
1/28

Glyc3rius October 3, 2023

Stealc Malware Analysis
glyc3rius.github.io/2023/10/stealc/

Contents

Glyc3rius included in Reports
 2023-10-03 3583 words 17 minutes

Overview

Stealc is just a typical information stealer written in C. The malware encodes/encrypts its strings with base64 and
RC4 methods and imports its functions with the help of PEB while several anti-analysis and evasion techniques
are also applied. It drops 7 additional third-party DLLs (such as sqlite3.dll) from the C2 server. The stealing
procedure targets browsers, browser extensions, desktop cryptocurrency wallets and applications such as
Outlook, Steam, Discord, Telegram, Tox, and Pidgin. It gathers information about the victim’s machine as well
and after its all done, removes itself and the dropped DLLs from the computer.

The analysed sample’s SHA-256 is e978871a3a76c83f94e589fd22a91c7c1a58175ca5d2110b95d71b7805b25b8d.

String Obfuscation

Inside the disassembler, we discover two functions which contain likely important strings that are encoded with
base64. After decoding them, we can conclude that an encryption mechanism is used as well. In search of it, an
RC4 algorithm is found with its hard-coded key: 52129722198130874989795557381261264814249348323986. I
decrypted these strings with a simple python script. The deobfuscated strings are:

11
20
23
GetProcAddress
LoadLibraryA
lstrcatA
OpenEventA
CreateEventA
CloseHandle
Sleep
GetUserDefaultLangID
VirtualAllocExNuma
VirtualFree
GetSystemInfo
VirtualAlloc
HeapAlloc
GetComputerNameA
lstrcpyA
GetProcessHeap
GetCurrentProcess
lstrlenA
ExitProcess
GlobalMemoryStatusEx
GetSystemTime
SystemTimeToFileTime
advapi32.dll
gdi32.dll
user32.dll
crypt32.dll
ntdll.dll

https://glyc3rius.github.io/2023/10/stealc/
https://glyc3rius.github.io/
https://glyc3rius.github.io/categories/reports/
https://github.com/Glyc3rius/python-scripts/blob/18d7789d7f452bf28427114d6319f4c1283e47a4/Stealc/stealc_string_decryption.ipynb

2/28

GetUserNameA
CreateDCA
GetDeviceCaps
ReleaseDC
CryptStringToBinaryA
sscanf
VMwareVMware
HAL9TH
JohnDoe
DISPLAY
%hu/%hu/%hu
http://185.106.94.206
/4e815d9f1ec482dd.php
/49171d9bb28d893a/
GoogleMaps
GetEnvironmentVariableA
GetFileAttributesA
GlobalLock
HeapFree
GetFileSize
GlobalSize
CreateToolhelp32Snapshot
IsWow64Process
Process32Next
GetLocalTime
FreeLibrary
GetTimeZoneInformation
GetSystemPowerStatus
GetVolumeInformationA
GetWindowsDirectoryA
Process32First
GetLocaleInfoA
GetUserDefaultLocaleName
GetModuleFileNameA
DeleteFileA
FindNextFileA
LocalFree
FindClose
SetEnvironmentVariableA
LocalAlloc
GetFileSizeEx
ReadFile
SetFilePointer
WriteFile
CreateFileA
FindFirstFileA
CopyFileA
VirtualProtect
GetLogicalProcessorInformationEx
GetLastError
lstrcpynA
MultiByteToWideChar
GlobalFree
WideCharToMultiByte
GlobalAlloc
OpenProcess
TerminateProcess
GetCurrentProcessId
gdiplus.dll
ole32.dll
bcrypt.dll
wininet.dll
shlwapi.dll
shell32.dll
psapi.dll
rstrtmgr.dll
CreateCompatibleBitmap
SelectObject
BitBlt
DeleteObject
CreateCompatibleDC
GdipGetImageEncodersSize
GdipGetImageEncoders
GdipCreateBitmapFromHBITMAP
GdiplusStartup

3/28

GdiplusShutdown
GdipSaveImageToStream
GdipDisposeImage
GdipFree
GetHGlobalFromStream
CreateStreamOnHGlobal
CoUninitialize
CoInitialize
CoCreateInstance
BCryptGenerateSymmetricKey
BCryptCloseAlgorithmProvider
BCryptDecrypt
BCryptSetProperty
BCryptDestroyKey
BCryptOpenAlgorithmProvider
GetWindowRect
GetDesktopWindow
GetDC
CloseWindow
wsprintfA
EnumDisplayDevicesA
GetKeyboardLayoutList
CharToOemW
wsprintfW
RegQueryValueExA
RegEnumKeyExA
RegOpenKeyExA
RegCloseKey
RegEnumValueA
CryptBinaryToStringA
CryptUnprotectData
SHGetFolderPathA
ShellExecuteExA
InternetOpenUrlA
InternetConnectA
InternetCloseHandle
InternetOpenA
HttpSendRequestA
HttpOpenRequestA
InternetReadFile
InternetCrackUrlA
StrCmpCA
StrStrA
StrCmpCW
PathMatchSpecA
GetModuleFileNameExA
RmStartSession
RmRegisterResources
RmGetList
RmEndSession
sqlite3_open
sqlite3_prepare_v2
sqlite3_step
sqlite3_column_text
sqlite3_finalize
sqlite3_close
sqlite3_column_bytes
sqlite3_column_blob
encrypted_key
PATH
C:\\ProgramData\\nss3.dll
NSS_Init
NSS_Shutdown
PK11_GetInternalKeySlot
PK11_FreeSlot
PK11_Authenticate
PK11SDR_Decrypt
C:\\ProgramData\\
url:
SELECT origin_url, username_value, password_value FROM logins
browser:
profile:
login:
password:
Opera

4/28

OperaGX
Network
cookies
.txt
TRUE
SELECT HOST_KEY, is_httponly, path, is_secure, (expires_utc/1000000)-11644480800, name,
encrypted_value from cookies
FALSE
autofill
SELECT name, value FROM autofill
history
SELECT url FROM urls LIMIT 1000
cc
name:
SELECT name_on_card, expiration_month, expiration_year, card_number_encrypted FROM credit_cards
month:
year:
card:
Cookies
Login Data
Web Data
History
logins.json
formSubmitURL
usernameField
encryptedUsername
encryptedPassword
guid
SELECT host, isHttpOnly, path, isSecure, expiry, name, value FROM moz_cookies
SELECT fieldname, value FROM moz_formhistory
SELECT url FROM moz_places LIMIT 1000
cookies.sqlite
formhistory.sqlite
places.sqlite
plugins
Local Extension Settings
Sync Extension Settings
IndexedDB
Opera Stable
Opera GX Stable
CURRENT
chrome-extension_
_0.indexeddb.leveldb
Local State
profiles.ini
chrome
opera
firefox
wallets
%08lX%04lX%lu
SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion
ProductName
x32
x64
%d/%d/%d %d:%d:%d
HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0
ProcessorNameString
DisplayName
SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Uninstall
DisplayVersion
Network Info:
\t- IP: IP?
\t- Country: ISO?
System Summary:
\t- HWID:
\t- OS:
\t- Architecture:
\t- UserName:
\t- Computer Name:
\t- Local Time:
\t- UTC:
\t- Language:
\t- Keyboards:
\t- Laptop:
\t- Running Path:

5/28

\t- CPU:
\t- Threads:
\t- Cores:
\t- RAM:
\t- Display Resolution:
\t- GPU:
User Agents:
Installed Apps:
All Users:
Current User:
Process List:
system_info.txt
freebl3.dll
mozglue.dll
msvcp140.dll
nss3.dll
softokn3.dll
vcruntime140.dll
\\Temp\\
.exe
runas
open
/c start
%DESKTOP%
%APPDATA%
%LOCALAPPDATA%
%USERPROFILE%
%DOCUMENTS%
%PROGRAMFILES%
%PROGRAMFILES_86%
%RECENT%
*.lnk
files
\\discord\\
\\Local Storage\\leveldb\\CURRENT
\\Local Storage\\leveldb
\\Telegram Desktop\\
key_datas
D877F783D5D3EF8C*
map*
A7FDF864FBC10B77*
A92DAA6EA6F891F2*
F8806DD0C461824F*
Telegram
Tox
*.tox
*.ini
Password
Software\\Microsoft\\Windows NT\\CurrentVersion\\Windows Messaging
Subsystem\\Profiles\\Outlook\\9375CFF0413111d3B88A00104B2A6676\\
Software\\Microsoft\\Office\\13.0\\Outlook\\Profiles\\Outlook\\9375CFF0413111d3B88A00104B2A6676\\
Pidgin
Software\\Microsoft\\Office\\14.0\\Outlook\\Profiles\\Outlook\\9375CFF0413111d3B88A00104B2A6676\\
accounts.xml
Software\\Microsoft\\Office\\15.0\\Outlook\\Profiles\\Outlook\\9375CFF0413111d3B88A00104B2A6676\\
dQw4w9WgXcQ
Software\\Microsoft\\Office\\16.0\\Outlook\\Profiles\\Outlook\\9375CFF0413111d3B88A00104B2A6676\\
ssfn*
Software\\Microsoft\\Windows Messaging Subsystem\\Profiles\\9375CFF0413111d3B88A00104B2A6676\\
00000001
00000002
00000003
00000004
\\Outlook\\accounts.txt
\\.purple\\
token:
Software\\Valve\\Steam
SteamPath
\\config\\
config.vdf
DialogConfig.vdf
DialogConfigOverlay*.vdf
libraryfolders.vdf
loginusers.vdf
\\Steam\\

6/28

sqlite3.dll
browsers
done
soft
\\Discord\\tokens.txt
/c timeout /t 5 & del /f /q "
" & del "C:\\ProgramData*.dll"" & exit
C:\\Windows\\system32\\cmd.exe
https
Content-Type: multipart/form-data; boundary=----
POST
HTTP/1.1
Content-Disposition: form-data; name="
hwid
build
token
file_name
file
message
ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890
screenshot.jpg

7/28

8/28

9/28

10/28

11/28

12/28

13/28

14/28

15/28

16/28

17/28

18/28

19/28

20/28

Dynamic Import with PEB

Stealc uses the Process Environment Block (PEB) to dynamically load libraries and to avoid antivirus
detection. In this case, the malware uses the PEB as an obfuscation technique to hide Windows API libraries
and their imported functions.

Accessing the PEB structure can be described with the table below:

Offset Description

1. FS:[offset
ProcessEnvironmentBlock]

The equivalent of FS:[0x30], that means we access the PEB
directly

2. 0xc Access to the LoaderData

3. 0xc Access to the InLoadOrderModuleList

4. 0x18 Access to the DllBase

Inside the DllBase, the malware looks for the base address of kernel32.dll. After that it loads the
GetProcAddress function that is used to dynamically resolve the address of the LoadLibraryA function. Then,
LoadLibraryA loads additional DLLs that the malware can utilize and their functions are also called with
GetProcAddress dynamically.

Anti-analysis and Evasion Methods

Monitor Resolution

First, Stealc checks the number of pixels the screen can show vertically and compares the GetDeviceCaps
function’s return value to 666 which represents the screen height. In case the screen height is below 666 pixels,
the malware stops execution (for example, if the screen resolution is 800x600 then the ExitProcess is called,
since 600 is lower than 666). This is a technique to avoid virtual machines with lower resolutions which are not
expected in a regular environment.

Number of Processor Cores

It checks whether the victim’s machine has a processor with at least 2 cores. If it doesn’t, the malware stops
execution, since it assumes that the machine is in a virtualized environment.

Memory Check

21/28

With GlobalMemoryStatusEx , the malware retrieves information about the system’s physical and virtual memory.
If the total physical memory is under 1111 MB of memory, the malware calls the ExitProcess function. This
ensures that the malware is not running under a virtual machine.

Memory Allocation

The stealer also tries to allocate memory with VirtualAllocExNuma. It is an anti-emulator technique, since an AV
emulator can’t perform this kind of allocation, making the API call fail. If the allocation doesn’t happen, the
malware exits immediately.

Language Check

Stealc checks the language ID of the current user with the GetUserDefaultLangID function and if they return one
of the hexadecimal values from the table below, then the malware exits and won’t run on the victim’s computer.

Language ID (Hex) Country

0x419 Russia

0x422 Ukraine

0x423 Belarus

0x43F Kazakhstan

0x443 Uzbekistan

Anti-Emulation

It calls GetComputerNameA with HAL9TH parameter and GetUserNameA with JohnDoe. Both of these parameters
are used by Microsoft Defender emulator and they are compared to the victim’s computer name and username.
It checks whether the malware is in a virtual or sandbox environment.

Dropped DLLs

Before the malware starts its information stealing procedure, it downloads 7 DLLs from the C2 server:
hxxp://185[.]106[.]94[.]206/49171d9bb28d893a/. These DLLS are: sqlite3.dll, nss3.dll, freebl3.dll,
mozglue.dll, msvcp140.dll, softokn3.dll, vcruntime140.dll. All of them are valid third-party DLLs and they
are placed within the C:\ProgramData\ folder and all the stolen data is also stored under this path. The
sqlite3.dll and nss3.dll are essential for the information stealing that Stealc performs. The imported
functions of these two and their usage are represented in the tables below.

sqlite3.dll which is used to interact with SQLite databases in C/C++ applications:

Function Usage

sqlite3_open Opens or creates a new SQLite database file

sqlite3_prepare_v2 Compiles an SQL statement into a prepared statement

sqlite3_step Executes a prepared statement one step at a time

sqlite3_column_text Retrieves the text value of a column in the current row of the result set

sqlite3_finalize Finalizes a prepared statement and releases associated resources

22/28

Function Usage

sqlite3_close Closes the SQLite database connection

sqlite3_column_bytes Retrieves the number of bytes in a column value in the current row of the result set

sqlite3_column_blob Retrieves a blob (binary) value from a column in the current row of the result set

nss3.dll which is associated with Firefox:

Function Usage

NSS_Init Initializes the NSS library

NSS_Shutdown Cleans up and releases resources acquired during NSS initialization

PK11_GetInternalKeySlot Obtains a cryptographic slot

PK11_FreeSlot Releases the slot

PK11_Authenticate Authenticates a cryptographic module or unlocks a cryptographic token

PK11SDR_GetInternalKeySlot Used for decrypting data using the NSS library

Browsers

Stealc attempts to get the information from browsers that are based on Chromium, Opera, or Mozilla. The data
related to Opera-based browsers (Opera, Opera GX) are exfiltrated the same way as the Chromium ones. The
stolen information could include: login credentials, cookies, autofills, history and credit card details. The
information stealer utilizes SQLite with sqlite3.dll library and uses SQL queries with SELECT statements to get
the victim’s stolen data. In case of Mozilla-based applications, the nss3.dll library is also used to decrypt
credentials.

Chromium-based

First, the malware searches the Local State JSON file to locate Chromium users, then it attempts to gain
information from 5 databases:

1. Login Data

2. Web Data

3. Cookies

4. Network

5. History

Key Decryption Method

Before getting the information from these databases, the stealer needs to take care of the encrypted values
that Chromium browsers have. First, it searches the Local State file and locates the key that is encoded with
base64. This is decoded with the CryptStringToBinaryA function and with its CRYPT_STRING_BASE64 parameter.
Since this string contains 'DPAPI' (the name of one of the encryption method) as a prefix of the key, the stealer
has to drop this prefix, so that it only decrypts the actual key string. Then it calls the CryptUnprotectData and
decrypts the actual key. Finally, the AES-GCM decryption is done with the BCryptDecrypt function. After these
steps, the encrypted information from the SQLite databases are easily retrievable.

23/28

Logins

The SELECT origin_url, username_value, password_value FROM logins query gets the username and
password values. The password_value is in an encrypted form and decrypted with the method disclosed above.

After the decryption, the information are saved in the following form:

browser: %value%\n
profile: %value%\n
url: %url%\n
login: %username_value%\n
password:
%password_value%\n\n

Cookies

SELECT HOST_KEY, is_httponly, path, is_secure, (expires_utc/1000000)-11644480800, name,

encrypted_value from cookies is the query to collect the cookies. The encrypted cookie value is decrypted
with the described method and saves the stolen data into cookies.txt. Inside the text file, each column name is
separated with a '\t' (tab) and each cookie is separated with a '\n' (newline) character inside the text file.

Autofill

In order to get the autofill information, the malware uses the SELECT name, value FROM autofill query. After
that, it saves the stolen data into autofill.txt where each autofill data is split with '\n'.

History

SELECT url FROM urls LIMIT 1000 gets the history data of the web browser. The LIMIT 1000 restricts the
number of rows returned, so only the first 1000 results are collected. It saves the stolen data into history.txt
and splits each URL with a '\n'.

Credit Cards

SELECT name_on_card, expiration_month, expiration_year, card_number_encrypted FROM credit_cards

query collects the credit card details and saves the information to a text file called cc.txt. As the query
suggests, the card number comes in an encrypted form which is decrypted with the method above.

After the decryption process, the card details are written in the following form to the text file:

name: %name_on_card%\n
month: %expiration_month%\n
year: %expiration_year%\n
card:
%card_number_decrypted%\n\n

Mozilla-based

The malware first checks the used profiles in the profiles.ini configuration file and targets them. It uses the
nss3.dll and the sqlite3.dll libraries to steal data. The sqlite3.dll is used to extract the victim’s information
with its functions disclosed above in the table. The information that it wants to obtain are: login credentials,
cookies, autofills and history data.

24/28

Logins

The credentials are stored in logins.json. The stealer looks for the following 5 values inside the JSON file and
extracts them: formSubmitURL, usernameField, encryptedUsername, encryptedPassword, guid. Since both the
username and password values are encrypted, the stealer attempts to decrypt it with the help of the Network
Security Services (NSS) library.

The decryption routine with the nss3.dll functions:

1. PK11_GetInternalKeySlot –> Obtains a cryptographic slot
2. PK11_Authenticate –> Authenticates a cryptographic module or unlocks a cryptographic token
3. PK11SDR_GetInternalKeySlot –> Used for decrypting data
4. PK11_FreeSlot –> Releases the slot

After the decryption, the stolen values are collected in the following form:

browser: %guid%\n
profile:
%usernameField%\n
url:
%formSubmitURL%\n
login: %username%\n
password:
%password%\n\n

Cookies

The applications’ cookies are stored in the cookies.sqlite database. It is extracted with the SELECT host,
isHttpOnly, path, isSecure, expiry, name, value FROM moz_cookies query. The stealer collects
information about the domain and path for which the cookie is valid, whether the cookie is “http only” and secure,
the cookie’s expiration time, name and value. Then it is written in the cookies.txt file. Each column name is
separated with a '\t' and each cookie is separated with a '\n' character inside the text file.

Autofills

The autofill information are kept in the formhistory.sqlite database which remembers what the victim
searched for in the Firefox search bar and what they’ve entered into forms on websites. It is extracted with the
SELECT fieldname, value FROM moz_formhistory query and the stolen data is saved in the autofill.txt file.
The fieldname and value columns are separated with a '\t' and each autofill data is on a new line ('\n').

History

The history data can be found in the places.sqlite database which contains the user’s Firefox bookmarks,
downloaded files and visited websites. The SELECT url FROM moz_places LIMIT 1000 query is used to extract
the URL and returns the first 1000 rows. Then the retrieved information is written in the history.txt file where
each URL is separated with a '\n' character.

Browser Extensions

The stealer also targets Chrome-based browser extensions. It searches for the following folders related to
extensions:

Local Extension Settings —> refers to the configuration and settings specific to a particular Chrome
extension

25/28

Sync Extension Settings —> the ability to synchronize the settings of an extension across multiple
devices
IndexedDB\chrome-extension__0.indexeddb.leveldb —> where an extension might store data using
IndexedDB such as user preferences, cached content

The CURRENT value is also used to get the most recent information related to the extensions. Cryptocurrency
wallets are in danger if they are browser-based ones.

Desktop Cryptocurrency Wallets

Stealc targets desktop cryptocurrency wallets as well. First, it searches for the wallets with the following file path:
C:\Users\%user%\AppData\Roaming\%WalletAppName%*.*. This is the default location of the applications that
are associated with cryptocurrency wallets. The end value of *.* is a wildcard that returns all files with any
filename and any file extension within the directory. The %WalletAppName% folder is a randomly generated string
of 20 letters, such as AFHIEBKKFHIEGCAKECGH.

Applications

Outlook

Microsoft’s email client Outlook is also targeted by the infostealer. It looks for registry paths to identify default
Outlook profiles:

HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging
Subsystem\Profiles\Outlook\9375CFF0413111d3B88A00104B2A6676\

HKEY_CURRENT_USER\Software\Microsoft\Office\13.0\Outlook\Profiles\Outlook\9375CFF0413111d3B88A00104B2A
6676\

HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Outlook\Profiles\Outlook\9375CFF0413111d3B88A00104B2A
6676\

HKEY_CURRENT_USER\Software\Microsoft\Office\15.0\Outlook\Profiles\Outlook\9375CFF0413111d3B88A00104B2A
6676\

HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Outlook\Profiles\Outlook\9375CFF0413111d3B88A00104B2A
6676\

HKEY_CURRENT_USER\Software\Microsoft\Windows Messaging
Subsystem\Profiles\9375CFF0413111d3B88A00104B2A6676\

Under the 9375CFF0413111d3B88A00104B2A6676 key in the registry path, it searches for the subkeys 00000001,
00000002, 00000003, 00000004. The stealer enumerates through these registry paths and if it confirms that
Outlook is installed, it targets the password of the victim’s account and attempts to decrypt it with the

26/28

CryptUnprotectData function. After the extraction and decryption of the information, it saves the data into a text
file: soft\Outlook\accounts.txt.

Steam

First of all, the stealer checks whether it can open the registry key at
HKEY_CURRENT_USER\Software\Valve\Steam. If it can be opened that means the Steam application is available
on the victim’s computer and Stealc retrieves the Steam installation path from the SteamPath registry value. It
also goes into the \config\ folder and extracts VDF (Valve Data Format) files such as config.vdf,
DialogConfig.vdf, DialogConfigOverlay*.vdf, libraryfolders.vdf, loginusers.vdf and ssfn* as well.
Finally, exfiltrated data is written in the \soft\Steam folder.

Discord

In case of Discord, it looks for the \Local Storage\leveldb and the \Local Storage\leveldb\CURRENT
directories and targets Discord tokens. The tokens are encrypted and every one of them starts with this hard-
coded string: dQw4w9WgXcQ. The actual token is after that and the stealer uses the following functions to decrypt:
CryptStringToBinaryA (from base64), CryptUnprotectData (DPAPI) and BCryptDecrypt (AES with GCM
mode). After the decryption is done, it saves the stolen information in the \soft\Discord\tokens.txt file.

Telegram

Under the Telegram Desktop folder, the stealer searches for different subdirectory values like key_datas,
D877F783D5D3EF8C*, map*, A7FDF864FBC10B77*, A92DAA6EA6F891F2*, F8806DD0C461824F*. The data stolen from
the app is then placed in the \soft\Telegram folder.

Tox

Tox application’s configuration files are also aimed at by the stealer. First, it looks for the \Tox directory and
inside that the *.tox and *.ini files.

Pidgin

Pidgin messaging application is also aimed at by the stealer. It looks for the configuration directory of the app
which is %APPDATA%\.purple. If it is located, inside the directory the stealer specifically seeks for the
accounts.xml file in order to gain Information about the victim’s account and credentials.

Victim’s Machine Information

Stealc also collects network information and a summary of the system, as well as user agents, installed apps,
users, current user and process list. The network information consists of the victim’s IP address and their
country’s ISO code. The stolen information is saved in the system_info.txt in the following manner:

Network Info:
\t- IP: IP?
\t- Country: ISO?
\n\n
System Summary:
\t- HWID:
\t- OS:
\t- Architecture:
\t- UserName:
\t- Computer Name:
\t- Local Time:
\t- UTC:
\t- Language:

27/28

\t- Keyboards:
\t- Laptop:
\t- Running Path:
\t- CPU:
\t- Threads:
\t- Cores:
\t- RAM:
\t- Display
Resolution:
\t- GPU:
User Agents:
Installed Apps:
All Users:
Current User:
Process List:

The malware opens 3 registry paths with the functions RegOpenKeyExA and RegQueryValueExA in order to gain
information about the victim’s machine:

28/28

1. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion gives us the information about
the version and edition of the Windows NT operating system. The given ProductName value within the
RegQueryValueExA carries the name or edition of the Windows NT operating system.

2. HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System\CentralProcessor\0 registry path contains
information about the CPU. The ProcessorNameString value within the RegQueryValueExA returns the
name or description of the CPU installed on the computer.

3. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall path stores information
about all of the installed software and lists them on the infected machine. The RegQueryValueExA function
has the value DisplayName which retrieves the name of the programs.

It also takes a screenshot of the desktop with the help of gdiplus.dll and saves it as screenshot.jpg.

C2 Communication

Stealc sends multiple HTTP POST requests back to the hxxp://185.106.94[.]206/4e815d9f1ec482dd.php C2
server that gives a response. Here are the 4 most important requests:

1. browsers —> web browser data
2. plugins —> browser extensions
3. wallets —> desktop cryptocurrency wallets
4. files —> file grabber

The 7 DLLs are also dropped from the C2 to the host as already mentioned. The malware then gets the
information related to the 4 requests and sends them back to the C2. The data from applications like Outlook,
Steam, Discord, Tox, Pidgin as well as the network and system information and the screenshot of the desktop
are also exfiltrated. Every configuration and all the gathered information are encoded in base64 during the HTTP
communication.

Removing Itself From The Victim’s Machine

After the infostealer finished its job by stealing the targeted information, it attempts to remove itself and the 7
imported third-party DLLs from the victim’s machine with the command below:

"C:\Windows\system32\cmd.exe" /c timeout /t 5 & del /f /q "Malware_Path" & del
"C:\ProgramData*.dll" & exit

IOCs

IOCs Description

e978871a3a76c83f94e589fd22a91c7c1a58175ca5d2110b95d71b7805b25b8d Stealc Sample

hxxp://185.106.94[.]206/4e815d9f1ec482dd.php C2 Server

References

