_Campaign_05.png

10/12

%ProgramData%\Microsoft\Windows\ServiceSetting\ESENT.dll

File path
 C:\GoogleD\Coding\JS\Node\SgrmLpac.exe

 C:\GoogleD\Coding\JS\Node\winhttp.dll
 C:\Windows\system32\config\systemprofile\appdata\Local\tw-100a-a00-e14d9.tmp

 C:\Windows\system32\config\systemprofile\appdata\Local\tw-100b-a00-e14d9.tmp
 C:\ProgramData\ntuser.008.dat

 C:\ProgramData\ntuser.009.dat
 C:\ProgramData\ntuser.001.dat
 C:\ProgramData\ntuser.002.dat
 C:\ProgramData\Microsoft\Windows\ServiceSetting\ESENT.dll

C2 servers
 hxxp://ictm[.]or[.]kr/UPLOAD_file/board/free/edit/index[.]php

 hxxp://samwoosystem[.]co[.]kr/board/list/write[.]asp
 hxxp://theorigin[.]co[.]kr:443/admin/management/index[.]php

 hxxp://ucware[.]net/skins/PHPMailer-master/index[.]php
 hxxp://www[.]friendmc[.]com/upload/board/asp20062107[.]asp

 hxxp://www[.]hankooktop[.]com/ko/company/info[.]asp
 hxxp://www[.]khmcpharm[.]com/Lib/Modules/HtmlEditor/Util/read[.]cer

 hxxp://www[.]vietjetairkorea[.]com/INFO/info[.]asp
 hxxp://yoohannet[.]kr/min/tmp/process/proc[.]php
 hxxps://admin[.]esangedu[.]kr/XPaySample/submit[.]php

 hxxps://api[.]shw[.]kr/login_admin/member/login_fail[.]php
 hxxps://hicar[.]kalo[.]kr/data/rental/Coupon/include/inc[.]asp

 hxxps://hspje[.]com:80/menu6/teacher_qna[.]asp
 hxxps://kscmfs[.]or[.]kr/member/handle/log_proc[.]php

 hxxps://kstr[.]radiology[.]or[.]kr/upload/schedule/29431_1687715624[.]inc
 hxxps://little-pet[.]com/web/board/skin/default/read[.]php

 hxxps://mainbiz[.]or[.]kr/SmartEditor2/photo_uploader/popup/edit[.]asp
 hxxps://mainbiz[.]or[.]kr/include/common[.]asp

 hxxps://new-q-cells[.]com/upload/newsletter/cn/frame[.]php
 hxxps://pediatrics[.]or[.]kr/PubReader/build_css[.]php

 hxxps://pms[.]nninc[.]co[.]kr/app/content/board/inc_list[.]asp
 hxxps://safemotors[.]co[.]kr/daumeditor/pages/template/template[.]asp

 hxxps://swt-keystonevalve[.]com/data/editor/index[.]php
 hxxps://vnfmal2022[.]com/niabbs5/upload/gongji/index[.]php

 hxxps://warevalley[.]com/en/common/include/page_tab[.]asp
 hxxps://www[.]blastedlevels[.]com/levels4SqR8/measure[.]asp

 hxxps://www[.]droof[.]kr/Board/htmlEdit/PopupWin/Editor[.]asp
 hxxps://www[.]friendmc[.]com:80/upload/board/asp20062107[.]asp

11/12

hxxps://www[.]hanlasangjo[.]com/editor/pages/page[.]asp
hxxps://www[.]happinesscc[.]com/mobile/include/func[.]asp

 hxxps://www[.]healthpro[.]or[.]kr/upload/naver_editor/subview/view[.]inc
 hxxps://www[.]medric[.]or[.]kr/Controls/Board/certificate[.]cer

 hxxps://www[.]muijae[.]com/daumeditor/pages/template/simple[.]asp
 hxxps://www[.]muijae[.]com/daumeditor/pages/template/template[.]asp

 hxxps://www[.]nonstopexpress[.]com/community/include/index[.]asp
 hxxps://www[.]seoulanesthesia[.]or[.]kr/mail/mail_211230[.]html

 hxxps://www[.]seouldementia[.]or[.]kr/_manage/inc/bbs/jiyeuk1_ok[.]asp
 hxxps://www[.]siriuskorea[.]co[.]kr/mall/community/bbs_read[.]asp

 hxxps://yoohannet[.]kr/min/tmp/process/proc[.]php

MITRE ATT&CK Mapping

Tactic Techniques

Initial Access T1189

Execution T1203

Persistence T1547.012, T1574.002

Privilege Escalation T1547.012

Defense Evasion T1140, T1574.002, T1027.001, T1027.002, T1620

Credential Access T1003.001

Discovery T1057, T1082, T1083

Collection T1113

Command and Control T1071.001, T1132.002, T1573.001

Exfiltration T1041

Backdoor
Lazarus
Malware Descriptions
Malware Technologies
Targeted attacks
Vulnerabilities and exploits

Authors

 Seongsu Park

https://securelist.com/tag/backdoor/
https://securelist.com/tag/lazarus/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/tag/vulnerabilities-and-exploits/
https://securelist.com/author/seongsupark/

12/12

A cascade of compromise: unveiling Lazarus’ new campaign

Your email address will not be published. Required fields are marked *

