
1/17

A Deep Dive into Brute Ratel C4 payloads
cybergeeks.tech/a-deep-dive-into-brute-ratel-c4-payloads/

Summary

Brute Ratel C4 is a Red Team & Adversary Simulation software that can be considered an
alternative to Cobalt Strike. In this blog post, we’re presenting a technical analysis of a Brute
Ratel badger/agent that doesn’t implement all the recent features of the framework. There
aren’t a lot of Brute Ratel samples available in the wild. The malware implements the API
hashing technique and comes up with a configuration that contains the C2 server, the user-
agent used during the network communications, a password used for authentication with the
C2 server, and a key used for encrypting data transmitted to the C2 server. The badger takes
control of the infected machine by executing 63 different commands issued by the C2 server.
The first 20 commands will be described in this blog post, while the rest of them will be
detailed in an upcoming blog post.

Technical analysis

SHA256: d71dc7ba8523947e08c6eec43a726fe75aed248dfd3a7c4f6537224e9ed05f6f

This is a 64-bit executable. The malware pushes the code to be executed on the stack in
order to evade Antivirus and EDR software:

Figure 1

It implements the API hashing technique, which uses the “ROR EDI,0xD” instruction to
compute 4-byte hashes that are compared with pre-computed ones (Figure 2).

https://cybergeeks.tech/a-deep-dive-into-brute-ratel-c4-payloads/
https://bruteratel.com/


2/17

Figure 2
The VirtualAllocEx API is used to allocate a new memory area that will store a DLL file
(0x3000 = MEM_COMMIT | MEM_RESERVE, 0x40 = PAGE_EXECUTE_READWRITE):

Figure 3
The Brute Ratel C4 configuration is stored in clear text however, in recent versions, the
config is encrypted and Base64-encoded. It contains the C2 IP address and port number, the
user-agent used during the network communications, a password used to authenticate with
the C2 server, a key used to encrypt data transmitted to the C2 server, and the URI:

https://unit42.paloaltonetworks.com/brute-ratel-c4-tool/


3/17

Figure 4

Figure 5
A thread that executes the entry point of the new DLL is created via a function call to
CreateRemoteThread:

Figure 6
The process extracts a pointer to the PEB from gs:[0x60] and another one to the
PEB_LDR_DATA structure (+0x18), which contains information about the loaded DLLs. The
InMemoryOrderModuleList doubly-linked list contains the loaded DLLs for the current
process:

Figure 7
The malicious binary allocates new memory for another DLL that implements the main
functionality using VirtualAlloc:

https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb_ldr_data


4/17

Figure 8
LoadLibraryA is utilized to load multiple DLLs into the address space of the current process:

Figure 9
The malware retrieves the address of relevant functions by calling the GetProcAddress
method:

Figure 10
The binary flushes the instruction cache for the current process using the
NtFlushInstructionCache function (see Figure 11).

Figure 11
Finally, the malware passes the execution flow to the newly constructed DLL:

Figure 12
As we can see below, one of the export functions of the DLL is called “badger_http_1”, which
reveals a Brute Ratel agent/badger.



5/17

Figure

13 Figure 14

The FreeConsole method is used to detach the process from its console:

Figure 15
The DLL repeats the process of finding functions address, as highlighted in Figure 16.



6/17

Figure 16

The process extracts the system time and passes the result to the srand function:

Figure 17
The atoi method is utilized to convert the port number to integer:

Figure 18
The malicious process creates an unnamed mutex object by calling the CreateMutexA API,
as displayed in Figure 19.



7/17

Figure 19
GetUserNameW is used to obtain the username associated with the current thread:

Figure 20
GetComputerNameExW is used to obtain the NetBIOS name associated with the local
machine:

Figure 21
The badger retrieves a pseudo handle for the current process using GetCurrentProcess:

Figure 22
The OpenProcessToken API is utilized to open the access token associated with the process
(0x8 = TOKEN_QUERY):

Figure 23
The malware verifies if the token is elevated using the GetTokenInformation method (0x14 =
TokenElevation):

Figure 24
It obtains the current process ID via a function call to GetCurrentProcessId:

Figure 25
GetModuleFileNameW is utilized to extract the path of the executable file of the process:



8/17

Figure 26
The above path is Base64-encoded using the CryptBinaryToStringW API (0x40000001 =
CRYPT_STRING_NOCRLF | CRYPT_STRING_BASE64):

Figure 27
The process retrieves version information about the current operating system using
RtlGetVersion:

Figure 28
The WSAStartup function initiates the use of the Winsock DLL by the current process:

Figure 29
The badger constructs a JSON that stores the password extracted from the configuration,
the computer name, the OS version, the Base64-encoded executable path, the username,
and the process ID:

Figure 30

The JSON is encrypted using the XOR operator (key = “abcd@123” from configuration) and
transformed by other operations:

Figure 31



9/17

Figure 32 

Figure 33
The user-agent passed to the InternetOpenW function seems to indicate that the product
was used by Deloitte China (Figure 34).

Figure 34
The process connects to the C2 server on port 80 by calling the InternetConnectW function:

Figure 35
It creates a POST request to the “/content.php” resource using HttpOpenRequestW, as
displayed below.

Figure 36
The security flags for the handle are changed using the InternetSetOptionW API (0x1100 =
SECURITY_FLAG_IGNORE_CERT_CN_INVALID |
SECURITY_FLAG_IGNORE_UNKNOWN_CA):

Figure 37



10/17

HttpAddRequestHeadersW can be used to add one or more HTTP request headers to the
handle however, the second parameter is NULL during malware’s execution (0x20000000 =
HTTP_ADDREQ_FLAG_ADD):

Figure 38
The process encodes the encrypted JSON using Base64 and exfiltrates the resulting data
using HttpSendRequestW:

Figure 39
It verifies whether the C2 server sends any data back via a function call to
InternetQueryDataAvailable:

Figure 40
The C2 server’s response is read using InternetReadFile:

Figure 41
The response is Base64-decoded and decrypted using the same key that was previously
mentioned. The “auth” field is set to the decrypted information, and another request is made
to the C2 server, asking for commands:

Figure 42

FakeNet-NG was used to simulate the network communications with the C2 server. After
decoding and decrypting the response, the first 2 bytes represent the command to be
executed followed by additional parameters if necessary. A new thread handles the
commands execution:

https://github.com/mandiant/flare-fakenet-ng


11/17

Figure 43
We’ll now describe the commands that can be issued by the C2 server.

0x2C74 ID – Exfiltrate file content to the C2 server

The PathFileExistsA API is utilized to confirm if the target file exists on the system:

Figure 44
The file is opened via a function call to CreateFileA (0x80000000 = GENERIC_READ, 0x1 =
FILE_SHARE_READ, 0x3 = OPEN_EXISTING):

Figure 45
The content is read by calling the ReadFile method, as shown in Figure 46.

Figure 46
The data is sent to the C2 server along with the “[+] Download complete” message or the
message shown in the figure below.



12/17

Figure 47

0xA905 ID – Copy files

The malware copies an existing file to a new file using CopyFileA:

Figure 48
0x9B84 ID – Move files

The process moves an existing file to another using the MoveFileA function (Figure 49).

Figure 49
0x13A1 ID – Create files and populate them with content received from the C2 server

Firstly, the file is created via a function call to CreateFileA:

Figure 50
The received data is Base64-decoded using CryptStringToBinaryA and written to the file:



13/17

Figure 51
0xE993 ID – Delete files

DeleteFileA is used to delete the target files, as highlighted below:

Figure 52
0x0605 ID – Close handles

The badger closes an object handle (i.e. file, process) using the CloseHandle API:

Figure 53
0x3F61 ID – Create directories

The malicious binary has the ability to create directories using the CreateDirectoryA method:

Figure 54
0x1139 ID – Change the current directory for the process

SetCurrentDirectoryA is utilized to perform the desired operation (see Figure 55).

Figure 55
0x3C9F ID – Obtain the current directory for the process

The malware extracts the current directory for the process by calling the
GetCurrentDirectoryW API:

Figure 56
0x8F40 ID – Delete directories

The process deletes a target directory only if it’s empty using RemoveDirectoryA:

Figure 57
0x0A32 ID – Retrieve the Last-Write time for files/directories



14/17

The files are enumerated in the current directory using the FindFirstFileW and
FindNextFileW functions:

Figure 58

Figure 59
For each of the file or directory that matches the pattern, the binary calls the CreateFileW
API:

Figure 60
The process retrieves the Last-Write time via a function call to GetFileTime:

Figure 61
The file time is converted to system time format using FileTimeToSystemTime:

Figure 62
Finally, the above time is converted to the currently active time zone:

Figure 63
0x3D1D ID – Change the Desktop wallpaper

The malicious process opens the “TranscodedWallpaper” file that contains the Desktop
wallpaper:

Figure 64



15/17

The above file is filled in with content received from the C2 server (Figure 65).

Figure 65
The SystemParametersInfoA method is utilized to change the Desktop wallpaper (0x14 =
SPI_SETDESKWALLPAPER, 0x1 = SPIF_UPDATEINIFILE):

Figure 66
0xD53F ID – Retrieve the username

This command is used to obtain the username associated with the current thread:

Figure 67
0x0609 ID – Retrieve the available disk drives

The malware extracts a bitmask that contains the available disk drives by calling the
GetLogicalDrives API, as shown in Figure 68.

Figure 68
0xC144 ID – Extract all device drivers

EnumDeviceDrivers is utilized to obtain the load address for all device drivers:

Figure 69
Using the above address, the process retrieves the name of the device driver by calling the
GetDeviceDriverBaseNameA method:

Figure 70
0x0A01 ID – Compute the number of minutes that have elapsed since the system was
started



16/17

The GetTickCount function is used to extract the number of milliseconds and a simple
calculation is performed (see Figure 71).

Figure 71
0x73E6 ID – Argument Spoofing

The badger has the ability to hide the arguments by modifying the process environment
block (PEB):

Figure 72
0x8AFA ID – Parent PID Spoofing

This command can be used to spoof the parent process ID in order to evade EDR software
or other solutions:

Figure 73
0xC929 ID – Extract child process name

The binary could spawn multiple processes that can be displayed using this command
(Figure 74).

Figure 74
0x9E72 ID – Display pipes name

The malware displays the name of a previously created pipe:

Figure 75
The other 30 relevant commands will be detailed in a second blog post.

INDICATORS OF COMPROMISE

SHA256: d71dc7ba8523947e08c6eec43a726fe75aed248dfd3a7c4f6537224e9ed05f6f

C2 server: 45.77.172.28



17/17

User-agent: trial@deloitte.com.cn

References

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/

FakeNet-NG: https://github.com/mandiant/flare-fakenet-ng

Unit42: https://unit42.paloaltonetworks.com/brute-ratel-c4-tool/

https://docs.microsoft.com/en-us/windows/win32/api/
https://github.com/mandiant/flare-fakenet-ng
https://unit42.paloaltonetworks.com/brute-ratel-c4-tool/

