
1/13

.NET Assembly Obfuscation for Memory Scanner
Evasion

r-tec.net/r-tec-blog-net-assembly-obfuscation-for-memory-scanner-evasion.html

INCIDENT RESPONSE SERVICE

Garantierte Reaktionszeiten.
 Umfassende Vorbereitung.

Mit unserem Incident Response Service stellen wir sicher, dass Ihrem Unternehmen im
Ernstfall die richtigen Ressourcen und Kompetenzen zur Verfügung stehen. Sie zahlen eine
feste monatliche Pauschale und wir bieten Ihnen dafür einen Bereitschaftsdienst mit
garantierten Annahme- und Reaktionszeiten. Durch einen im Vorfeld von uns erarbeiteten
Maßnahmenplan sparen Sie im Ernstfall wertvolle Zeit.

weiterlesen

© Arif Wahid 266541 - Unsplash
October 2023 Author: Sven Rath, @eversinc33

Leveraging .NET based tooling, by reflectively loading assemblies into memory, is a common
post-exploitation TTP used by threat actors as well as red teams for many years already. The
use of .NET is attractive for multiple reasons. First of all the .NET framework comes pre-
installed with all recent versions of the Windows operating system, which allows for high
portability and compatibility. In addition, .NET, especially C#, offers an easy development
experience, with many libraries for common protocols and software, which allows for quick
prototyping and PoCs. Hence, many of the most valuable tools for offensive operations, such
as SharpHound, Certify or Rubeus, are written in or have been ported to C#.

At the latest with the release of Cobalt Strike 3.11 in 2018, which introduced the execute-
assembly command to the framework, .NET based tradecraft became a stable in every red
teamer's arsenal. However, defenders caught up with this trend in recent years, employing
several techniques to detect in-memory .NET assembly execution.

This blog post will give a short overview of how in-memory .NET assembly execution
commonly works and what detection mechanisms exist. One of the techniques that we at r-
tec employ to evade these detections is obfuscation. The final part of this post will then
showcase how we automate this approach through CI/CD / DevOps techniques in our
internal obfuscation pipeline.

1. How Does Reflective Loading of .NET Assemblies Work?

https://www.r-tec.net/r-tec-blog-net-assembly-obfuscation-for-memory-scanner-evasion.html
https://www.r-tec.net/incident-response-service.html
https://twitter.com/eversinc33
https://attack.mitre.org/techniques/T1620//
https://github.com/BloodHoundAD/SharpHound
https://github.com/GhostPack/Certify
https://github.com/GhostPack/Rubeus
https://www.cobaltstrike.com/blog/cobalt-strike-3-11-the-snake-that-eats-its-tail

2/13

Almost all modern C2 frameworks support some sort of command to execute .NET
assemblies in memory, such as cobalt strikes execute-assembly. While of course, the
implementation, behavior, and IoCs differ from implementation to implementation, all public
implementations - at least we know of - rely on calling the .NET API for code reflection
through the Common Language Runtime (CLR).

This API enables us to dynamically create instances of types at runtime, invoke their
methods, and access their members. Additionally, the common language runtime loader
manages application domains for us and ensures proper loading of dependencies.

In C#, reflectively loading an assembly (to the host process) is as easy as 3 lines of code,
using Assembly.Load to load an assembly from a byte array:

Assembly assembly = Assembly.Load(assemblyBytes);
 MethodInfo entryPoint = assembly.EntryPoint;

 entryPoint.Invoke(null, new object[] { new string[] { "arg1", "arg2" } });

Similar code can be achieved with C++, although slightly more complicated since the CLR
has to be loaded first. In the end, all of these techniques end up calling the native
nLoadImage from System.Reflection.Assembly, which leads us to the different detection
opportunities.

2. Detections

Just as in PowerShell tradecraft, AMSI is also an obstacle when using in-memory .NET
execution, as since .NET framework 4.8, all assemblies loaded from byte arrays are passed
to AmsiScanBuffer. While on the one hand, this means that payloads will be scanned for
malware signatures, this also means that this obstacle is easy to overcome - patching AMSI,
with byte patches or patchless, e.g., via hardware breakpoints, is easy and has been written
about countless times.

Besides AMSI, the second obstacle that sends a lot of telemetry that can help defenders
spot malicious activity in .NET runtimes is Event Tracing for Windows (ETW). Essentially,
ETW is a provider-subscriber technology integrated into Windows, which allows applications
to log events and other applications to consume them.

For the use-case of detecting Assembly.Load events, the following two providers are of the
most interest. Here, DotNETRuntime provides live events of the .NET runtime and the
DotNETRuntimeRundown provider lists information about assemblies already loaded into a
process, when ETW tracing is enabled:

Microsoft-Windows-DotNETRuntime {E13C0D23-CCBC-4E12-931B-D9CC2EEE27E4}
 Microsoft-Windows-DotNETRuntimeRundown {A669021C-C450-4609-A035-5AF59AF4DF18}

https://learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
https://gist.github.com/xpn/e95a62c6afcf06ede52568fcd8187cc2
https://github.com/microsoft/referencesource/blob/master/mscorlib/system/reflection/assembly.cs#L408
https://docs.microsoft.com/en-us/windows/desktop/api/amsi/nf-amsi-amsiscanbuffer
https://github.com/Mr-Un1k0d3r/AMSI-ETW-Patch
https://ethicalchaos.dev/2022/04/17/in-process-patchless-amsi-bypass/
https://learn.microsoft.com/en-us/dotnet/framework/performance/clr-etw-providers

3/13

We can investigate the information these providers give using Process Hacker. If we
reflectively load an assembly into any process using Assembly.Load, e.g., through
PowerShells access to the .NET framework and PowerSharpPack, we see the assembly
show up in the default AppDomain, with the name of our Post-Exploitation tool showing up in
clear text - a really low hanging fruit for defenders to pick.

Figure 1: Reflectively loading Certify in powershell.exe

Figure 2: .NET assembly view in Process Hacker
However, since these ETW providers reside in userland, we can simply patch one of the
functions like NtTraceEvent from ntdll.dll, similar to how we are used to patching AMSI,
using one of the many known & public techniques and tools.

This way we stop the processes from further sending ETW telemetry data. While blinding the
consumers and thus evading any ETW-based detections, we now have the IoC of a dead
ETW stream - as such, patching should ideally be done in a less invasive manner, e.g. by
only filtering specific events or feeding false information instead. Only disabling ETW for a
small amount of time is not feasible, as the .NET assembly will then show up again after
restoring the patched bytes.

https://processhacker.sourceforge.io/
https://github.com/eversinc33/PowerSharpPack/blob/master/PowerSharpBinaries/Invoke-Certify.ps1
https://github.com/Mr-Un1k0d3r/AMSI-ETW-Patch

4/13

Figure 3: Process Hacker view after patching ETW
However, our assembly's MZ and PE headers can still be found when analyzing the memory
of the process, as well as the whole assembly itself. So even if AMSI and ETW are
bypassed, an EDR could still run a memory scan on our process, if it behaves suspiciously
and detect the loaded assembly, e.g. with YARA rules matching known post-exploitation
tool's signatures or with TypeRef Hash matching.

Figure 4: PE image in memory
As an astute reader might have noticed when using the plain Assembly.Load function, a
memory page with RW protection is used to store the assembly. This is because the image
contains just the intermediate language (IL) code, which will be translated by the Just-In-
Time compiler (JIT) and written into a memory page with execute protection when needed.
This JIT compilation can also be leveraged by defenders for further insight via ETW, e.g. to
monitor which functions are executed by monitoring their compilation (see https://blog.f-
secure.com/detecting-malicious-use-of-net-part-2/ for a more detailed description).

https://www.gdatasoftware.com/blog/2020/06/36164-introducing-the-typerefhash-trh
https://blog.f-secure.com/detecting-malicious-use-of-net-part-2/

5/13

While the PE and MZ headers can be stomped, the assembly itself cannot, at least not as
long as it is running.

Of course, there are other opportunities to detect malicious .NET assembly execution, be it
by hooking into Assembly.Load or its native counterpart, or by monitoring general behavior
(the loading of the CLR in uncommon processes, monitoring Windows APIs, monitoring
network traffic, ...), where the latter is the hardest to bypass. The pyramid of pain model
applies here as well: while some detections are easy to bypass, it gets harder the more
abstract these detections become.

Discussing all of these detection opportunities and bypass techniques for each is out of the
scope of this article. We however found that automated obfuscation of the assemblies
themselves is an effective and efficient measure against many memory scanning and AMSI-
or ETW-based detections. So (for now) proper obfuscation alone is sufficient to evade
detections in our customer's environments.

3. Obfuscation & .NET

While .NET has some of the benefits that were already mentioned in the introduction, such
as the ease of development and portability, there are also some OPSEC drawbacks that
originate from these capabilities. To understand this, it is vital to understand what constitutes
a managed framework such as .NET and where these capabilities come from.

.NET compiles source code into an intermediate language (IL) before generating machine
code. This IL is an abstract representation of the program, which gets Just-in-Time compiled
to the target architecture by the Common-Language-Runtime. This is similar to how Java
and the Java Virtual Machine (JVM) relate.

On the one hand, this has benefits for us as operators, since we can more easily transform
this abstract language to obfuscate a binary, even without having access to the source code.
On the other hand, this makes a reverse engineer’s life much easier, since class names,
method names, and other metadata are baked into the assembly. Also, decompilation is
super easy and leads to recovering of the source code for full analysis. In contrast, a
disassembled stripped C-based binary will not be that easy to analyze.

This can be illustrated by opening a compiled version of Rubeus in the ilSpy decompiler and
comparing it to the actual source code:

http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://github.com/icsharpcode/ILSpy

6/13

Figure 5: Decompiled Asreproast class

7/13

Figure 6: Actual source code of the Asreproast class
As can be seen, the decompiled source almost matches the actual source. With identifier
names in clear text, this also gives defenders a much more straightforward way of writing
detection rules for .NET-based tools. A simple search for specific method- or class-names
can give a high certainty for a true positive - unless you happen to find a legitimate tool with
an Asreproast class. This means, that an obfuscator, for our use case, should at least
rename all identifiers with random or pseudo-random names.

But besides the identifiers, there is more that can and should be obfuscated. If we take a
look at the metadata, some obvious IoCs jump out:

8/13

Figure 7: Metadata of Rubeus.exe
These assembly metadata entries come from the AssemblyInfo.cs file corresponding to the
project. Some here are very obvious, such as the AssemblyTitle and AssemblyProduct,
simply stating Rubeus and giving away what this program contains, even if all identifiers
were obfuscated. Another important one to change is the Guid attribute, which is the COM
GUID if the project is exposed to COM, which, as a unique identifier, is perfect for defenders
to look for.

A good obfuscator takes care of rewriting all of these attributes, such as Accenture's
Codecepticon. If we let Codecepticon obfuscate Rubeus, all attributes are rewritten to
random, empty or supposedly trustworthy attributes:

Figure 8: Obfuscated metadata
Besides metadata, namespaces and identifiers, strings are another great opportunity for
defenders to write detection rules - as with most programming languages, strings are stored
in clear text in the binary. Here we can advise you to check how your obfuscator of choice
encrypts/obfuscates strings. Some tools simply base64 encode strings, which is not sufficient
from our opinion, since these strings can then be easily decoded and are predictable (e.g.
Rubeus in UTF-8 always encodes to UnViZXVz). Others take more sophisticated approaches,

https://github.com/Accenture/Codecepticon

9/13

such as actual encryption. Daisy-chaining obfuscators can be of help here, e.g. use one
obfuscator for namespace and identifier renaming, another just for string encryption, and so
on.

We did not find any obfuscators yet, that also tamper with the TypeRef Hash. The TypeRef
Hash can be compared to an Imphash, which can be used to identify similar PEs by hashing
their imports. Since a .NET PE usually only imports mscoree.dll, the regular Imphash is of
no use. The TypeRef Hash instead is generated based on the imported .NET
TypeNamespaces and TypeNames (e.g. System.Reflection was used with the TypeName
AssemblyTitleAttribute). An obfuscator could alter this hash, e.g. by arbitrarily adding
imports, but we also did not seem to face any endpoint detections based on TypeRef Hashes
yet.

While for obvious reasons, we will not give away the exact chain of obfuscators we use in
our pipeline, there are many obfuscators available as both free and paid versions, which all
excel in different features, such as:

Another non-exhaustive list of obfuscators can be found in the README of the following
repository: https://github.com/NotPrab/.NET-Obfuscator

There is another consideration to keep in mind when choosing your obfuscator or obfuscator
chain. Just like packers and unpackers, some obfuscators can be automatically de-
obfuscated with tools such as de4dot - which makes the blue team's work easier. Those
obfuscators should be avoided.

Now we have an idea of what and how to obfuscate our .NET assemblies. However, doing
this manually for every single assembly we want to execute in our engagements is tedious
and error-prone - which leads us to automation and lets us dive into a tiny bit of DevOps.

4. The Obfuscation Pipeline

For the automation, different approaches are possible. Since .NET can be cross-compiled,
our pipeline could run under all the classic CI/CD Pipelines based on Linux docker
containers, such as GitLab CI/CD, GitHub Actions, or others. However, from our experience,
working "natively" from Windows is much more straightforward in the case of .NET, and
many of the obfuscation tools are Windows-based too.

If you have been doing CTFs such as HackTheBox or have been playing around in your lab
with C2 Frameworks and .NET offensive tooling, you are probably aware of @Flangvik's
work with SharpCollection. SharpCollection is a repository with recent builds of common
.NET post-exploitation tools, which is automatically updated by a CI/CD Pipeline running via
a free tier of Microsoft Azure DevOps.

https://www.gdatasoftware.com/blog/2020/06/36164-introducing-the-typerefhash-trh
https://github.com/NotPrab/.NET-Obfuscator
https://github.com/de4dot/de4dot
https://twitter.com/Flangvik
https://github.com/Flangvik/SharpCollection
https://azure.microsoft.com/en-us/products/devops

10/13

Fortunately, Flangvik also did a great video showcasing how the SharpCollection pipeline
works and how to implement it. Thus, we took this idea as a base to implement our own C#
obfuscation pipeline.

While the process of setting up the pipeline is out of the scope of this article, the process can
be summarized as follows:

Set up an Azure DevOps Project
Set up a VM/Host as an Azure Agent (the machine that will do the compilation and
obfuscation work)
Create a Pipeline for each .NET assembly's GitHub repository

For our pipeline, we decided that each day, early in the morning, Azure should run the
obfuscation pipeline for every repository in our list.

Figure 9: Pipeline trigger
Our pipeline template then runs the following steps for each project:

Rename the project (since our obfuscator of choice does not do this)
Install dependencies with NuGet
Run our source code obfuscator
Build the project
Run another string-obfuscation tool (on the binary)
Move the output files to our output directory
Push the new binaries to our internal git repository

https://www.youtube.com/watch?v=BbXRfMNjwg0&ab_channel=Flangvik

11/13

Figure 10: Obfuscation pipeline steps
This way, we always have the newest versions of all our .NET tooling available, nicely
organized in a GitLab repository, freshly obfuscated and ready to use with our C2 agents:

12/13

Figure 11: GitLab repository with obfuscated assemblies
If the obfuscation was done properly, you may not even need to bypass AMSI or ETW at all
for C2 in-memory execution, because most likely, all signature based IoC’s are not visible
anymore.

Lastly some operational security considerations need to be addressed: If you are
compiling code from public GitHub repositories on your Azure Pipeline Host, a backdoor in
one of these can lead to a compromise of the Host. To avoid this, local copies of the
repositories are recommended to be used, where only reviewed code is pushed for updates
in the tools. If you’re not using local copies, the Azure Pipeline Host should definitely be
hardened, according to your organization’s best practices, and isolated from your company
network. Security companies and security professionals are lucrative targets for threat
actors, since these companies usually deal with very sensitive data. r-tec has also observed
threat actors targeting offensive security people with the goal of stealing internal tools and
other intellectual property. Finally, as with any public code or tool, to avoid running tools with
backdoors, a thorough source code review is necessary before executing any payload in a
customer’s environment.

5. Summary

https://www.r-tec.net/r-tec-blog-when-hackers-hack-the-hackers.html

13/13

Running .NET assemblies from memory, through the .NET reflection API, is one of the most
common TTPs for code execution, used by red teamers and threat actors alike. While both
ETW and AMSI can be used for detections, bypassing these measures through patching or
via hardware breakpoints can be done without much effort - which is already automated in
many C2 frameworks. However, memory scanning is a detection that is harder to bypass or
avoid. Therefore we additionally obfuscate our assemblies, change metadata, encrypt
strings, and rename identifiers, to avoid detections based on signatures. Using DevOps /
CI/CD, this approach can be automated at scale for a whole post-exploitation arsenal,
producing assemblies that are different every day. While this is from our view sufficiently
stealthy currently, with other detection opportunities, as discussed in this article, additional
measures might be necessary in the future.

