
1/19

A Deep Dive into Brute Ratel C4 payloads – Part 2
cybergeeks.tech/a-deep-dive-into-brute-ratel-c4-payloads-part-2/

Summary

Brute Ratel C4 is a Red Team & Adversary Simulation software that can be considered an
alternative to Cobalt Strike. In this blog post, we’re presenting a technical analysis of a Brute
Ratel badger/agent that doesn’t implement all the recent features of the framework. There
aren’t a lot of Brute Ratel samples available in the wild. This second part of the analysis
presents the remaining commands executed by the agent. The commands include: user
impersonation, inject shellcode into processes, create and stop processes, extract
information about the processes and services, create TCP listeners, block keyboard and
mouse input events, extract Windows registry keys and values, and others. You can consult
the first part of the analysis here.

Technical analysis

SHA256: d71dc7ba8523947e08c6eec43a726fe75aed248dfd3a7c4f6537224e9ed05f6f

We continue to describe the commands that can be used by the Brute Ratel agent.

0x0703 ID – Stop the current process

The malware stops the current process by calling the ExitProcess API:

Figure 1
0x6BAE/0x6F39 ID – User impersonation

The binary retrieves a pseudo handle for the current process using GetCurrentProcess:

Figure 2
OpenProcessToken is utilized to open the access token associated with the process (0x28 =
TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY):

Figure 3
The process extracts the locally unique identifier (LUID) for the “SeDebugPrivilege” privilege
(Figure 4).

https://cybergeeks.tech/a-deep-dive-into-brute-ratel-c4-payloads-part-2/
https://bruteratel.com/
https://cybergeeks.tech/a-deep-dive-into-brute-ratel-c4-payloads/


2/19

Figure 4
The executable enables the above privilege via a function call to AdjustTokenPrivileges:

Figure 5
The running processes are enumerated using the Process32FirstW and Process32NextW
functions:

Figure 6

Figure 7
The agent is looking for the “LogonUI.exe”, “winlogon.exe”, and “lsass.exe” processes:

Figure 8
It opens the first process found using the OpenProcess method (0x400 =
PROCESS_QUERY_INFORMATION):

Figure 9
ImpersonateLoggedOnUser is used to impersonate the security content of the user extracted
from the process identified above:

Figure 10
In order to confirm that the operation was successful, the malware calls the GetUserNameW
API (see Figure 11).

Figure 11
The message displayed in Figure 12 will be sent to the C2 server:



3/19

Figure 12
On another branch, the binary calls the DuplicateTokenEx method in order to duplicate the
access token extracted from “winlogon.exe” or “lsass.exe”. Finally, a new process is created
using CreateProcessWithTokenW.

0xA86A ID – Inject code into a remote process

The malicious executable converts the process ID passed as a parameter using atoi:

Figure 13
The shellcode to be executed is Base64-decoded by calling the CryptStringToBinaryA API
(0x1 = CRYPT_STRING_BASE64):

Figure 14
The badger opens the target process using OpenProcess (0x1F0FFF =
PROCESS_ALL_ACCESS):

Figure 15
VirtualAllocEx is utilized to allocate a new memory area in the remote process (0x3000 =
MEM_COMMIT | MEM_RESERVE, 0x4 = PAGE_READWRITE):

Figure 16
The malware writes the shellcode to the above area via a function call to
WriteProcessMemory, as shown in Figure 17.

Figure 17
The page’s protection is changed using the VirtualProtectEx API (0x20 =
PAGE_EXECUTE_READ):



4/19

Figure 18
Finally, the binary creates a thread in the remote process that executes the shellcode:

Figure 19
0xE9B0 ID – Create a process and read its output via a pipe

The agent creates an anonymous pipe using the CreatePipe method:

Figure 20
The pipe is set to be inherited via a call to SetHandleInformation (0x1 =
HANDLE_FLAG_INHERIT):

Figure 21
The malicious executable creates a process specified by the C2 server using the
CreateProcessA API, as shown in the figure below.

Figure 22
The process’ output that resides in the anonymous pipe is copied into a buffer by calling
PeekNamedPipe (Figure 23).

Figure 23



5/19

The output is read using ReadFile and then transmitted to the C2 server:

Figure 24
0x91B3 ID – Inject code into the current process

The CryptStringToBinaryA method is utilized to decode from Base64 the shellcode that will
be executed:

Figure 25
The agent creates a named pipe (0x80000003 = FILE_FLAG_WRITE_THROUGH |
PIPE_ACCESS_DUPLEX):

Figure 26
A new thread is created using the CreateThread function. In this thread, the malware
connects to the pipe and reads data using the ConnectNamedPipe and ReadFile methods:

Figure 27

Figure 28
VirtualAllocEx is used to allocate a new memory area in the current process:

Figure 29
The shellcode is copied into the new area and its page is made executable, as highlighted
below:



6/19

Figure 30
A new thread runs the shellcode copied earlier:

Figure 31
0x1719 ID – Enable SeDebugPrivilege

The malicious process calls the LookupPrivilegeValueA function with the “SeDebugPrivilege”
parameter:

Figure 32
The PrivilegeCheck API is utilized to determine if the above privilege is enabled in the
access token:

Figure 33
The message displayed in Figure 34 will be sent to the C2 server as a confirmation.

Figure 34
0x4FFE ID – Extract the status of the token’s privileges

The badger obtains the TOKEN_PRIVILEGES structure that contains the privileges of the
token using GetTokenInformation (see Figure 35).

Figure 35
It retrieves the name of the privileges represented by a locally unique identifier (LUID) via a
function call to LookupPrivilegeNameW:



7/19

Figure 36
The list of privileges and their status is written in the memory. The following statuses can be
specified: “[+] %-50ls Enabled (Default)”, “[+] %-50ls Enabled (Adjusted)”, “[+]
%-50lsDisabled\n”, “[+] Elevated”, or “[+] Restricted”.

Figure 37

0x9DE0 ID – Extract Username, PPID, PID, and Executable path for every running process

The binary obtains a snapshot of all processes in the system using
CreateToolhelp32Snapshot. It enumerates them using the Process32FirstW and
Process32NextW methods:

Figure 38

Figure 39
The agent tries to open the local process object using OpenProcess (0x410 =
PROCESS_QUERY_INFORMATION | PROCESS_VM_READ):

Figure 40
For each of the access token extracted from the processes, the executable calls the
GetTokenInformation function and retrieves the user account of the token (Figure 41).

Figure 41
The malware extracts the name of the account for the security identifier (SID) and the first
domain on which the SID is found:



8/19

Figure 42
0xEBC0 ID – Kill processes

The target process is opened via a function call to OpenProcess (0x1 =
PROCESS_TERMINATE):

Figure 43
The process is killed using the TerminateProcess API:

Figure 44
0xF584 ID – Create a new process using the Domain, Username, and Password received
from the C2 server

The binary spawns a new process using the CreateProcessWithLogonW method. The
parameters are modified according to the command’s arguments:

Figure 45
0xBED0 ID – Execute the “open”, “runas”, or “print” command

The first parameter is compared with the above commands, as shown in Figure 46.

Figure 46

We could use the runas command to spawn a cmd.exe process:



9/19

Figure 47
GetProcessId is utilized to obtain the PID of the newly created process:

Figure 48
0xE2EA ID – Copy bytes into memory

The second parameter is Base64-decoded by calling the CryptStringToBinaryA API:

Figure 49
The address containing the resulting bytes is stored in a table that contains functions
pointers (see Figure 50).

Figure 50

Depending on the number of bytes, the malware will send the “[+] Imported %d bytes”
message to the C2 server:

Figure 51
0x6154 ID – Free the pointer storing the address of the imported bytes

The agent calls the free function with the pointer displayed in the above command. The
message shown below is transmitted to the C2 server.



10/19

Figure 52

0x699A ID – Create a TCP listener

The process creates a new thread that is responsible for the listener creation:

Figure 53
It calls the getaddrinfo method with the port number and the first parameter being NULL,
which returns all registered addresses on the local machine:

Figure 54
The badger creates a TCP socket (0x2 = AF_INET, 0x1 = SOCK_STREAM, 0x6 =
IPPROTO_TCP):

Figure 55
The bind function is used to associate the local address with the socket, as highlighted
below:

Figure 56
The malware starts listening on the port specified in the command’s arguments (in our case,
8888):

Figure 57
Finally, the accept method is utilized to allow incoming connection attempts (Figure 58).



11/19

Figure 58
The IP address from the connection is converted into an ASCII string in dotted-decimal
format:

Figure 59
A new thread that handles the receive operation is created:

Figure 60

Figure 61
0xB458 ID – Extract information about Windows services

The binary opens the service control manager on the local machine using
OpenSCManagerA (0x4 = SERVICE_QUERY_STATUS):

Figure 62
EnumServicesStatusW is used to enumerate all services in the database (0x30 =
SERVICE_WIN32, 0x3 = SERVICE_STATE_ALL):

Figure 63
For every service, the malware calls the OpenServiceW API (0x1 =
SERVICE_QUERY_CONFIG):

Figure 64



12/19

The agent extracts the configuration parameters of the service using QueryServiceConfigW.
The following fields are relevant: display name, service name, service state, service path,
service user, and service type.

Figure 65
0xE3CB ID – Retrieve information about Domain Controllers and policies

The malicious executable obtains the name of a domain controller via a function call to
DsGetDcNameW, as displayed in Figure 66.

Figure 66
The DsGetDcOpenW API is utilized to open a new domain controller enumeration operation
(0x2 = DS_NOTIFY_AFTER_SITE_RECORDS):

Figure 67
The badger extracts the global password parameters and lockout information by calling the
NetUserModalsGet function. The information is organized using the following structure:



13/19

Figure 68
0x0105 ID – Extract data from the clipboard

The process opens the clipboard by calling the OpenClipboard method:

Figure 69
The data is obtained from the clipboard in the Unicode format (0xD = CF_UNICODETEXT):

Figure 70
0x0B06 ID – Convert the time of the last input event in minutes

The binary obtains the number of milliseconds elapsed since the system was started using
GetTickCount:



14/19

Figure 71
GetLastInputInfo is used to retrieve the time of the last input event:

Figure 72
0xB63A ID – Block keyboard and mouse input events

The BlockInput method is used to perform the operation, as displayed in the figure below.

Figure 73
0x0391 ID – Lock the workstation’s display

LockWorkStation is utilized to lock the display (see Figure 74).

Figure 74
0xF999 ID – Impersonate the context of a logged-on user

The badger attempts to log a user on to the local machine via a call to LogonUserA (0x2 =
LOGON32_LOGON_INTERACTIVE):

Figure 75
The binary impersonates the context of the above user using the ImpersonateLoggedOnUser
function:

Figure 76
0xA959 ID – Retrieve information about users

The first parameter is compared with “user” and “users”. In the first case, the malware calls
the NetUserGetInfo API to obtain information about the user account:

Figure 77



15/19

The information is organized in the following manner:

Figure 78

In the second case, the agent retrieves information about all user accounts on the local
computer (0x2 = FILTER_NORMAL_ACCOUNT):

Figure 79
0x6C36 ID – Extract registry keys and values

The first argument can be “hklm”, “hkcu”, “root”, “config”, and “users”. These are Windows
registry hives.

The registry key passed as the second argument is opened using the RegOpenKeyExA
method (0x20019 = KEY_READ):



16/19

Figure 80
The malicious process retrieves information about the registry key by calling the
RegQueryInfoKeyW function:

Figure 81
It enumerates the subkeys of the key using RegEnumKeyExW (Figure 82).

Figure 82
For each of the subkeys, the malware calls the RegEnumValueW API in order to enumerate
the registry values:

Figure 83
Finally, the type and data for all registry values identified are extracted:

Figure 84
0x9C41 ID – Take a screenshot and send it to the C2 server

The GdiplusStartup function initializes Windows GDI+ (see Figure 85).



17/19

Figure 85
The agent retrieves a handle to the desktop window via a call to GetDesktopWindow:

Figure 86
It obtains the number of adjacent color bits for each pixel for the device context (DC) for the
above window (0xC = BITSPIXEL):

Figure 87
The BitBlt method is used to capture the image:

Figure 88
The malware creates a Bitmap object based on a handle to a Windows GDI bitmap and a
handle to a GDI palette:

Figure 89
The process calls the CLSIDFromString function with the “1d5be4b5-fa4a-452d-9cdd-
5db35105e7eb” CLSID – Quality field:

Figure 90
GdipSaveImageToStream is utilized to save the screenshot to a stream (see Figure 91). The
name of the image is derived from the current date and time.

Figure 91



18/19

0x3C4D ID – Read content from pipe and send it to the C2 server. Write server’s response to
the pipe

The agent opens an existing pipe using the CreateFileA API (0xC0000000 =
GENERIC_READ | GENERIC_WRITE, 0x3 = OPEN_EXISTING):

Figure 92
The malware modifies the read and the blocking mode via a function call to
SetNamedPipeHandleState (0x0 = PIPE_READMODE_BYTE | PIPE_WAIT):

Figure 93
The pipe’s content is read using the ReadFile method:

Figure 94
The content is exfiltrated to the C2 server, and the server’s response is written back to the
pipe.

0x2129 ID – Write two numbers into memory

The command takes two parameters and writes them in the following format:

Figure 95

Figure 96
INDICATORS OF COMPROMISE

SHA256: d71dc7ba8523947e08c6eec43a726fe75aed248dfd3a7c4f6537224e9ed05f6f

C2 server: 45.77.172.28

User-agent: trial@deloitte.com.cn



19/19

References

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/

FakeNet-NG: https://github.com/mandiant/flare-fakenet-ng

Unit42: https://unit42.paloaltonetworks.com/brute-ratel-c4-tool/

MDSec: https://www.mdsec.co.uk/2022/08/part-3-how-i-met-your-beacon-brute-ratel/

https://docs.microsoft.com/en-us/windows/win32/api/
https://github.com/mandiant/flare-fakenet-ng
https://unit42.paloaltonetworks.com/brute-ratel-c4-tool/
https://www.mdsec.co.uk/2022/08/part-3-how-i-met-your-beacon-brute-ratel/

