
1/12

Understanding BumbleBee: The malicious behavior
vmray.com/cyber-security-blog/understanding-bumblebee-the-malicious-behavior/

Understanding BumbleBee: 

The malicious behavior of BumbleBee

In this article, we’re exploring the malicious behavior of BumbleBee, and diving into its
evasion techniques.

BumbleBee Blog Series – 2

18 August 2023

DOWNLOAD THE E-BOOK

Table of Contents

https://www.vmray.com/cyber-security-blog/understanding-bumblebee-the-malicious-behavior/
https://go.vmray.com/l/899721/2023-08-18/g598y/899721/1692362784PrMCPWZK/eBook_Evolution_of_BumbleBee_compressed__1_.pdf


2/12

Introduction

Having meticulously dissected the intricate delivery methods employed by BumbleBee in our
previous blog post, we embarked on a journey through the multifaceted and complex delivery
chains that enable its stealthy penetration. From the covert utilization of seemingly innocuous
files to ingenious tactics that evade detection, we navigated through the diverse arsenal
BumbleBee wields to gain access.

Now, our exploration of this malicious loader takes us deeper into its heart — its behavior
within the targeted environment. As we journey through its maneuvers, we seek to unravel
the layers of complexity that lie beneath its surface. With a focus on unveiling the true
essence of BumbleBee’s actions post-infiltration, we uncover the evolution and adaptation
that contribute to its resilience.

Unpacking Executables

Malicious applications need to stay undetected as long as possible so victims can be
infected without being caught by malware researchers, antivirus scanners or dynamic
behavior-based analysis engines. To protect against the first two, malware is often packed,
encrypted or obfuscated. For one, signature-based antivirus engines might fail to trigger
even on known malware families when the sample is manipulated to a certain degree.
Obfuscating the sample also increases the workload of threat researchers analyzing the
malware manually, thus this either slows them down or potentially prevents researchers from
dissecting the malware altogether.

This is why one major advantage of dynamic behavior-based analysis is that the malware
is executed in a simulated environment which allows us to dynamically observe it’s behavior
at runtime. As packed and encrypted samples will at some point execute the original,
unprotected executable, our system is able to automatically save a memory dump of the
unpacked binary. This is such a powerful feature that threat researchers rarely have to
manually unpack a malware to analyze it’s behavior. Instead, they can let VMRay Platform
perform the unpacking.

To demonstrate this feature, we let VMRay Platform analyze a BumbleBee sample which is
often protected by such measures. Once the dynamic analysis is done, we try to identify the
memory dump containing the unpacked binary.

As we support multiple trigger reasons to dump a memory region (for example, when the
memory content changes, when the first network connection is established, when the
application is terminated, etc.) there could be multiple memory dumps to select from, many
of which are not fully unpacked yet. The easiest method to find a good memory dump is to
select one with a YARA match, which implies that there must be enough strings and code
snippets to classify it as belonging to a certain malware family (see Figure 1 and Figure 2)

https://www.vmray.com/cyber-security-blog/understanding-bumblebee-loader-the-delivery/


3/12

Figure 1: Following a YARA match is a good way to find a memory dump for the unpacked binary.

Figure 2: Partial list of memory dumps for BumbleBee. Note that the last memory dump in the
screenshot reports a YARA match.

An even better approach is to find the memory dump for which the config extractor was
triggered (see Figure 3). A successful config extraction is a stronger indicator for an
unpacked binary.

Figure 3: Another approach to download the unpacked binary is to find the memory dump that was
used to extract the configuration.

This memory dump can now be analyzed by popular tools such as IDA Pro. It might be
necessary to run it through pe_unmapper first. To benefit from the information extracted
during the analysis, we also have an IDA plugin that enriches the disassembly and
decompilation with runtime information, such as function parameters observed during
execution (see here for more information).

While this approach of unpacking malware has some limitations, e.g., packers employing
virtual machine-based protection such as VMProtect may never “unpack” the original
executable as some of the code was replaced by virtual operations by the protector, and thus
this will prevent a memory dump containing the original instructions, VMRay Platform will still
be able to dynamically observe the malware unhindered, as the original behavior will remain
the same. 

Malicious behavior

https://www.vmray.com/wp-content/uploads/2023/08/01-Yara-memory-dump.png
https://www.vmray.com/wp-content/uploads/2023/08/02-memory-dump-list-BumbleBee.png
https://www.vmray.com/wp-content/uploads/2023/08/03-memory-dump-BumbleBee-configuration.png
https://github.com/hasherezade/pe_unmapper
https://www.vmray.com/cyber-security-blog/ida-plugin-vmray-analyzer/


4/12

The main goal of a malware loader is to infect the system with additional malware, but most
loaders also try to ensure that the malicious executables are not downloaded or executed
while being observed either by threat researchers during manual analysis or by a behavior-
based dynamic analysis system (see Figure 4).

For this purpose, BumbleBee includes more than 50 evasion techniques, ranging from
tracking mouse movements to checking for artifacts of common virtualization tools such as
VirtualBox. Our analysis shows that these techniques were mostly copied from Al-Khaser, an
open source collection of known evasion techniques. 

We provide a list of all functions imported from Al-Khaser we have identified so far in the
Appendix.

Figure 4: VMRay's VTI's triggered for a BumbleBee sample.

Network

To download additional malware, BumbleBee makes contact with a remote C2 server. The
oldest BumbleBee sample we could find uses HTTP as the network protocol while more
recent versions have adopted WebSockets. Once the connection is established, the infected
system waits for one of seven possible commands. 

Command name: shi 
 Function: Shellcode injection

Command name: dij
 Function: DLL injection

Command name: dex
 Function: Download & Execute

https://github.com/LordNoteworthy/al-khaser
https://www.vmray.com/wp-content/uploads/2023/08/04-BumbleBee-VMRay-VTI.png


5/12

Command name: sdl
Function: Uninstall

Command name: ins
 Function: Persistence

Command name: gdt
 Function: Execute shell commands

Command name: plg
 Function: Load plugins

We have been able to observe that the last two commands were added somewhere around
April and August 2022. Interestingly, the “plg” instruction is just a reference to the “dij”
command, a hint that this functionality might be updated in the future.

Evasion techniques

In it’s most recent version, BumbleBee employs a total of over 50 evasion techniques, a
majority of which are imported from the Al-Khaser open-source project.

They can be summarized in the following categories:

Detecting virtualization software and related tools

Most evasion techniques we have discovered are related to virtualization tools often used
either during manual analysis by threat researchers (VirtualBox, VMWare, Xen) or potentially
used during dynamic, behavior-based analysis, such as QEMU and KVM. One of the
techniques, for example, checks if certain files such as “System32\drivers\VBoxMouse.sys”
exist on the system to detect the presence of VirtualBox based on its drivers (see Figure 13).



6/12

Figure 5: Function from Al-Khaser used by BumbleBee that demonstrates one of the detection
methods for VirtualBox (cropped for readability).

There are also functions related to detecting Wine, a compatibility layer on Linux to execute
Windows applications.

Detecting reverse engineering tools

Particularly in older BumbleBee versions, we found checks for OllyDbg, a popular tool used
by threat researchers to analyze malware and other Windows executables.

This check was removed in more recent versions, but newer samples still check for Process
Explorer, another useful utility sometimes used by threat researchers to explore processes
running on the system.

Detecting sandboxing artifacts

To detect some sandboxing solutions, BumbleBee checks if the currently logged-in
username or it’s own filename is a name primarily used by sandbox technologies, for
example “sample.exe” (see Figure 6).

https://www.vmray.com/wp-content/uploads/2023/08/05-BumbleBee-evasion-alkhaser.png


7/12

Figure 6: Al-Khaser function used by BumbleBee to check if the filename matches known filenames
used by sandboxing solutions (cropped for readability).

This is one of the reasons VMRay Platform can randomize the username, the hostname and
the filename (see Figure7). Additionally, one common evasion technique is checking if the
filename is the hash of the file itself, which is often the case in dynamic analysis engines.
This can also be prevented by randomizing the filename.

Figure 7: VMRay Platform allows the randomization of the username, hostname and the sample
name to prevent some evasion techniques.

Detection via hardware configuration

https://www.vmray.com/wp-content/uploads/2023/08/06-BumbleBee-detects-sandboxing.png
https://www.vmray.com/wp-content/uploads/2023/08/07-Vmray-evasion-resistant-sandbox.png


8/12

In addition to searching for evidence that the sample is running inside of a virtualized or
simulated environment, BumbleBee also checks the hardware of the system for specific
configuration artifacts mostly associated with sandboxing.

One method checks if the RAM and the disk size are above a certain threshold, another
checks if information about the CPU fan can be retrieved.

Detection via user behavior

Not all evasion techniques rely on detecting the environment itself. Some smart techniques
revolve around detecting the presence of a user, which is usually not the case for automated
sandbox solutions. In particular, BumbleBee checks if the mouse pointer moves (see Figure
8).

Figure 8: Al-Khaser function used by BumbleBee to detect mouse movement.

VMRay employs a variety of techniques to simulate user behavior to avoid these evasion
techniques from detecting the monitored environment. For example, the mouse is moved
regularly and we even simulate interactions with the user interface. Additionally, our
customers can also manually interact with the virtual environment during the analysis as if
they were sitting in front of it – right from the web browser.

Custom evasion techniques

We have discovered one evasion technique seemingly not covered by Al-Khaser:
BumbleBee checks if it was started from the desktop (see Figure 9).

The reasoning here is that BumbleBee’s delivery chain usually results in the sample being
located in, for example, the temp directory or on a CD-ROM drive mounted from an ISO file,
and not the desktop.

Figure 9: BumbleBee checks if the sample was started from the Desktop, in which case it aborts the
execution.

VMRay Platform allows customers to set the sample directory while uploading submissions
(see Figure 10).

https://www.vmray.com/wp-content/uploads/2023/08/08-BumbleBee-evasion-mouse-movement.png
https://www.vmray.com/cyber-security-blog/a-pafish-primer/
https://www.vmray.com/cyber-security-blog/automated-interactive-malware-analysis/
https://www.vmray.com/wp-content/uploads/2023/08/09-BumbleBee-evasion-check-if-started-from-desktop.png


9/12

Figure 10: VMRay Platform allows users to set the directory from which the sample is started from by
opening the advanced settings.

Note that having multiple evasion techniques can actually backfire for the malware, as
performing the evasion techniques themselves can be detected as malicious behavior. For
example, our VMRay Platform is able to observe the checks for virtualized environments,
which contributes to the final malicious verdict.

The evolution of BumbleBee

We have tracked BumbleBee since it first appeared in the wild and were able to create a
rough timeline of when particular important changes were introduced.

In summary, the network communication was changed from HTTP to WebSockets, and two
new C2 operations were introduced (see Figure 11) alongside nearly 20 additional evasion
techniques. Notably, we have identified samples where all evasion techniques were removed
for a period of time around November 2022, but they were reintroduced later on (see Figure
12).

Figure 11: Rough timeline for the changes in the C2 functionality.

https://www.vmray.com/wp-content/uploads/2023/08/10-VMRay-evasion-resistance-select-directory-to-activate-sample.png
https://www.vmray.com/wp-content/uploads/2023/08/11-C2-functions-evolution-2.jpg


10/12

Figure 12: Rough timeline of changes for the evasion techniques

Conclusion

In the world of cybersecurity, staying informed is our strongest shield. Our exploration of
BumbleBee’s delivery methods and malicious behavior has unveiled a landscape of
complexity, where seemingly innocuous file formats are manipulated for malicious intent.
With over 50 evasion techniques in its arsenal, BumbleBee showcases the evolving art of
deception employed by threat actors.

In our upcoming article, we’ll delve deeper into BumbleBee’s behavior, exploring its
configurations and the clusters emerging from our analysis. Stay tuned for the insights that
fortify our understanding of this intricate menace.

Appendix
Evasion Techniques imported from Al-Khaser

vbox_files
 vbox_dir

 vbox_mac_wmi
 vbox_eventlogfile_wmi

 vbox_firmware_ACPI
 vbox_pnpentity_pcideviceid_wmi

 vbox_pnpentity_pcideviceid_wmi_2
 vbox_bus_wmi

 vbox_baseboard_wmi
 vbox_pnpentity_vboxname_wmi

vmware_files
 vmware_firmware_ACPI

 

https://www.vmray.com/wp-content/uploads/2023/08/12-BumbleBee-evasion-evolution-timeline-3.jpg


11/12

qemu_dir
qemu_firmware_ACPI

 kvm_files
 known_file_names

 known_usernames
 disk_size_wmi

 model_computer_system_wmi
 registry_services_disk_enum

 get_services
 check_mac_addr

 GetProcessIdFromName
 get_system_firmware

 wine_reg_key
 wine_exports

 vbox_window_class
 vbox_reg_key_value
 vbox_reg_keys

 vbox_devices
 vbox_network_share

 vbox_processes
 vbox_window_class

 vbox_devices
 vbox_firmware_SMBIOS

 vmware_reg_keys
 vmware_mac

 vmware_devices
 vmware_firmware_SMBIOS

 virtual_pc_process
 virtual_pc_reg_keys

 qemu_reg_key_value
 qemu_processes

 qemu_firmware_SMBIOS
 kvm_reg_keys

 kvm_dir
 parallels_process

 mouse_movement
 cpu_fan_wmi

 memory_space
 xen_check_mac

Emre Güler
Threat Researcher



12/12

BumbleBee Series – 1: 
The delivery chains

BumbleBee Series – 3: 
 The malware configuration and clusters

See VMRay in action.
 Solve your own challenges.

REQUEST FREE TRIAL NOW

https://www.vmray.com/cyber-security-blog/understanding-bumblebee-loader-the-delivery/
https://www.vmray.com/cyber-security-blog/understanding-bumblebee-loader-the-delivery/
https://www.vmray.com/cyber-security-blog/understanding-bumblebee-the-malware-configuration-and-clusters/
https://www.vmray.com/cyber-security-blog/understanding-bumblebee-the-malware-configuration-and-clusters/
https://www.vmray.com/try-vmray-products/

