
1/24

ANY.RUN July 20, 2023

Analyzing a New .NET variant of LaplasClipper: retrieving the config
any.run/cybersecurity-blog/analyzing-laplasclipper-malware/

Analyzing a New .NET variant of LaplasClipper: retrieving the config

HomeMalware Analysis
Analyzing a New .NET variant of LaplasClipper: retrieving the config
Recently, we’ve discovered an interesting LaplasClipper sample here at ANY.RUN, and we’re going to analyze it in this article. Our
LaplasClipper sample is written in .NET and obfuscated with Bable.

We will dig into the sample’s configuration, study, and ultimately break through the primary obfuscation techniques the attackers employed to
make the analysis process more difficult.

What is LaplasClipper malware?

LaplasClipper, as its name implies, is a clipper variant. Its primary malicious function is to monitor the user’s clipboard (T1115). Attackers
typically use it to swap out cryptocurrency addresses with ones they control. When users paste the address into a wallet to transfer funds, it’s
the attacker’s address that receives them.

Taking the First Step of our LaplasClipper Analysis: Reconnaissance

For today’s analysis, we’re going to dissect this Laplas sample. To understand what we’re dealing with, we’re immediately going to feed it into
two tools: DIE and ExeinfoPE.

https://any.run/cybersecurity-blog/analyzing-laplasclipper-malware/
https://any.run/cybersecurity-blog/
https://any.run/cybersecurity-blog/category/malware-analysis/
https://any.run/
https://app.any.run/tasks/033b87b8-0717-4dbe-8524-2be4b9a57a71/

2/24

Our LaplasClipper sample in Detect It Easy

Our LaplasClipper sample in Detect It Easy

3/24

LaplasClipper in ExeinfoPE

And in ExeinfoPE
Right away, we see that it’s .NET obfuscated by Babel (T1027.002). And we also get a link to an unpacker in the form of de4dot. We’ll use
this clue later.

The Babel Obfuscator is one of the most popular proprietary obfuscators for .NET. It has the following set of features:

Renaming symbols
Encryption of strings and constants
Packing and encrypting resources
Virtualization and obfuscation of the code

Let’s upload our sample into dnSpy to study it further. Here’s what we see:

4/24

LaplasClipper code block

We see that the code is obfuscated
Immediately noticeable are the distorted objects’ names, and in the code, we can see the obfuscation of control flow using the switch
conditional statement. To improve code readability and simplify our further analysis, let’s pass our sample through de4dot and
BabelDeobfuscator.

https://github.com/ElectroHeavenVN/BabelDeobfuscator

5/24

LaplasClipper code block

The result of passing our sample through de4dotand BabelDeobfuscator
Now the situation has improved a bit, but the cleaned version is only suitable for static analysis. However, if we try to debug the original
sample, it will fail and throw an error of the following type (debugging is recommended to be performed only in an isolated environment):

6/24

LaplasClipper error message

Trying to debug the original sample throws this error
If we look at the top of the call stack, we’ll see that the program crashes in some kind of environment variables check statement:

7/24

LaplasClipper malware code block

The program crashes in some kind of environment variables check
Let’s find this method by references to the use of GetEnvironmentVariable (T1082) in our cleaned sample.

8/24

LaplasClipper malware code block

We’ll look for this method by references to the use of GetEnvironmentVariable
The strings are decrypted dynamically, using a trivial XOR. The key is specified as the second parameter on the method.

9/24

LaplasClipper malware code block

The strings are decrypted using XOR
Let’s use a Python interpreter (you could also use CyberChef or simply set a break point) to see which environment variables are being
checked.

10/24

LaplasClipper Python interpreter

We’ll use a Python interpreter to see which environment variables are checked
After a brief search using keywords in combination with environment variables, we found the code for this anti-debug method (T1622), and it
turns out it was written by the obfuscator developers themselves.

http://github.com/babelfornet/BabelPlugins/blob/master/AntiDebug/Code/AntiDebug.cs

11/24

LaplasClipper malware code block

The code of the anti-

debug method
The method turned out to be rather ordinary. To bypass his anti-debug trick, we can simply halt the second thread during the debugging
process, without the need to modify the sample. We just need to set a breakpoint at the beginning of the routine.

So far, we’ve conducted basic reconnaissance and determined methods for partially disarming the target. However, if we try to decrypt the
remaining strings in the same way as before, we won’t find any hint of C2 or other evidence of illicit activity, apart from the Babel debug
strings and function names intended for dynamic invocation.

Digging deeper into our LaplasClipper sample

If we take a closer look at the sample, we’ll notice a resource named “JbeO ” — note its rather substantial size.

12/24

LaplasClipper resources

Note the size of the JbeO resource
Let’s make an assumption. If this resource is present, it’s likely that it’s used for something.

The GetManifestResourceStream method is used to access embedded resources at runtime, so to test our hypothesis, let’s set a breakpoint
on it and run the sample under debugging.

13/24

LaplasClipper malware code block

We’ll set a breakpoint and run the sample under debugging
As we expected, the breakpoint triggered. Now, following the call chain a little further, we can see how the read resource is passed into a
method with token 0x0600018C for decryption. Let’s examine this method more closely in the cleaned version.

14/24

LaplasClipper malware code block

The read resource is passed into a method with token 0x0600018C
Initially, two arrays are read in the following format: size and data. Subsequently, the first array is decrypted using an XOR operation, with the
second array functioning as a key. After this, the first array acts as a header from which parameters for ensuing actions are read.

Now, let’s examine this structure with a HEX editor.

15/24

LaplasClipper HEX

Examining the same resource with a HEX editor
We can use CyberChef to extract the header for further analysis.

16/24

LaplasClipper in CyberChef

We’ll analyze the headers in CyberChef
Now that we have access to the header, we can examine the variable values in the decryption method logic in more detail.

Variable b, at first glance, appears to be a bit field that can include the following values:

1 – Indicates whether the resource is compressed (spoiler)

2 – Indicates whether the resource is encrypted

Variable b2 defines the algorithm for decrypting the resource.
Variable b3 is a dummy.
Variable array3 is the key for decryption with the chosen algorithm.

17/24

LaplasClipper malware code block

The resource is only encrypted, and the decryption algorithm is AES.
As we can see, in our case the resource is only encrypted, and the decryption algorithm is AES.

It’s also important to note here that variable array2 is used, not only as an XOR key for the header, but also as an initialization vector for the
decryption algorithm.

Now we have enough information to decrypt the resource ourselves.

18/24

LaplasClipper malware in CyberChef

At this point in the analysis, we have enough data to try and decrypt the resource ourselves
After decryption, we’re met with “This program cannot be run in DOS mode”. Let’s feed the resulting executable file into DIE to confirm it’s a
.NET assembly. So, we load it into dnSpy.

19/24

LaplasClipper malware resources

We find three more resources but no new code
Inside, we find three additional resources, but no further code. The file we’ve obtained is merely a vessel for other resources. However, we
remain undeterred and press on with our analysis. We’ll focus on unpacking the most sizable resource named “wCfO” (since the other two
resources only vary slightly, we’ll omit them from this analysis).

Approaching the Finish Line of LaplasClipper analysis

When we replicate the previous steps with the “wCfO” resource, we find that the variable b equals one. From the resource decryption method
code, we deduce that if b equals one, control shifts to the Class67.smethod_0 method. When our manual examination of this routine failed to
provide results, we decided to enlist the help of a cyber-assistant in the form of GPT-4. We fed it an approximately 500-line snippet, and the
output was unexpected.

20/24

LaplasClipper malware analysed by ChatGPT

ChatGPT was quite helpful
To our relief, GPT managed to extract the compression algorithm from the clutter. What remains is a relatively minor task: employing
CyberChef one more time (remembering to remove the header from the resource before decompression).

21/24

LaplasClipper malware in CyberChef

However, we encountered a hurdle here too. The error could be due to meta-information at the start of the resource or a modified
compression algorithm. Nevertheless, we determined an offset empirically, which allows us to unlock the internal information of our resource.

22/24

LaplasClipper malware decrypted

Congratulations! We’ve successfully reached the heart of our test subject. The C2 server address and the key are now clearly in view.

By the way, if you want to analyze the process dump yourself, you can easily download it from this task in ANY.RUN.

https://app.any.run/tasks/033b87b8-0717-4dbe-8524-2be4b9a57a71/?utm_source=anyrunblog&utm_medium=article&utm_campaign=laplas&utm_content=service

23/24

LaplasClipper malware configuration in ANY.RUN cloud malware sandbox

For further functioning, the sample uses a C2 address and a key to communicate with API endpoints over HTTP/S protocol (T1071.001):

/bot/get – Query C2 for a visually similar wallet address for further substitution
/bot/regex – Obtain regex expression from C2 to replace only matching wallet addresses
/bot/online – Inform C2 that the victim is active

Wrapping up

In this article, we’ve dissected a fresh malware sample from the LaplasClipper family, developed on the .NET platform and obfuscated using
Babel.

In the process of our research, we’ve uncovered the sample’s internal settings, examined some techniques leveraged by the obfuscator to
complicate the sample analysis, and outlined strategies to counter them.

Our findings provide a solid understanding of the fundamental principles of protective mechanisms on the .NET platform. It’s critical to
recognize that even the most complex protective methods rest on basic concepts, which are essential to understand and identify.

24/24

Want more malware analysis content? Learn more about common obfuscation methods and how to defeat them in our recent GuLoader
analysis. Or read about the encryption and decryption algorithms of PrivateLoader.

Lastly, a few words about us before we wrap up. ANY.RUN is a cloud malware sandbox that handles the heavy lifting of malware analysis for
SOC and DFIR teams. Every day, 300,000 professionals use our platform to investigate incidents and streamline threat analysis.

Request a demo today and enjoy 14 days of free access to our enterprise plan.

Request demo →

Collected IOCs

Analyzed file:

MD5 1955e7fe3c25216101d012eb0b33f527

SHA1 f8a184b3b5a5cfa0f3c7d46e519fee24fd91d5c7

SHA256 55194a6530652599dfc4af96f87f39575ddd9f7f30c912cd59240dd26373940b

Connections:

Connections (IP)

45[.]159.189.105

URIs:

URIs

http://45[.]159.189.105/bot/get?address= &key=afc950a4a18fd71c9d7be4c460e4cb77d0bcf29a49d097e4e739c17c332c3a34

http://45[.]159.189.105/bot/regex?key=afc950a4a18fd71c9d7be4c460e4cb77d0bcf29a49d097e4e739c17c332c3a34

http://45[.]159.189.105/bot/online?guid= &key=afc950a4a18fd71c9d7be4c460e4cb77d0bcf29a49d097e4e739c17c332c3a34

MITRE ATT&CK Matrix

Tactics Techniques Description

TA0005: Defense
Evasion

T1027.002 – Obfuscated Files or
Information: Software Packing

Attempts were made to make an executable difficult to analyze by encrypting
and embedding the main logical part into resources section

T1622 - Debugger Evasion Anti-debugging techniques are used

TA0011:
Command and
Control

T1071.001 - Application Layer
Protocol: Web Protocols

Target utilizes HTTP/S protocol to communicate with C2

TA0009:
Collection

T1115 - Clipboard Data Target accesses and modifies clipboard buffer

TA0007:
Discovery

T1082 - System Information
Discovery

Target accesses system specific information

malware analysis
What do you think about this post?

14 answers

Awful
Average
Great

No votes so far! Be the first to rate this post.

0 comments

https://any.run/cybersecurity-blog/deobfuscating-guloader/
https://any.run/cybersecurity-blog/privateloader-analyzing-the-encryption-and-decryption-of-a-modern-loader/
https://any.run/demo/?utm_source=anyrunblog&utm_medium=article&utm_campaign=laplas&utm_content=trial
https://any.run/cybersecurity-blog/tag/malware-analysis/

