
1/8

Kostas July 31, 2023

Ursnif VS Italy: Il PDF del Destino
kostas-ts.medium.com/ursnif-vs-italy-il-pdf-del-destino-5c83d6281072

Kostas

--

This is the second blog of this series which displays the actions that threat actors are taking
upon post-exploitation efforts. Just a reminder, these short blog posts come with sanitized
artifacts of the intrusion I observed. This is so people can use it for training materials or
recreate the investigation steps I followed in their own lab. You can find the artifacts in the
repo below.

Intrusion_data: https://github.com/tsale/Intrusion_data

Summary

In the first week of July, I observed post-exploitation activity from an Ursnif malware initial
infection. Post-exploitation activities were very rapid, with threat actors enabling the VNC
feature of the malware to interact with the infected host. Through VNC’s graphical interface,
they quickly searched for important documents on mapped share drives. They later used the
command prompt to run enumeration commands before using process injection to spawn a
Cobalt Strike beacon.

Several hours after the initial infection, the Cobalt Strike beacon came to life and threat
actors started enumerating the environment. They used their existing beacon session and
attempted to elevate their access using a zerologon exploit. After about 10 hours, I
witnessed them spawning a new Cobalt Strike beacon using a PowerShell loader. This

https://kostas-ts.medium.com/ursnif-vs-italy-il-pdf-del-destino-5c83d6281072
https://kostas-ts.medium.com/?source=post_page-----5c83d6281072--------------------------------
https://kostas-ts.medium.com/?source=post_page-----5c83d6281072--------------------------------
https://github.com/tsale/Intrusion_data

2/8

second beacon communicated with a different C2 IP. This was the last activity I observed
through my analysis, it is possible that the threat actors left the infected environment or that
the gap of inactivity allowed for response and remediation of the infected host.

Further Intelligence Gathering

During the ursnif VNC sessions, I was able to extract interesting data from the unencrypted
network communication. Specifically, I managed to obtain the threat actors’ clipboard as well
as screenshots. This information provides valuable insight into the attackers’ tactics,
techniques, and procedures (TTPs). It allows us to see the attack from their eyes. Their
respective sections below will cover the relevant details regarding the intrusion.

The Hands-On-Keyboard (HOK) activity began 30 minutes after the initial execution of the
Ursnif malware. This emphasizes the importance of promptly addressing initial access broker
malware. During the intrusion, it seemed like the infected host was shared among multiple
groups. This is due to the long periods of inactivity observed, the different C2 channels as
well as the repetitive enumeration commands on every newly established connection to a
different C2 infrastracture. Trustworthy threat intelligence sources reveal how criminals divide
responsibilities during an intrusion after the initial infection.

Establishing initial access themselves is no longer really required for threat actors,
there’s a good chance someone else has already done it and is happy to sell it on. ~ by

It is also possible for different threat actors to often specialize in different aspects of an
attack. In this case, the job of threat actors that responded to the initial infection could have
been to profile the victim host and organization. There was no activity from the beacon
loaded in memory for five hours after the initial infection.

Due to the sensitivity of the enclosed data, the VNC communication was not included
in the network traffic artifacts. However, information on how to extract this data as well
as sanitized screenshots will be shared down below.

Initial Access

The phishing campaign that resulted in this intrusion targeted Italian organizations. The
phishing email contained a PDF attachment that started the malicious execution chain, as
reported by @JAMESWT_MHT in this thread.

This blog will focus on the malicious Ursnif DLL loader and the post-exploitation activity after
the malware was installed on the infected host.

Execution

https://twitter.com/jameswt_mht
https://twitter.com/jameswt_mht/status/1676205911180734464?s=61&t=iTjDNxPOKywWT91Ny32OaA

3/8

After the Ursnif DLL was loaded in memory, a series of automated activities took place in a
very short timeframe. Here’s a visualization of the execution flow:

The malware used mshta.exe to run an encoded script from Registry Key via the
Explorer.exe parent process as part of the initial automated tasks.

C:\Windows\System32\mshta.exe” “about:<hta:application>
<script>Vsde=’wscript.shell’;resizeTo(0,2);eval(new

ActiveXObject(Vsde).regread(‘HKCU\\\Software\\AppDataLow\\Software\\Microsoft\
\98A2C439–17C5–8A1F-614C-3B5E25409F72\\\ToolAbout’));if(!window.flag)close()

</script>

Here is a breakdown of the script:

: This starting element creates an executable HTML Application loaded as a data URL.
:’ creates a Windows scripting host shell object.
: makes the application basically invisible.
‘: This accesses and reads the registry key specified, and then evaluates/runs the code
found within it.
: closes the script if a specific flag is not found.

The code within the registry was a PowerShell command designed to execute scripts
concealed within the specified registry key, all while using built-in aliases to obscure the
exact function being run.

The PowerShell command:

powershell.exe” new-alias -name ricvpy -value gp; new-alias -name xhpsqr -
value iex; xhpsqr ([System.Text.Encoding]::ASCII.GetString((ricvpy

“HKCU:Software\AppDataLow\Software\Microsoft\98A2C439–17C5–8A1F-614C-

3B5E25409F72”).MarkTime))

For a detailed explanation of the Ursnif execution flow, please see the relevant report that we
(The DFIR Report team) released back in January: Unwrapping Ursnifs Gifts. The TTPs are
identical.

We can detect and hunt for process execution events that are using command line
interpreters such as mshta.exe or powershell.exe to read, decode and execute strings
from the registry. (see Sigma rule on the IOC section at the end of the blog)

Persistence

Ursnif created a persistence through the registry run keys by adding an LNK file pointing to
the PowerShell executable and including parameters to execute a PowerShell script saved
on disk.

https://thedfirreport.com/2023/01/09/unwrapping-ursnifs-gifts/#execution

4/8

All registry key names and malicious artifacts are randomized with each execution by the
malware.

\REGISTRY\USER\
<SID>\Software\Microsoft\Windows\CurrentVersion\Run\ProcessFolder

cmd.exe /c start C:\\Users\\<user>\\ ProcessFolder.lnk -ep unrestricted -file

C:\\Users\\<user>\\ToolAbout.ps1"

Identify any Windows registry Run and RunOnce keys That contain parameters to
facilitate the execution of scripts under the C:\Users directory. Depending on the
environment, you may need to create a baseline of scripts that are scheduled to run on
startup and exclude them.

Defense Evasion

Throughout the intrusion, there have been many occasions where the malware used process
injection. Ursnif used remote process injection to execute a beacon by spawning a thread
under conhost.exe.

In a different example, Ursnif injected into explorer.exe to perform multiple functions.

A beacon running under the conhost.exe process was reaching out to malicious
infrastructure. This is suspicious behaviour, as conhost.exe should not be making
external connections, especially at high intervals. We can use this as an example case
to detect any unexpected Windows binary connections to hosts outside of our network.

Discovery

After the initial infection, Ursnif executed the following automated commands on the infected
host. The command’s output was saved as “.bin1” files in C:\Users\
<user>\Appdata\Local\Temp.

5/8

cmd /C “wmic computersystem get domain |more > C:\Users\
<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “echo — — — →> C:\Users\
<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “systeminfo.exe > C:\Users\
<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “net view >> C:\Users\
<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “nslookup 127.0.0.1 >> C:\Users\
<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “tasklist.exe /SVC >> C:\Users\
<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “driverquery.exe >> C:\Users\
<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “reg.exe query
“HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall” /s >> C:\Users\
<user>\AppData\Local\Temp\4FCE.bin1"cmd /C “nltest /domain_trusts >> C:\Users\
<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “nltest /domain_trusts /all_trusts >>
C:\Users\<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “net view /all /domain >>
C:\Users\<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “net config workstation >>
C:\Users\<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “net view /all >> C:\Users\
<user>\AppData\Local\Temp\4FCE.bin1”cmd /U /C “type C:\Users\
<user>\AppData\Local\Temp\4FCE.bin1 > C:\Users\<user>\AppData\Local\Temp\4FCE.bin &
del C:\Users\<user>\AppData\Local\Temp\4FCE.bin1”cmd /C “net use >> C:\Users\
<user>\AppData\Local\Temp\F7A7.bin1”cmd /C “echo — — — →> C:\Users\
<user>\AppData\Local\Temp\F7A7.bin1”cmd /U /C “type C:\Users\
<user>\AppData\Local\Temp\F7A7.bin1 > C:\Users\<user>\AppData\Local\Temp\F7A7.bin &
del C:\Users\<user>\AppData\Local\Temp\F7A7.bin1”

After executing the enumeration commands, the malware exfiltrated and deleted the files
with the .bin extension.

Furthermore, I observed many enumeration commands via the Hands-On-Keyboard (HOK)
activities. Below are the enumeration commands in question.

cmd.exe /C whoami/allcmd.exe /C net group “Domain Admins” /Domaincmd.exe /C
systeminfocmd.exe /C nltest /dclist: domain.localcmd.exe /C nltest
/domain_trustscmd.exe /C ipconfig /allcmd.exe /C whoami /allcmd.exe /C ping
<DomainController>.domain.localcmd.exe /k whoami /groupscmd.exe /k net usecmd.exe /k
arp -acmd.exe /k tasklistcmd.exe /k ping 8.8.8.8

We can detect the many auto-discovery commands that run in a small time frame,
usually within 1 minute from start to finish. Most initial access broker malware runs
similar discovery commands in a short time span. This detection technique can help
identify other malware or suspicious activity in our network.

Command and Control

Common control communication was established initially through Ursnif malware and later
on via Cobalt strike beacons. Please see below the atomic indicators related to the C2
infrastructure.

Ursnif VNC

6/8

Thanks to @0xThiebaut’s tool PCAPeek, I was able to reconstruct some of the VNC traffic.
More specifically, I was able to collect a threat actor’s clipboard data and collect some
valuable insights into their operations.

Use of LightShot capturing toolThe threat actors behind Ursnif appeared to make users of
LightShot, the screen-capturing tool. Throughout their HOK activity, I found many links in
their clipboard that pointed to an uploaded screenshot to https://prnt.sc. The screenshots
showed different details about the infected host, such as its network shares.

Misc Interesting Clipboard DataAlong with multiple copy-paste commands, there were the
servers that hosted the admin panel they used for this campaign. The URL paths and
parameters found as part of the clipboard data indicated sensitive server resources related to
the malware campaign.

In the interest of information gathering and ongoing threat intelligence efforts, I will not make
any of the information related to the admin panel public. The information is shared with
trusted groups of the infosec community.

VisualsBelow, you can see sanitized visuals of the threat actor’s HOK activity recovered
using PCAPeek.

IOC/IOA

Cobalt Strike C2

173.44.141.237:80170.130.165.159:80173.44.141.199:80152.89.198.29:80173–44–141–
47.nip.io

Ursnif C2

http://avas1t.de/in/loginq/...http://109.105.198.129/pictures/…
185.82.127.183:80http://31.172.83.49/pictures/…91.201.65.64:9955
(VNC)91.201.65.64:9989 (VNC)http://delideta.com/pictures/... (IP =
91.212.166.44)http://itwicenice.com/pictures/... (IP = 91.212.166.44)

https://twitter.com/0xThiebaut
https://github.com/0xThiebaut/PCAPeek/
https://app.prntscr.com/en/index.html
https://prnt.sc/

7/8

BeaconType: HTTPPort: 80SleepTime: 45000MaxGetSize: 2801745Jitter: 37PublicKey_MD5:
a37589ce24a7082ed1c6728b50d73d02C2Server: 173.44.141.237,/jquery-
3.3.1.min.jsUserAgent: Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like
GeckoHttpPostUri: /jquery-3.3.2.min.jsMalleable_C2_Instructions: Remove 1522 bytes
from the end Remove 84 bytes from the beginning
Remove 3931 bytes from the beginning Base64 URL-safe decode
XOR mask w/ random keyHttpGet_Metadata: ConstHeaders Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Referer:
http://code.jquery.com/ Accept-Encoding: gzip, deflate Metadata
base64url prepend “__cfduid=” header
“Cookie”HttpPost_Metadata: ConstHeaders Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Referer:
http://code.jquery.com/ Accept-Encoding: gzip, deflate SessionId
mask base64url parameter “__cfduid”
Output mask base64url
printHttpGet_Verb: GETHttpPost_Verb: POSTSpawnto_x86:
%windir%\syswow64\dllhost.exeSpawnto_x64:
%windir%\sysnative\dllhost.exeProxy_Behavior: Use IE settingsWatermark_Hash:
bfnETSwzb1Xsa2g6gr+auA==Watermark: 674054486bStageCleanup: TruebCFGCaution:
FalseKillDate: 0bProcInject_StartRWX: FalsebProcInject_UseRWX:
FalsebProcInject_MinAllocSize: 17500ProcInject_PrependAppend_x86: b’\x90\x90'
EmptyProcInject_PrependAppend_x64: b’\x90\x90'
EmptyProcInject_Execute: ntdll:RtlUserThreadStart CreateThread
NtQueueApcThread-s CreateRemoteThread
RtlCreateUserThreadProcInject_AllocationMethod: NtMapViewOfSection

Suricata Rules

ET MALWARE Ursnif Variant CnC Data Exfil
 ET MALWARE Ursnif Variant CnC Beacon 3
 ET MALWARE Ursnif Variant CnC Beacon — URI Struct M1 (_2B)

 ET MALWARE Ursnif Variant CnC Beacon — URI Struct M2 (_2F)
 ET HUNTING GENERIC SUSPICIOUS POST to Dotted Quad with Fake Browser 1

 ET EXPLOIT Possible Zerologon Phase 1/3 — NetrServerReqChallenge with 0x00 Client
Challenge (CVE-2020–1472)

 ET USER_AGENTS WinRM User Agent Detected — Possible Lateral Movement
 ET MALWARE Windows Microsoft Windows DOS prompt command Error not recognized

 ET MALWARE Windows dir Microsoft Windows DOS prompt command exit OUTBOUND
 ET MALWARE Windows TaskList Microsoft Windows DOS prompt command exit

OUTBOUND
 ET MALWARE Windows arp -a Microsoft Windows DOS prompt command exit OUTBOUND

 ET INFO Dotted Quad Host RAR Request
 ET MALWARE Cobalt Strike Malleable C2 JQuery Custom Profile M2

 ET MALWARE Cobalt Strike Activity (POST)
 ET MALWARE Cobalt Strike Beacon Activity (GET)

Sigma Rules

8/8

CustomUrsnif Discovery Commands RedirectionExplorer UAC Bypass via NOUACCHECK

Sigma RepoSuspicious Csc.exe Source File FolderUsage Of Web Request Commands And
CmdletsExplorer NOUACCHECK FlagShare And Session Enumeration Using Net.EXENon
Interactive PowerShell Process SpawnedSuspicious PowerShell Parameter
SubstringPowerShell Download PatternWhoami Utility ExecutionUrsnif LoaderMshta
Executing from Registry

Artifacts

b565aa423ca4ba6e8c6b208c22e5b056.dll —
894668791d06262dd16740235faa3b1672e2cb5cf171954f29abaca421c09265

ToolAbout.ps1–
6e8b848e7e28a1fd474bf825330bbd4c054346ad1698c68e7a59dd38232a940a

beacon.bin — 1324e7654a144c20637820a022d49c449cca1ff1d2c7e040bf23421d52146e93

Thank You Notes

A special thanks to @JAMESWT_MHT and @reecdeep for continuously sharing information
related to the latest campaigns. You make the world a safer place 🙏

References

https://github.com/tsale/Sigma_rules/blob/main/malware/Ursnif_cmd_redirection.yml
https://github.com/tsale/Sigma_rules/blob/main/malware/Explorer_NOUACCHECK.yml
https://github.com/SigmaHQ/sigma/blob/c0332a9d96f6c7804fcc85dd706caed889446a62/rules/windows/process_creation/proc_creation_win_csc_susp_folder.yml
https://github.com/SigmaHQ/sigma/blob/c0332a9d96f6c7804fcc85dd706caed889446a62/rules/windows/powershell/powershell_script/posh_ps_web_request_cmd_and_cmdlets.yml
https://github.com/SigmaHQ/sigma/blob/c0332a9d96f6c7804fcc85dd706caed889446a62/rules/windows/process_creation/proc_creation_win_explorer_nouaccheck.yml
https://github.com/SigmaHQ/sigma/blob/c0332a9d96f6c7804fcc85dd706caed889446a62/rules/windows/process_creation/proc_creation_win_net_share_and_sessions_enum.yml
https://github.com/SigmaHQ/sigma/blob/c0332a9d96f6c7804fcc85dd706caed889446a62/rules/windows/process_creation/proc_creation_win_powershell_non_interactive_execution.yml
https://github.com/SigmaHQ/sigma/blob/c0332a9d96f6c7804fcc85dd706caed889446a62/rules/windows/process_creation/proc_creation_win_powershell_susp_parameter_variation.yml
https://github.com/SigmaHQ/sigma/blob/c0332a9d96f6c7804fcc85dd706caed889446a62/rules/windows/process_creation/proc_creation_win_powershell_download_patterns.yml#L4
https://github.com/SigmaHQ/sigma/blob/c0332a9d96f6c7804fcc85dd706caed889446a62/rules/windows/process_creation/proc_creation_win_whoami_execution.yml
https://github.com/The-DFIR-Report/Sigma-Rules/blob/a0a5cab426e3464ed2ae104af43c7c91b0a4dabf/rules/windows/process_creation/proc_creation_win_ursnif_loader.yml
https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/rules/windows/process_creation/proc_creation_win_mshta.yml

