
1/13

September 14, 2023

Operation Rusty Flag – A Malicious Campaign Against
Azerbaijanian Targets

deepinstinct.com/blog/operation-rusty-flag-a-malicious-campaign-against-azerbaijanian-targets

Deep Instinct Included in the 2022 Gartner® Magic Quadrant™ for
Endpoint Protection Platforms (EPP)

Learn more

Key takeaways:

The Deep Instinct Threat Lab has discovered a new operation against Azerbaijanian
targets
The operation has at least two different initial access vectors
The operation is not associated with a known threat actor; the operation was instead
named because of their novel malware written in the Rust programming language
One of the lures used in the operation is a modified document that was used by the
Storm-0978 group. This could be a deliberate “false flag”

Figure 1: Attack Flow
LNK Vector:

Deep Instinct Threat Lab observed a malicious LNK file with low detections named
“1.KARABAKH.jpg.lnk.”

The file has a double extension to lure the victim to click an image that is related to a military
incident in Nagorno-Karabakh.

The LNK downloads and executes an MSI installer hosted by DropBox:

https://www.deepinstinct.com/blog/operation-rusty-flag-a-malicious-campaign-against-azerbaijanian-targets
https://www.deepinstinct.com/blog/who-is-the-only-new-vendor-in-the-2022-gartner-magic-quadrant-for-endpoint-protection-platforms
https://en.wikipedia.org/wiki/Nagorno-Karabakh


2/13

Fig 2: LNK arguments Fig 3: OSINT information about MSI

uploader from Dropbox
The MSI file drops an implant written in Rust, an xml file for a scheduled task to execute the
implant, and a decoy image file:

Figure 4: Decoy image file
The image file includes watermarks of the symbol of the Azerbaijanian MOD.

Office False Flag Vector:

Once we identified the LNK campaign the Deep Instinct Threat Lab attempted to identify
additional, related files.

https://mod.gov.az/en


3/13

Deep Instinct Threat Lab quickly found another MSI file hosted on DropBox that drops a
different variant of the same Rust implant; however, the identification of the initial access
vector for this campaign was trickier.

The DropBox URL was masked with a URL shortener (hxxps://t[.]]ly/8CYQW) and the
evidence showed that this URL was invoked via exploitation of Microsoft Equation Editor
CVE-2017-11882.

Deep Instinct Threat Lab identified a file named
“Overview_of_UWCs_UkraineInNATO_campaign.docx” that was invoking the request to this
shortened URL; however, this filename and its content are known to be associated with a
Storm-0978 campaign utilizing CVE-2023-36884.

The identified file even had a comment on VirusTotal that it is related to the Storm-0978
campaign:

Figure 5: VT comment
After further investigation it was revealed that this is a different file, not related to the Storm-
0978 campaign. The embedded “afchunk.rtf” file has been replaced and CVE-2023-36884 is
not used. Instead, CVE-2017-11882 is used to download and install the MSI file.

This action looks like a deliberate false flag attempt to pin this attack on Storm-0978.

Fig 6: OSINT information about MSI uploader for Office

vector
Even though the initial lure is an Office file, the delivered MSI file also open a decoy file, this
time a PDF invoice:

https://www.microsoft.com/en-us/security/blog/2023/07/11/storm-0978-attacks-reveal-financial-and-espionage-motives/


4/13

Fig 7: PDF decoy dropped by Office vector
MSI Analysis:

While the initial vectors are different, the execution is the same and it is done by invoking
msiexec with URL to DropBox.

Using a Linux file command or msitools it seems that the MSI files were created by “MSI
Wrapper” https://www.exemsi.com/, which is often used by threat actors to drop malicious
files.

The MSI installers are dropping and executing the Rust implant along with a decoy file and
xml file for scheduled task.

https://www.exemsi.com/


5/13

Figure 8: MSI

Metadata
Rust Implant Analysis:

Each attack had its unique file names and metadata. One of the file Rust Implants named
“WinDefenderHealth.exe” is written in Rust. It is expected to gather information and send it to
the attacker server, which is still active at the time of this research.

Figure 9: Metadata of the Rust malware 



6/13

Figure 10: Rust compiler
Rust is becoming more popular among malware authors. Security products are not yet
detecting Rust malware accurately, and the reverse engineering process is more complex.
The Rust standard library is not familiar to tools like IDA and Ghidra. It results in tagging
large portions of the code as unknown, and it is difficult to differentiate the code of the
standard library from the code of the malware. To overcome this, the plugin GhidRust was
used, but it didn't detect the functions of the standard library. In addition, BinDiff was used. A
simple Rust binary was compiled and compared against the malware, but very little code was
shared. Some open projects for Rust were used in the malware such as Tokio (a runtime for
writing reliable, asynchronous, and slim applications with the Rust programming language),
hyper (a fast and correct HTTP implementation for Rust) and Serde JSON (a framework for
serializing and deserializing Rust data structures efficiently and generically). After that part,
we moved on to dynamic analysis.

Once the file is executed it goes to sleep for 12 minutes. This is a known method to avoid
security researchers and sandbox’s easy analysis.



7/13



8/13

Figure 11: “Sleep” for 12 minutes
Then it starts collecting information about the infected machine:

Figure 12: “Collect” information

Figure 13: Processes collecting information about the PC
The malware then reads the output of the above executions by redirecting their StdOut to a
named pipe. It is notable that the values of StdIn, StdOut, and StdErr match the handles of
the processes to the named pipes.



9/13

Figure 14: “Read” the collected information
The information is gathered leveraging the following template:



10/13

Figure 15: Sample of the collected info before encryption
The above information is then encrypted and sent to the attacker server using an
uncommon, hardcoded port 35667:



11/13

Figure 16: Encrypted information being sent to the server
We have built a script to decrypt the information, available in our Git, that the malware is
sending.

All analyzed files above have a low detection rate on VT at the time. There are zero
detections on first seen and most of the detections are generic ones.

Figure

17: Detections of the RUST implant in VT. All detections are generic.
While the other Rust implant still has zero detections:

https://github.com/deepinstinct/Rusty-Flag-DecryptData


12/13

Figure

18: 2nd Rust implant VT detections
Conclusion:

Deep Instinct Threat Lab could not attribute these attacks to any known threat actor. There is
a possibility that these files are part of a red team exercise.

Regardless of the above statement, the fact that both Rust implants had zero detections
when first uploaded to VirusTotal shows that writing malware in esoteric languages can
bypass many security solutions.

MITRE:

Tactic Technique Description Observable

Discovery T1082
System
Information
Discovery

The malware executes
systeminfo.exe to gain
information about the
infected computer

systeminfo.exe

Discovery T1016
System
Network
Configuration
Discovery

Gain detailed information
about the network
interfaces on the system

ipconfig.exe /all

Discovery T1033
System
Owner/User
Discovery

Gain user, group, and
privileges information for
the users

Whoami.exe /all

Discovery T1087
Account
Discovery

Gain information about
local or domain accounts
on a system

Net.exe user



13/13

Tactic Technique Description Observable

Discovery T1057
Process
Discovery

Gain a list of currently
running processes,
including detailed
information about each one

Tasklist.exe /v

Persistence T1053
Scheduled
Task/Job

Create a scheduled task
using the xml file

Schtasks.exe

Command
and Control

T1132 Data
Encoding

Encrypted communication Encrypted information sent to
the C2. A tool for decrypting
the information is provided in
our Git.

IOC:

78.135.73[.]140

SHA256 Descriptio

463183002d558ec6f4f12475cc81ac2cb8da21549959f587e0fb93bd3353e13e Archive co
malicious 

edc531d255b9ae8ae6902dc676f24e95a478576cad297e08e2bbc0b8fe03e4ce Malicious 

1546bb5bfc25741434148b77fe51fed7618432a232049b3f6f7210e7fb1f3f0e MSI file fro
hxxps://t[.]

387304b50852736281a29d00ed2d8cdb3368d171215f1099b41c404e7e099193 SangforUD
implant

0742cd9b92661f23f6b294cc29c814de027b5b64b045e4807fc03123b153bcd5 Decoy PD

04725fb5a9e878d68e03176364f3b1057a5c54cca06ec988013a508d6bb29b42 Malicious 

35f2f7cd7945f43d9692b6ea39d82c4fc9b86709b18164ad295ce66ac20fd8e5 MSI file fro

5327308fee51fc6bb95996c4185c4cfcbac580b747d79363c7cf66505f3ff6db WinDefen
Rust impla

e508cafa5c45847ecea35539e836dc9370699d21522839342c3f3573bf550555 Decoy JPE

Back To Blog

https://www.deepinstinct.com/blog

