
1/10

October 3, 2023

Rhadamanthys malware analysis: How infostealers use
VMs to avoid analysis

outpost24.com/blog/rhadamanthys-malware-analysis/

Research & Threat Intel 03 Oct 2023
Written By David Catalan Senior Malware Reverse Engineer

The infostealer malware Rhadamanthys was discovered in the last quarter of 2022. Its
capabilities showed a special interest in crypto currency wallets, targeting both wallet clients
installed in the victim’s machine and browser extensions. The main distribution methods
observed for this threat are fake software websites promoted through Google Ads, and
phishing emails, without discriminating by region or vertical.

While its information stealing capabilities and distribution mechanisms have been seen
before, it is its downloader component that truly stands out. By mixing advanced anti-
analysis techniques coupled with heavy obfuscation, it makes analysis by traditional security
methods incredibly difficult.

The Rhadamanthys downloader is mainly coded in C++ and features a staged execution that
makes use of a variety of anti-analysis techniques:

Virtual machine (VM) obfuscator.
Heavy VM and sandbox detection capabilities. Both custom and imported from the
open-source tool al-khaser.
Embedded file system that employs custom file formats.

Rhadamanthys’ anti-analysis features haven’t gone unnoticed. Zscaler investigators found
that the VM obfuscator used is the Quake 3 VM. Furthermore, the analysts related those
custom file formats to the ones used by the crypto miner Hidden Bee. Recently, CheckPoint
published an in-depth analysis of the inner workings of the virtual filesystem.

In this post we take a look at what Rhadamanthys developers are using the Quake VM for,
which modifications have been made to it, and how the virtualized code has evolved through
the different versions of the malware. We have also published IDA Pro modules for
disassembling standard and Rhadamanthys’ QVM binaries which you can find in our public
GitHub repository.

Devirtualizing Quake VM

https://outpost24.com/blog/rhadamanthys-malware-analysis/
https://outpost24.com/blog/category/research-and-threat-intel/
https://github.com/LordNoteworthy/al-khaser
https://www.zscaler.com/blogs/security-research/technical-analysis-rhadamanthys-obfuscation-techniques
https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/
https://github.com/labs-blueliv/q3vm-ida-modules

2/10

As a very brief introduction to the concept, VM obfuscators aim to hide code by implementing
a custom processor, with its own set of instructions and an interpreter that translates custom
instructions into native code. There is plenty of documentation on the fundamentals and
components of this obfuscation mechanism, such as this article by Tim Blazytko.

To study the Rhadamanthys downloader it is necessary to analyze the Quake 3 VM.
Fortunately, there is great documentation on its inners and an open-source version was
published on GitHub.

This kind of open-source project can be attractive for malware developers willing to use VM
obfuscators as they provide widely tested components. The task of implementing a custom
virtual processor is not trivial and can lead to bugs of all sorts and/or a considerable loss of
performance if the developer lacks experience and solid knowledge on the matter.

After locating the Q3VM interpreter within Rhadamanthys’ first stage and extracting the
embedded code it processes, we decided to make a disassembler to take a look at its
features.

https://synthesis.to/2021/10/21/vm_based_obfuscation.html
https://github.com/jnz/q3vm

3/10

Default Q3VM interpreter loop found in early 2023 versions of the malware.

Early versions of Rhadamanthys loader

Within the malware samples distributed during the first months of 2023 it is possible to spot
the Q3VM interpreter loop as it is implemented in the original Github repository. The main
changes the malware developers made to the VM are found on the syscalls. Within the
Q3VM project, and for the rest of this article, the term syscall is used to refer to functions
implemented in native code, that are available to the virtualized code and allow it to interact
with the native ecosystem, for example, calling functions from Windows dlls or transferring
memory from the VM space to the native program.

4/10

Inners of QVM CALL instruction.
These calls can be spotted within QVM files by searching for CALL instructions with a
negative argument. Originally, the syscalls of the Q3VM project are 4, and they allow to call
the functions printf, fprintf, memset and memcpy from the virtualized code.

However, this version of the malware contains a total of 12 syscalls that replace the original
ones. Apart from providing access to the memset and memcpy functions, the modified
syscalls allow the virtualized code to interact with key components of the native program,
enabling to read the memory space of kernel32.dll and resolving its exports, as well as
providing some utilities to decode and transfer strings from the embedded QVM file to the
main program.

Syscall that allows the virtualized code to call kernel32.GetProcAddress.

5/10

VM to native program string transferring syscall.
Once reviewed the basic features of the Quake VM we can now discuss the inners of
Rhadamanthys’ obfuscated code. For this version of the malware the code has 4 different
paths that will be picked depending on the first argument received by the VM:

0: Decode shellcode received as an argument.
1: Resolve VirtualProtect.
2: Use VirtualProtect to set execution permissions to shellcode.
3: Transfer and decode to the main program the strings ‘Avast’ and ‘snxhk.
Rhadamanthys’ loader will check for the presence of Avast AV before executing its next
stage.

VirtualProtect ROR13 withing the QVM file.

6/10

Initializing ‘kernel32.dll’ string in QVM’s assembly.

Rhadamanthys 4.5 and above

With the introduction of version 4.5 and the posterior versions, the VM component of the
loader has received substantial changes. The logic of the virtualized code has been
reworked, and thus syscalls have been modified.

On the native side, the number of syscalls has been reduced although their main
functionality is still the same. Providing means to access the memory space of loaded
modules and transferring data between the virtual and the native environments.

7/10

4.8 version syscall that retrieves the address of a module by its name and stores it in a
collection.

QVM assembly from version calling syscall –3.

The interpreter of the VM has also been updated, the opcodes of the instructions have been
modified in an aim to prevent the identification of the VM and its disassembly. Within the
embedded QVM file it is possible to observe a new logic. The new operations, depending on
the argument passed from the native program are:

0: Resolve an export of ntdll. Hashes are no longer hardcoded within the QVM file but
passed as an argument. The ROR13 encoding prevails.

8/10

1: Not implemented.
2: Resolve kernel32 function.
3: Decrypt stage 2 using an algorithm of the TEA family,

TEA algorithm constant.

New module heur.bin

Apart from rebuilding the VM components of the stage 1, Rhadamanthys developers have
recently added a new module with anti-VM capabilities that will execute before al-khaser‘s
checks during the execution of the decrypted shellcode.

Internally the module contains 3 methods to detect virtualized environments, all of them
involving the cpuid instruction.

The first check compares the time the victim machine takes to execute the cpuid instruction
against the performance of the fyl2xp1 instruction. Due to how VMs need to handle the
execution of the cpuid instruction, it takes longer to execute it in such environments than it
would take in a bare metal machine. For a more in-depth explanation of this behavior, you
can check the talk My Ticks Don’t Lie New Timing Attacks for Hypervisor Detection by
Daniele Cono.

https://www.youtube.com/watch?v=axKl0lWYJSA

9/10

heur.bin detecting

VMs by measuring cpuid’s performance.
The other 2 checks are very similar and use the cpuid instruction with the parameter
0x40000000, which should return no results on physical machines. Then compares it with
the result of calling cpuid with an invalid input. If either of the results are not 0, heur.bin
assumes it is being executed in a VM.

The implementation described serves two purposes, not only detecting the presence of a
hypervisor but also possible manipulations done to the output of cpuid in an attempt to
harden analysis tools against these detection techniques.

Detecting cpuid tampering and

virtualization.

Disassembling standard and Rhadamanthys’ Quake VM binaries

Although Rhadamanthys’ activity has fallen since it reached its peak at the beginning of the
year, it is still receiving significant updates. The constant addition of new anti-analysis
features and the upgrading of the existing ones, as well as their complexity, shows the
maturity of the threat actor behind its development.

10/10

However, often obfuscation is a double-edged sword, as very specific protections can lead to
very accurate detection means, thus the importance of thorough analysis. To ease the task,
you can find the source code of the QVM processor and loader modules for IDA Pro in our
GitHub repository.

IOCs

0843a128cf164e945e6b99bda50a7bdb2a57b82b65965190f8d3620d4a8cfa2c
e915dccc9e65da534932476e8cec4b7e5446dbd022f242e9302ac18d2a041df5
9950788284df125c7359aeb91435ed24d59359fac6a74ed73774ca31561cc7ae
dd4bb5e843a65e4e5a38032d12f19984daad051389853179bd8fdb673db82daf
4b350ae0b85aa7f7818e37e3f02397cd3667af8d62eb3132fb3297bd96a0abe2

https://github.com/labs-blueliv/q3vm-ida-modules

