
1/18

July 15, 2023

Deep Analysis of GCleaner
n1ght-w0lf.github.io/malware analysis/gcleaner-loader/

Abdallah Elshinbary

Malware Analysis & Reverse Engineering Adventures.

10 minute read

Howdy! I’m finally back with another malware deep dive report. This time we are digging into
GCleaner.

https://n1ght-w0lf.github.io/malware%20analysis/gcleaner-loader/

2/18

GCleaner is a Pay-Per-Install (PPI) loader first discovered in early 2019, it has been used to
deploy other malicious families like Smokeloader, Amadey, Redline and Raccoon.

We will be working on this sample:

(SHA256: 020d370b51711b0814901d7cc32d8251affcc3506b9b4c15db659f3dbb6a2e6b)

Initial Triage

Let’s start by running the sample in Triage sandbox to get an overview of what it does.

We can see from the process tree that it drops and runs another binary out of "%APPDATA%"
folder with a seemingly random name then it kills itself using "taskkill" and deletes the
sample binary from disk.

The network tab shows communications to different IP addresses which are considered as
C2 servers in Triage’s malware config tab. Each C2 has a different URL path, we will dig
deeper to find out what each of them is responsible for.

Right when we open the sample in IDA we don’t have much to look at, there are some
interesting strings and API imports but not very helpful to start with.

https://medium.com/csis-techblog/gcleaner-garbage-provider-since-2019-2708e7c87a8a
https://tria.ge/230711-rx3c1saf31
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/1.png
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/2.png

3/18

We can see a repeated pattern across the code where some values are pushed into the
stack then xored with 0x2E, so we first need to decrypt these values.

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/3.png

4/18

String Decryption

Automating the decryption for stack strings in this sample can be a bit tricky, luckily I noticed
a specific instruction that occurs after loading the encrypted strings into stack (cmp eax,
[reg+4]).

So we can find all occurrences of this instruction then walk back to find the mov instructions
and get the encrypted values. Let’s apply this to an IDA python script.

Lowest address used in the program
addr = idc.get_inf_attr(INF_MIN_EA)

while True:
 # Search for "cmp eax, [reg+4]"
 addr = ida_search.find_binary(addr, idc.BADADDR, "3B ?? 04 00 00 00", 16,
ida_search.SEARCH_NEXT | ida_search.SEARCH_DOWN)
 if addr == idc.BADADDR:
 break

 enc_bytes = b''
 # Search for possible stack strings in the previous 12 instructions
 for i in range(12):
 ea = idc.prev_head(ea)
 if (idc.print_insn_mnem(ea) == "mov" and
 idc.get_operand_type(ea, 0) == idc.o_displ and
 idc.get_operand_type(ea, 1) == idc.o_imm):
 # Get the value of the second operand
 operand_value = idc.get_operand_value(ea, 1)

The returned operand value is an integer but we need to store it as a byte array, so we first
need to figure out the size of that operand to store it correctly.

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/4.png

5/18

 # Get the size of the second operand
 insn = ida_ua.insn_t()
 ida_ua.decode_insn(insn, ea)
 operand_size = ida_ua.get_dtype_size(insn.Op2.dtype)

 # Specify the correct data type
 if operand_size == 4:
 operand_bytes = struct.pack("<I", operand_value)
 elif operand_size == 2:
 operand_bytes = struct.pack("<H", operand_value)
 else:
 operand_bytes = struct.pack("<B", operand_value)

 enc_bytes = operand_bytes + enc_bytes

One more thing I noticed is that some strings use a combination of stack values and other
values stored in the ".rdata" section (retrieved using the XMM instruction "movaps").

So we can search for this "movaps" instruction after the "cmp" instruction, if found we can
read the values stored at its operand address and append it to the encrypted bytes.

 # Find possible xmmword movaps
 xmmword_addr = ida_search.find_binary(addr, addr+50, pattern2, 16,
ida_search.SEARCH_NEXT | ida_search.SEARCH_DOWN)
 if xmmword_addr != idc.BADADDR:
 # Read the xmmword value
 xmmword_value = idc.get_bytes(get_operand_value(xmmword_addr, 1), 16)
 enc_bytes = xmmword_value + enc_bytes

Finally we can xor the encrypted values with 0x2E (this key has been the same for all
GCleaner samples I looked at).

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/5.png

6/18

 # Decrypt and strip encrypted bytes
 dec_bytes = bytes(c ^ 0x2E for c in enc_bytes)
 dec_str = dec_bytes.strip(b'\x00').decode('utf-8')

 if len(dec_str) != 0:
 print(f"{hex(addr)} --> {dec_str}")

 # Set a comment with the decrypted string
 if dec_str and comment_addr != idc.BADADDR:
 set_comment(comment_addr, dec_str)

Here is the list of decrypted strings:

Expand to see more
 45.12.253.56

 45.12.253.72
 45.12.253.98
 45.12.253.75/dll.php

 mixinte
 mixtwo
 B

 USERPROFILE
 CCleaner

 VLC media player
 Acrobat Reader DC

 Russian
 admin

 Shah
 testBench

 taskmgr
 Taskmgr

 wireshark
 Process Hacker

 Wireshark
 C:\Program Files

 C:\ProgramData
 C:\Temp

 C:\Program Files
 C:\ProgramData
 C:\Temp

 /advertisting/plus.php?s=
 &str=mixtwo

 &substr=
 /default/stuk.php

7/18

 /default/puk.php
 NOSUB
 chk
 /chk

 test
 We can now see the C2 IPs, URL paths and some other interesting strings. Let’s keep going.

Anti Checks (or is it..?)

GCleaner is filled with host checks but weirdly enough it doesn’t do anything them, maybe
they were like test features? copy-paste code? not really sure but let’s quickly go though
them.

Checking username

Get the current username using "GetUserNameA()" and compare it to hardcoded names
("admin", "Shah", "testBench").

Checking foreground window

Get the title of the foreground window using "GetWindowTextA()" and compare it to
hardcoded strings.

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/6.png

8/18

Checking desktop files

Search for Desktop files with specific strings in their name ("CCleaner", "VLC media
player", "Acrobat Reader DC").

Checking locale and keyboard layout

Check if the computer locale is Russian and compare the keyboard layout against specific
values (CIS countries).

Dropped Binary

Looking back at the process tree we need to figure out where does that child binary with
random name comes from. "%APPDATA%\{846ee340-7039-11de-9d20-
806e6f6e6963}\34LMAylZs6FixF.exe"

We can see below that the sample reads the "%APPDATA%" path using "getenv()" then
creates a random directory using the GUID of the current hardware profile, if retrieving the
hardware profile failed it will fall back to generating a random folder name. Other possible
locations for creating the random directory are "C:\Program Files", "C:\Temp",
"C:\ProgramData" (fallback locations).

Next it generates a random file name, appends ".exe" extension to it then drops it to the
newly created directory and runs it from there.

The binary file is hardcoded into the parent sample.

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/7.png
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/8.png

9/18

All that binary child does is…well…sleep for 10 seconds, that’s it :|

C2 Communications

The actors behind GCleaner have been known to use BraZZZers fast flux service to hide
their infrastructure, it works more like a proxy system between the victims and the real C2
server.

Before reaching out to the C2 servers, GCleaner adds hardcoded HTTP headers (could be
used for a network sig) an a custom user-agent to each C2 request.

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/9.png
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/10.png
https://medium.com/csis-techblog/inside-view-of-brazzzersff-infrastructure-89b9188fd145
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/11.png

10/18

Now to figure out what each C2 request is responsible for.

First C2

IP: 45[.]12.253.56
UA: OK
PCAP:

This C2 is likely responsible for bot registration. The sample will only continue execution if
the server response is "0" or "1", otherwise it goes to sleep and tries again.

The "str" and "substr" parameters in the C2 request above are possibly referring to the
campaign ID, GCleaner has been known to use similar values in the past like "usone",
"ustwo", "euthree", "cafive", "mixshop", …

Second C2

IP: 45[.]12.253.72
UA: OK
PCAP:

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/12.png
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/13.png

11/18

The first request to this C2 is responsible for getting an AES key.

The key length must be between 10 and 100 bytes, otherwise it breaks the execution.

The second request is responsible for getting an AES encrypted PE file (notice the filename
in the response headers!), That PE file is decrypted using the key from the previous request.

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/14.png
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/15.png
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/16.png

12/18

The decryption routine is pretty trivial, the sample first calculates the SHA256 hash of the
server key then derives the session key used for decryption (AES_128).

After that it loads the decrypted PE file into memory (without touching disk) to get the
address of an export function called "GetLicInfo" which is used in the next stage.

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/17.png
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/18.png

13/18

Downloaded DLL

Before going further we first need to take a look at the downloaded PE file. To be able to
analyze it we can either use the debugger to dump the decrypted file or get the encrypted
response from the PCAP and decrypt it manually.

We can easily implement the decryption code in Python as follow:

import hashlib
from Crypto.Cipher import AES

enc = open("puk.php.bin", "rb").read()

key = "kvQoRqtcCyMtHmQyQXOUu".encode("utf-16le") # Important to encode!!
sha256_hash = hashlib.sha256(key)
aes_key = sha256_hash.digest()[:16]

cipher = AES.new(aes_key, mode=AES.MODE_CBC, IV=b"\x00"*16)
dec = cipher.decrypt(enc)

open("out.bin", "wb").write(dec)

Now let’s see what this export function "GetLicInfo" does.

Basically it sends an http request to the supplied C2 server then checks the response length,
if the length is greater than 2048 bytes it creates a a new directory with a random name
under "%APPDATA%" or "%TEMP%" folder then generates a random filename and appends
".exe" extension to it.

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/19.png
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/20.png

14/18

Finally it writes the server response to a disk file with the generated random filename and
executes that file.

Third C2

IP: 45[.]12.253.75
UA: B
PCAP:

This C2 is responsible for downloading further payloads, notice the user-agent used here is
the one from the decrypted strings list unlike the previous 2 C2s.

The address is supplied to the external function "GetLicInfo" which downloads and
executes the payload as we stated above. GCleaner tries to get a payload from the server
for 10 iterations with a sleep period of 2 seconds between every try.

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/21.png
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/22.png

15/18

If no further payload is received from the server the samples kills its process and deletes the
parent file from disk.

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/23.png

16/18

Forth C2

IP: 45[.]12.253.98

This C2 wasn’t used in the sample we are looking at.

Config Extraction

We can use the IDA python script we used for string decryption to build a standalone config
extractor as most of the interesting stuff are in the decrypted strings list.

Here’s the output of the code after extracting the useful information:

The code can be found here.

(this script is not optimized for production, it’s just for research purposes)

https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/24.png
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/25.png
https://github.com/n1ght-w0lf/MalwareAnalysis/tree/master/GCleaner

17/18

Hunting

Urlscan

The URL path of the first C2 request can be a good candidate to hunt for more C2s on
urlscan.

I looked at more samples and found these two URL patterns:

s=NOSUB&str=...&substr=...

sub=NOSUB&stream=...&substream=...

So we can use the "page.url" field to search for the first part of these patterns.

Yara

We saw that many strings were encrypted but we can use some of the hardcoded ones to
create a simple yara rule for hunting more samples.

https://urlscan.io/search/#page.url%3A%22sub%3DNOSUB%26stream%3D%22%20%7C%7C%20page.url%3A%22s%3DNOSUB%26str%3D%22
https://n1ght-w0lf.github.io/assets/images/malware-analysis/gcleaner/26.png

18/18

rule GCleaner {
 meta:
 description = "Detects GCleaner payload"
 author = "Abdallah Elshinbary (@_n1ghtw0lf)"
 hash1 = "020d370b51711b0814901d7cc32d8251affcc3506b9b4c15db659f3dbb6a2e6b"
 hash2 = "73ed1926e850a9a076a8078932e76e1ac5f109581996dd007f00681ae4024baa"

 strings:
 // Kill self
 $s1 = "\" & exit" ascii fullword
 $s2 = "\" /f & erase " ascii fullword
 $s3 = "/c taskkill /im \"" ascii fullword
 // Anti checks
 $s4 = " Far " ascii fullword
 $s5 = "roxifier" ascii fullword
 $s6 = "HTTP Analyzer" ascii fullword
 $s7 = "Wireshark" ascii fullword
 $s8 = "NetworkMiner" ascii fullword
 // HTTP headers
 $s9 = "Accept-Language: ru-RU,ru;q=0.9,en;q=0.8" ascii fullword
 $s10 = "Accept-Charset: iso-8859-1, utf-8, utf-16, *;q=0.1" ascii fullword
 $s11 = "Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0" ascii
fullword
 $s12 = "Accept: text/html, application/xml;q=0.9, application/xhtml+xml,
image/png, image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1" ascii fullword

 condition:
 uint16(0) == 0x5a4d and
 10 of them
}

References

https://medium.com/csis-techblog/gcleaner-garbage-provider-since-2019-
2708e7c87a8a

https://medium.com/csis-techblog/inside-view-of-brazzzersff-infrastructure-
89b9188fd145

https://medium.com/csis-techblog/gcleaner-garbage-provider-since-2019-2708e7c87a8a
https://medium.com/csis-techblog/inside-view-of-brazzzersff-infrastructure-89b9188fd145

