
1/21

Shining some light on the DarkGate loader
github.security.telekom.com/2023/08/darkgate-loader.html

Telekom Security

Home Honeypots Advisories @DTCERT About

25 Aug 2023
Analysis and Report by Fabian Marquardt (@marqufabi)

Recently, Telekom Security CTI was made aware via trust groups in which we are engaged
about a new malware campaign that is distributed via phishing emails. The malspam
campaign used stolen email threads to lure victim users into clicking the contained hyperlink,
which downloaded the malware.

Attention to this malware campaign was also fueled by a false attribution of one of the
malware samples to Emotet. Even though this attribution later turned out as a false positive
match of an automated detection rule, it caused the security research community to focus on
this new campaign.

Initial analysis quickly revealed significant similarity to the DarkGate malware, based on the
use of a similar initial infection routine (AutoIt scripts) and the observed C2 communication
protocol, which matched past analyses of the same malware family. Further analysis
confirmed this initial attribution, since embedded strings and contained functionality clearly
identified the sample as part of the DarkGate malware family.

Further analysis of the sample revealed detailed insights on DarkGate’s functionality,
specifically the builtin evasion techniques, the malware configuration and its features. Our
results align with other recent publications about DarkGate. Furthermore, we provide an
approach for configuration extraction that in our eyes is more robust and flexible than the
existing ones.

https://github.security.telekom.com/2023/08/darkgate-loader.html
https://github.security.telekom.com/
https://github.security.telekom.com/index.html
https://github.security.telekom.com/honeypot.html
https://github.security.telekom.com/advisories.html
http://www.twitter.com/DTCERT
https://security.telekom.com/
https://twitter.com/marqufabi
https://www.fortinet.com/blog/threat-research/enter-the-darkgate-new-cryptocurrency-mining-and-ransomware-campaign
https://0xtoxin.github.io/threat%20breakdown/DarkGate-Camapign-Analysis/#loader-analysis
https://github.com/telekom-security/malware_analysis/blob/main/darkgate/extractor.py

2/21

We also collected and summarized available information about the actor who is apparently
the sole developer of DarkGate. This actor advertised the DarkGate malware on several
cybercrime forums and posted information about the features of the malware that match our
analysis results. Furthermore, the actor posted several demo videos, which show details of
the DarkGate backend panel.

The current spike in DarkGate malware activity is plausible given the fact that the developer
of the malware has recently started to rent out the malware to a limited number of affiliates.
Before that, the malware was only used privately by the developer. It can be expected that
the introduction of the MaaS program will lead to more frequent malware campaigns
involving DarkGate malware, meaning that the malware will likely pose as an ongoing threat
in the months and years to come.

Infection Chain Overview

During the last weeks, Telekom Security observed an infection chain where the initial
payload was delivered via an MSI installer file. Victims would get this file by clicking a link
that is contained in a phishing message that they received. This link initially points to what is
likely a traffic distribution system (TDS). If the requirements set by the attacker are met, the
TDS will redirect the victim user to the final payload URL for the MSI download. When the
user opens the downloaded MSI file, the DarkGate infection is triggered. The details of the
infection process will be described later on.

Additionally, Telekom Security observed samples of a different campaign where the initial
payload was delivered as a Visual Basic script. In this case, we do not know how exactly the
initial payload was delivered to the victim user. The script, which is obfuscated and contains
decoy/junk code, eventually invokes the curl binary that comes pre-installed with Windows

3/21

to download the AutoIt executable and script file from an attacker-controlled server.
Thereafter, the infection chain works exactly as in the other campaign described in this
document.

Initial payloads

MSI variant

In the campaign where the initial payload was delivered as an MSI file, the file seems to be
generated by the Software “MSI Wrapper” by www.exemsi.com, as can be seen from file
Metadata:

Application Verifier x64 External Package - UNREGISTERED - Wrapped using MSI

Wrapper from www.exemsi.com

For this infection chain, the initial payload is self-contained, meaning that all further payloads
are embedded into the file and that no further payloads need to be pulled from external
sources to complete the DarkGate infection. Specifically, the file contains an AutoIt

4/21

executable and a corresponding script which is executed by the installer.

VBS variant

For the campaign where the initial payload was delivered as a VBS file, the sample
contained a lot of garbage functions, which can be seen in the screenshot below. The real
infection code is hidden in several strings, which are additionally obfuscated by inserting
random junk sequences. After removing this obfuscation layer, the script logic is easily
readable and rather simple. The script will spawn a cmd.exe shell using ShellExecute and
use the curl binary that is shipped by default in current Windows installations to download
an AutoIt executable and a corresponding AutoIt script. Both files will be placed in a newly
created folder on the C:\ drive. Notably, in at least one case we observed that the script was
copying the curl binary to the new folder and invoking it from there, which is most likely an
attempt of the threat actor to evade existing EDR detection rules.

AutoIt script analysis

The AutoIt script is bundled with the .au3 file extension which is usually used for plain-text
scripts. Instead it contains a pre-compiled script, which would typically use the .a3x
extension. We can see that it is a compiled script from the magic bytes AU3!EA06, which for
some reason are not at the start of the file, but follow a long sequence of base64-encoded
data (we will come back to that below!).

5/21

The script can be decompiled using myAut2Exe (a pre-compiled binary can be found here)
after renaming the file from .au3 to .a3x. Analysis of the decompiled script shows that the
sole purpose of the script is to execute a shellcode that is contained as a hex-encoded
string:

https://github.com/fossabot/myAut2Exe
https://github.com/PonyPC/myaut_contrib

6/21

The screenshot above only shows an excerpt of the complete sequence to create the
shellcode string. This string is then decoded to binary data and written to a newly allocated
memory area using the BinaryToString and DllStructCreate function calls. Finally, two
commands are executed. These commands are obfuscated as hex-encoded strings.
Decoding these strings reveals their purpose, which is to make the newly allocated memory
area executable with VirtualProtect and call the shellcode using CallWindowProc:

7/21

DllCall("kernel32.dll", "BOOL", "VirtualProtect", "ptr",
DllStructGetPtr($MFCKuCoyGW), "int", BinaryLen($MzrsVimcSw), "dword", 0x40, "dword*",
$oldprotect)
DllCall("user32.dll", "lresult", "C"&chr(97)&"llWindowProc", "ptr",
DllStructGetPtr($MFCKuCoyGW), "hwnd", 0, "uint", 0, "wparam", 0, "lparam", 0)

We will later on see that extraction and analysis of this shellcode is actually not required if we
are only interested in the final DarkGate malware payload. However, in the following part we
will quickly go over the remaining infection chain steps to give a brief overview of the
complete process.

Shellcode analysis

The shellcode embeds a PE file in the form of stack strings, as can be seen in the
screenshot below (characteristic MZP header at the start of the constructed string). The sole
purpose of the shellcode is to load and eventually execute this PE file. We did not analyze all
details of this process. Instead we emulated the shellcode to the point where the complete
PE file was written to the stack and then dumped the corresponding memory section for
further analysis.

Initial dropper/loader analysis

8/21

The PE file extracted from the previous step is rather small (~15 KB). When executing it in
our sandbox, we were presented with the following error message. Apparently, the file is
some sort of loader that requires an additional resource to function properly.

When tracing the loader with a debugger, it became evident that it was trying to locate and
read the .au3 script file described above. If the .au3 file was found, the program execution
continued and it was visible that the loader accessed the base64-encoded sequences
present in the script file to decode and execute yet another PE file.

As other researchers already described the specifics of this process are as follows: In the
script file, there exist several base64 strings that are separated with a | character. The
loader will use the second of these strings to compute a single byte XOR key. The third
base64 string contains the final payload, which is the DarkGate malware sample. After
performing the base64 decoding, the loader applies the XOR key and a final NOT operation
to reveal the decrypted PE file.

It should be noted that this process can easily be implemented by researchers to allow for
static decryption of DarkGate malware samples that make use of this encryption process.
Futhermore, due to the use of just a single byte XOR key, there is a very limited number of
possible permutations of the encrypted PE file. This can be helpful for several reasons:

1. To implement YARA rules to hunt/detect DarkGate payloads encrypted with the AU3
technique: We have created a script that calculates all 256 possible permutations of the
characteristic MZ header.

2. To perform brute-force decoding of encrypted DarkGate payloads: If the file is padded
in some way or some of the specifics of the decryption process change, we are still
able to decrypt the payload by just probing all 256 possible permutations and checking
the result for expected characteristic patterns.

Obviously, such brute-force processes can also yield false positive results. Hence careful
validation of the decrypted payloads is required.

DarkGate Malware Analysis

https://0xtoxin.github.io/threat%20breakdown/DarkGate-Camapign-Analysis/#loader-analysis
https://git.t-seclab.telekom.de/cti/intelligence/scripts-tools/darkgate/-/blob/main/yara-rule-builder.py

9/21

With the steps described above we are able to unpack the main payload binary, which is the
DarkGate malware itself. The sample is programmed and compiled using Delphi. When
reverse engineering the sample, Ghidra initially was not able to reconstruct the used Delphi
library functions and objects. Using the Dhrake project (which uses the output generated by
Interactive Delphi Reconstructor (IDR)) greatly helped to make the decompiled sample more
readable.

For reversing the sample, we had the following main objectives:

Find out how the C2 server and other configuration data can be extracted
Identify defense evasion mechanisms and anti-analysis techniques used by the
malware
Get a general overview of the malware’s capabilities

Two strings to rule them all?

Our analysis of the unpacked/decrypted DarkGate malware sample revealed that beside
some human-readable strings there exist a lot of base64-encoded strings. However, it was
not possible to reveal any meaningful content by applying standard base64 decoding. As
other researchers already pointed out the string encryption uses base64, but with a non-
standard alphabet/table. The binary contains multiple functions that receive the encoded
string and the alphabet as an input and will output the decoded string.

Notably, there are two different alphabets which are used for different purposes: One
alphabet is used to decode different strings used throughout the binary, whereas the other
alphabet is used solely for decoding of the sample configuration.

Our analysis of further DarkGate samples shows that at least one of the alphabet strings
changes frequently. Hence, to provide a robust string and configuration decoder, we need to
identify the used alphabet for each analyzed sample. We could of course do this by
searching for the relevant functions in each binary and extracting the referenced strings, but
this would be error-prone even if only small parts of the code or build process change.

So instead we can make use of the characteristics of the strings in question: These strings
will always have the same length and contain each character of the base64 alphabet exactly
once. Basically we are looking for strings that are different permutations of the same
characters. We can easily implement this by first searching for potential candidates with a
regular expression like [A-Za-z0-9+/=]{64} and then checking which candidate contains
each expected character exactly once, which we implemented by simply sorting all
characters of the string and comparing the result to a given reference string. This is a robust
approach that successfully identified the two custom alphabet strings for all samples that we
have analyzed.

Extracting and parsing the configuration

https://github.com/huettenhain/dhrake
https://github.com/crypto2011/IDR
https://twitter.com/rivitna2/status/1686309211163021312?

10/21

Once we have found a way to decode the encoded base64 strings, accessing and dumping
the malware configuration is rather trivial: Configuration data is contained in two different
strings. While one of the strings holds the addresses of the used C2 servers, the other one is
a key-value list that contains all other configuration parameters and flags.

Each configuration value is given as a numeric key in the range of 0 to 20, e.g. the flag that
controls startup/persistence behavior is set using either 1=No or 1=Yes. Through reverse
engineering we identified the purpose of most of the used flags and values. Our configuration
extractor performs a translation of all known flags to a more human-readable format and
outputs the result in JSON format:

{
 "anti_analysis": false,
 "anti_debug": false,
 "anti_vm": false,
 "c2_ping_interval": 4,
 "c2_port": 7891,
 "c2_servers": [
 "http://80.66.88.145"
],
 "check_disk": true,
 "check_ram": true,
 "check_xeon": false,
 "crypter_au3": true,
 "crypter_dll": false,
 "crypter_rawstub": false,
 "crypto_key": "bIWRRCGvGiXOga",
 "flag_14": 4,
 "flag_18": true,
 "flag_19": true,
 "internal_mutex": "bbbGcB",
 "min_disk": 50,
 "min_ram": 4096,
 "rootkit": true,
 "startup_persistence": true
}

The meanings of each flag are as follows:

anti_analysis (6) and anti_vm (3) - Enable checks for the presence of typical
hardware/driver identifiers that are used by common sandbox and VM solutions.
anti_debug (17) - Enables periodic checking of whether or not a debugger is attached
to the process.
c2_ping_interval (16) - Sets the initial sleep interval that is used between two “pings”
to the C2 server. This value is adaptive and can be changed through various functions
of the C2 protocol.

https://github.com/telekom-security/malware_analysis/blob/main/darkgate/extractor.py

11/21

c2_port (0) - Sets the port to use for C2 communication. Since the actual addresses of
the C2 servers are stored in a different string, the same port is used for all configured
servers.
c2_servers - Not part of the key-value list, but stored in a separate string. Multiple
servers can be stored and are separated with the | character
check_disk (5) and check_ram (8) - Enables checking of a minimum disk/RAM size. If
enabled, the values of min_disk (4) and min_ram (7) will be used.
check_xeon (9) - Enables checking of the CPU to determine whether or not a Xeon
processor is used.
crypter_au3 (13), crypter_dll (12) and crypter_rawstub (11) - Configure which
packing/crypting mechanism is used for the sample. These flags are used in quite a
number of different functions (rootkit, persistence, self-update, …) to trigger the
appropriate program logic that applies to each mechanism.
crypto_key (15) - Used in the C2 communication protocol to encrypt submitted data.
We did not yet perform a detailed analysis of this.
internal_mutex (10) - Name of the mutex that is used apparently to synchronize
different threads or processes of the DarkGate malware. We did not yet perform a
detailed analysis of this.
rootkit (2) - Enables different mechanisms to inject the malware code into other
processes using process hollowing techniques.
startup_persistence (1) - Enables persistence functions of the malware that can
write a copy of the malware code to disk and create registry run keys.

For flags where we do not yet know their purpose, we simply maintain the numerical value as
flag_XX in the configuration output.

Monitoring for specific combinations of configuration flags could be a potential approach to
trace and identify different campaigns or affiliates of the malware. For example, one can see
that the following configuration obtained from another DarkGate sample is quite different to
the configuration above.

12/21

{
 "anti_analysis": false,
 "anti_debug": false,
 "anti_vm": false,
 "c2_ping_interval": 32,
 "c2_port": 80,
 "c2_servers": [
 "http://a-1bcdn.com",
 "http://avayacloud.com.global.prod.fastly.net",
 "http://intranet.mcasavaya.com"
],
 "check_disk": false,
 "check_ram": false,
 "check_xeon": false,
 "crypter_au3": true,
 "crypter_dll": false,
 "crypter_rawstub": false,
 "crypto_key": "nqSRmVfSEQwfgo",
 "flag_14": 32,
 "flag_18": true,
 "flag_19": true,
 "internal_mutex": "dEcCaG",
 "min_disk": 100,
 "min_ram": 4096,
 "rootkit": true,
 "startup_persistence": true
}

Further DarkGate capabilities and TTPs

In the following paragraphs, we will summarize further findings of our analysis regarding the
capabilities and TTPs of the DarkGate malware.

Persistence

If enabled, the malware will write a copy of itself to disk and create a registry run key to
persist execution between reboots.

Privilege Escalation

For tasks such as the deletion of system restore points the malware can elevate to SYSTEM
privileges.

Defense evasion

As already described above, the sample contains multiple functions to evade typical analysis
tools. When the corresponding features are enabled and the sample detects an environment
that matches one of the checks, it will simply terminate the process.

13/21

Additionally, the malware will look for multiple well-known AV products and may alter its
behavior depending on the result. The found AV product will also be communicated back to
the C2 server.

The malware may also masquerade its presence and inject itself into legitimate Windows
processes depending on the used configuration.

Credential Access

The malware contains multiple functions to steal passwords, cookies or other confidential
data from the victim system. Targeted programs range from web browsers to email software
and also other software such as Discord or FileZilla. Notably, the malware uses multiple
legitimate freeware tools published by Nirsoft to extract confidential data.

Discovery

The malware is able to query different data sources to obtain information about the operating
system, the logged on user, the currently running programs and other things. This
information will be sent to the C2 server and is available in the threat actor’s panel.

Collection

In addition to the mechanisms already described above, the malware may also collect
arbitrary files from the victim system when requested through the C2 channel.

Command and Control

After some initialization functions, the malware proceeds to a function that we identify as the
“C2 main loop”. In this loop, the malware periodically polls the C2 server for new instructions,
executes the received commands, and finally sends back the results to the C2 server.

Each command is identified by a numerical value and the C2 main loop that we analyzed
contains well over 100 different commands. We did not analyze thoroughly all of the
contained commands and functions, but to give a rough overview most commands fall in one
of the following categories:

Information gathering: Collect system information or other relevant data
Self-management: Start or stop malware components, control malware settings
Self-update: Update the malware, download additional components
Stealer: Steal data from various programs and data sources
Cryptominer: Start, stop and configure cryptominer
RAT: Initiate VNC connection, capture screenshots, execute commands
File management: Browse directories, download files from victim system

Below one can see an excerpt of some exemplary functions triggered by different
commands.

https://www.nirsoft.net/utils/index.html

14/21

DarkGate Panel

The developer provided several short videos where some of the backend panel functions are
shown. Initially, the developer opened the “stub builder” through the menu button of the main
window. Through several tabs, affiliates can set the different configuration options of the
malware:

15/21

16/21

In addition, there exists an “LNK exploit builder” to disguise the true nature of the malicious
content:

When the developer executed the built malware in their virtual machine, the victim system
became visible in the panel:

17/21

The different commands that can be executed on the victim system are available through a
context menu:

18/21

Finally, the developer provided a short demo of the integrated file manager to view directory
contents on the victim system:

19/21

Actor information

A user who goes by the handle RastaFarEye has been advertising DarkGate Loader on the
xss.is and exploit.in cybercrime forums since June 16, 2023. The user seems to be the
sole developer of the malware and states that more than 20.000 hours of work have been
invested since 2017 to develop the project.

The actor is offering different pricing models (1 day = 1k USD, 1 month = 15k USD, 1 year =
100k USD) and claims that the price will likely be raised in the future. In addition, the actor
seems to limit access to at most 10 affiliates (“slots”) to “keep this project private”.

The actor advertises DarkGate as the “ultimate tool for pentesters/redteamers” and that it
has “features that you won’t find anywhere”. In addition, the actor proclaims many times that
the tool is completely undetected by common AV products.

After initial publication, the actor frequently provided updates about bug fixes, new features
and other changes.

Contact addresses

20/21

The actor has provided the following contact addresses:

E-Mail: coding_guru@exploit.im
Tox:
09B950550CAD95899AC17C0B1384CD55C9BD81396B19EFFE2E80839D641D3221860ADEA89

733

Telegram: https://t.me/evtokens

Languages and location

The actor posted on the xss.is and exploit.in cybercrime forums mainly in English and
also developed the panel and malware in English language. However, from some observed
grammatical errors it can be assumed that English is not the actor’s native language.

When the actor received questions in Russian language, they were able to provide answers
in Russian language, too. The actor also used cyrillic alphabet for their username
Растафарай on Telegram, which can be transliterated to Rastafarai.

Apart from many English strings, the DarkGate samples we analyzed also contain some
Spanish strings, such as for example administrador de tareas (task manager). In addition,
demo videos posted by the actor show that the system locale and keyboard layout is set to
Spanish. The videos also show that the victim VM maintained by the actor connects to the
panel with an IP address from Spain. However, this address likely belongs to a VPN or
anonymization service.

IoCs

DarkGate C2 servers

149.248.0.82
179.60.149.3
185.143.223.64
185.8.106.231
45.89.65.198
5.34.178.21
80.66.88.145
89.248.193.66
a-1bcdn.com
avayacloud.com.global.prod.fastly.net
drkgatevservicceoffice.net
intranet.mcasavaya.com
onlysportsfitnessam.com
reactervnamnat.com
sanibroadbandcommunicton.duckdns.org
xfirecovery.pro

21/21

Analyzed Sample

The analysis results of this report are mainly based on the following sample. Results were
confirmed by checking other samples found via hunting queries.

SHA256 6e068b9dcd8df03fd6456faeb4293c036b91a130a18f86a945c8964a576c1c70
(Link to MalwareBazaar)

https://bazaar.abuse.ch/sample/6e068b9dcd8df03fd6456faeb4293c036b91a130a18f86a945c8964a576c1c70/

