
1/12

July 5, 2023

BlueNoroff | How DPRK’s macOS RustBucket Seeks to
Evade Analysis and Detection

sentinelone.com/blog/bluenoroff-how-dprks-macos-rustbucket-seeks-to-evade-analysis-and-detection/

Back in April, researchers at JAMF detailed a sophisticated APT campaign targeting macOS
users with multi-stage malware that culminated in a Rust backdoor capable of downloading
and executing further malware on infected devices. ‘RustBucket’, as they labeled it, was
attributed with strong confidence to the BlueNoroff APT, generally assumed to be a
subsidiary of the wider DPRK cyber attack group known as Lazarus.

In May, ESET tweeted details of a second RustBucket variant targeting macOS users,
followed in June by Elastic’s discovery of a third variant that included previously unseen
persistence capabilities.

RustBucket is noteworthy for the range and type of anti-evasion and anti-analysis measures
seen in various stages of the malware. In this post, we review the multiple malware payloads
used in the campaign and highlight the novel techniques RustBucket deploys to evade
analysis and detection.

RustBucket Stage 1 | AppleScript Dropper

https://www.sentinelone.com/blog/bluenoroff-how-dprks-macos-rustbucket-seeks-to-evade-analysis-and-detection/
https://www.jamf.com/blog/bluenoroff-apt-targets-macos-rustbucket-malware/
https://www.sentinelone.com/blog/lazarus-operation-interception-targets-macos-users-dreaming-of-jobs-in-crypto/
https://twitter.com/ESETresearch/status/1656385173968019456?s=20
https://www.elastic.co/security-labs/DPRK-strikes-using-a-new-variant-of-rustbucket

2/12

The attack begins with an Applet that masquerades as a PDF Viewer app. An Applet is
simply a compiled AppleScript that is saved in a .app format. Unlike regular macOS
applications, Applets typically lack a user interface and function merely as a convenient way
for developers to distribute AppleScripts to users.

The threat actors chose not to save the script as run-only, which allows us to easily
decompile the script with the built-on osadecompile tool (this is, effectively, what Apple’s GUI
Script Editor runs in the background when viewing compiled scripts).

Stage 1 executes three ‘do shell script’ commands to set up Stage 2
The script contains three do shell script commands, which serve to download and execute
the next stage. In the variant described by JAMF, this was a barebones PDF viewer called
Internal PDF Viewer. We will forgo the details here as researchers have previously
described this in detail.

Stage 1 writes the second stage to the /Users/Shared/ folder, which does not require
permissions and is accessible to malware without having to circumvent TCC. The Stage 1
variant described by Elastic differs in that it writes the second stage as a hidden file to
/Users/Shared/.pd.

The Stage 1 is easily the least sophisticated and easily detected part of the attack chain. The
arguments of the do shell script commands should appear in the Mac’s unified logs and
as output from command line tools such as the ps utility.

Success of the Stage 1 relies heavily on how well the threat actor employs social
engineering tactics. In the case described by JAMF, the threat actors used an elaborate ruse
of requiring an “internal” PDF reader to read a supposedly confidential or ‘protected’
document. Victims were required to execute the Stage 1 believing it to be capable of reading
the PDF they had received. In fact, the Stage 1 was only a dropper, designed to protect the
Stage 2 should anyone without the malicious PDF stumble on it.

RustBucket Stage 2 | Payloads Written in Swift and Objective-C

We have found a number of different Stage 2 payloads, some written in Swift, some in
Objective-C, and both compiled for Intel and Apple silicon architectures (see IoCs at the end
of the post). The sizes and code artifacts of the Stage 2 samples vary. The universal ‘fat’
binaries vary between 160Kb and 210Kb.

https://attack.mitre.org/techniques/T1059/002/
https://www.sentinelone.com/labs/fade-dead-adventures-in-reversing-malicious-run-only-applescripts/
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptLangGuide/reference/ASLR_cmds.html#//apple_ref/doc/uid/TP40000983-CH216-SW40
https://www.sentinelone.com/labs/bypassing-macos-tcc-user-privacy-protections-by-accident-and-design/

3/12

Samples of RustBucket Stage 2 vary in size
Across the samples, various username strings can be found. Those we have observed in
Stage 2 binaries so far include:

/Users/carey/
/Users/eric/
/Users/henrypatel/
/Users/hero/

Despite the differences in size and code artifacts, the Stage 2 payloads have in common the
task of retrieving the Stage 3 from the command and control server. The Stage 2 payload
requires a specially-crafted PDF to unlock the code which would lead to the downloading of
the Stage 3 and provide an XOR’d key to decode the obfuscated C2 appended to the end of
the PDF.

In some variants, this data is executed in the downAndExecute function as described by
previous researchers; in others, we note that download of the next stage is performed in the
aptly-named down_update_run function. This function itself varies across samples. In
b02922869e86ad06ff6380e8ec0be8db38f5002b, for example, it runs a hardcoded command
via system().

4/12

Stage 2 executes a shell command via the system() call to retrieve and run Stage 3
However, the same function in other samples, (e.g.,
d5971e8a3e8577dbb6f5a9aad248c842a33e7a26) use NSURL APIs and entirely different
logic.

Code varies widely among samples, possibly suggesting different developers
Researchers at Elastic noted, further, that in one newer variant of Stage 2 written in Swift,
the User-Agent string is all lowercase, whereas in the earlier Objective-C samples they are
not.

5/12

User-Agent string is subtly changed from the Objective-C to Swift versions of Stage 2
Although User-Agent strings are not inherently case sensitive, if this was a deliberate change
it is possible the threat actors are parsing the User-Agent strings on the server side to weed
out unwanted calls to the C2. That said, sloppiness around case-sensitivity is seen
elsewhere in RustBucket samples (e.g., “/users/shared” in Stage 1), and the case variance
may be no more than a product of different developers with different standards of rigor.

In the most recent samples, the payload retrieved by Stage 2 is written to disk
as“ErrorCheck.zip” in _CS_DARWIN_USER_TEMP (aka $TMPDIR typically at
/var/folders/…/../T/) before being executed on the victim’s device.

RustBucket Stage 3 | New Variant Drops Persistence LaunchAgent

The Stage 3 payload has so far been seen in two distinct variants:

A: 182760cbe11fa0316abfb8b7b00b63f83159f5aa Stage3
B: b74702c9b82f23ebf76805f1853bc72236bee57c ErrorCheck, System Update

Both variants are Mach-O universal binaries compiled from Rust source code. Variant A is
considerably larger than B, with the universal binary of the former weighing in at 11.84MB
versus 8.12MB for variant B. The slimmed-down newer variant imports far fewer crates and
makes less use of the sysinfo crate found in both. Notably, variant B does away with the webT
class seen in variant A for gathering environmental information and checking for execution in
a virtual machine via querying the SPHardwareDataType value of system_profiler.

https://crates.io/crates/sysinfo

6/12

The webT class appears in variant A of the Stage 3 payload
However, variant B has not scrubbed all webT artifacts from the code and reference to the
missing module can still be found in the strings.

18070 0x0032bdf4 0x10032bdf4 136 137
ascii /Users/carey/Dev/MAC_DATA/MAC/Trojan/webT/target/x86_64-apple-
darwin/release/deps/updator-7a0e7515c124fac6.updator.ab9d0eaa-cgu.0.rcgu.o

A string referencing the missing webT module can still be found in Stage 3 variant B
The substring “Trojan”, which does not appear in earlier variants, is also found in the file path
referenced by the same string.

7/12

Importantly, variant B contains a persistence mechanism that was not present in the earlier
versions of RustBucket. This takes the form of a hardcoded LaunchAgent, which is written to
disk at ~/Library/LaunchAgents/com.apple.systemupdate.plist. The ErrorCheck file
also writes a copy of itself to ~/Library/Metadata/System Update and serves as the target
executable of the LaunchAgent.

Since the Stage 3 requires a URL as a launch parameter this is provided in the property list
as a Program Argument. Curiously, the URL passed to ErrorCheck on launch is appended to
this hardcoded URL in the LaunchAgent plist.

RustBucket LaunchAgent concatenates the hardcoded URL with the one supplied at launch
Appending the supplied <url> value to the hardcoded URL can be clearly seen in the code,
though whether this is an error or accounted for in the way the string is parsed by the binary
we have yet to determine.

Much of the malware functionality found in variant A’s webT methods is, in variant B, now
buried in the massive sym.updator::main function. This is responsible for surveilling the
environment and parsing the arguments received at launch, processing commands,
gathering disk information and more. This massive function is over 22Kb and contains 501
basic blocks. Our analysis of this is ongoing but aside from the functions previously
described by Elastic, this function also gathers disk information, including whether the host
device’s disk is SSD or the older, rotational platter type.

https://developer.apple.com/documentation/iokit/kiopropertymediumtyperotationalkey

8/12

Among updator::main’s many tasks is gathering disk information
After gathering environmental information, the malware calls sym.updator::send_request to
post the data to the C2 using the following User-Agent string (this time not in lowercase):

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)

The malware compares the response against two hardcoded values, 0x31 and 0x30.

Checking the values of the response from the C2
In the sample analyzed by Elastic, the researchers reported that 0x31 causes the malware to
self-terminate while 0x30 allows the operator to drop a further payload in
the _CS_DARWIN_USER_TEMP directory.

The choice of Rust and the complexity of the Stage 3 binaries suggest the threat actor was
willing to invest considerable effort to thwart analysis of the payload. As the known C2s were
unresponsive by the time we conducted our analysis, we were unable to obtain a sample of
the next stage of the malware, but already at this point in the operation the malware has
gathered a great deal of host information, enabled persistence and opened up a backdoor for
further malicious activity.

9/12

SentinelOne Protects Against RustBucket Malware

SentinelOne Singularity protects customers from known components of the RustBucket
malware. Attempts to install persistence mechanisms on macOS devices are also
dynamically detected and blocked by the agent.

SentinelOne Agent User Interface

SentinelOne Singularity Console

Conclusion

10/12

The RustBucket campaign highlights that the threat actor, whom previous researchers have
confidently attributed to DPRK’s BlueNoroff APT, has invested considerable resources in
multi-stage malware aimed specifically at macOS users and is evolving its attempts to thwart
analysis by security researchers.

The extensive effort made to evade analysis and detection in itself shows the threat actor is
aware of the growing adoption of security software by organizations with macOS devices in
their fleets, as security teams have increasingly begun to see the need for better protection
than provided out-of-the-box. SentinelOne continues to track the RustBucket campaign and
our analysis of the known payloads is ongoing.

To see how SentinelOne can help safeguard your organization’s macOS devices, contact us
for more information or request a free demo.

Indicators of Compromise

Stage 2 Mach-Os

SHA1 Arch Lang

0df7e1d3b3d54336d986574441778c827ff84bf2 FAT objc

27b101707b958139c32388eb4fd79fcd133ed880 ARM objc

338af1d91b846f2238d5a518f951050f90693488 ARM objc

5304031dc990790a26184b05b3019b2c5fa7022a FAT swift

72167ec09d62cdfb04698c3f96a6131dceb24a9c ARM objc

7f9694b46227a8ebc67745e533bc0c5f38fdfa59 ARM objc

963a86aab1e450b03d51628797572fe9da8410a2 FAT objc

9676f0758c8e8d0e0d203c75b922bcd0aeaa0873 FAT objc

a7f5bf893efa3f6b489efe24195c05ff87585fe3 ARM swift

ac08406818bbf4fe24ea04bfd72f747c89174bdb x86 objc

acf1b5b47789badb519ff60dc93afa9e43bbb376 x86 swift

b02922869e86ad06ff6380e8ec0be8db38f5002b x86 objc

d5971e8a3e8577dbb6f5a9aad248c842a33e7a26 x86 objc

e0e42ac374443500c236721341612865cd3d1eec FAT objc

e275deb68cdff336cb4175819a09dbaf0e1b68f6 FAT swift

https://www.sentinelone.com/contact/
https://www.sentinelone.com/request-demo/

11/12

ed4f16b36bc47a701814b63e30d8ea7a226ca906 FAT swift

fd1cef5abe3e0c275671916a1f3a566f13489416 x86 objc

Stage 3 Version A Mach-Os

SHA1 Arch Lang

182760cbe11fa0316abfb8b7b00b63f83159f5aa FAT rust

3cc19cef767dee93588525c74fe9c1f1bf6f8007 ARM rust

831dc7bc4a234907d94a889bcb60b7bedf1a1e13 x86 rust

8e7b4a0d9a73ec891edf5b2839602ccab4af5bdf x86 rust

Stage 3 Version B Mach-Os

SHA1 Arch Lang

14165777bc48b49eb1fa9ad8fe3cb553565c26c2 FAT rust

69f24956fb75beb9b93ef974d873914500e35601 ARM rust

8a1b32ab8c2a889985e530425ae00f4428c575cc FAT rust

8f7da0348001461fc5a1da99b89c571050de0aff x86 rust

a973d201c23b68c5d25ba8447b04f090c20bf6d4 ARM rust

b74702c9b82f23ebf76805f1853bc72236bee57c FAT rust

cd8f41b91e8f1d8625e076f0a161e46e32c62bbf x86 rust

Malicious PDFs

SHA1 Name

469236d0054a270e117a2621f70f2a494e7fb823 DOJ Report on Bizlato
Investigation.pdf

574bbb76ef147b95dfdf11069aaaa90df968e542 Readme.pdf

7e69cb4f9c37fad13de85e91b5a05a816d14f490 InvestmentStrategy(Protected).pdf

7f8f43326f1ce505a8cd9f469a2ded81fa5c81be Jump Crypto Investment
Agreement.pdf

12/12

be234cb6819039d6a1d3b1a205b9f74b6935bbcc DOJ Report on Bizlato
Investigation_asistant.pdf

e7158bb75adf27262ec3b0f2ca73c802a6222379 Daiwa Ventures.pdf

Stage 1 Applications (.zip)

0738687206a88ecbee176e05e0518effa4ca4166
 0be69bb9836b2a266bfd9a8b93bb412b6e4ce1be
 5933f1a20117d48985b60b10b5e42416ac00e018
 7a5d57c7e2b0c8ab7d60f7a7c7f4649f33fea8aa

 7e1870a5b24c78a5e357568969aae3a5e7ab857d
 89301dfdc5361f1650796fecdac30b7d86c65122

 9121509d674091ce1f5f30e9a372b5dcf9bcd257
 9a5f6a641cc170435f52c6a759709a62ad5757c7
 a1a85cba1bc4ac9f6eafc548b1454f57b4dff7e0

 ca59874172660e6180af2815c3a42c85169aa0b2
 d9f1392fb7ed010a0ecc4f819782c179efde9687

 e2bcdfbda85c55a4d6070c18723ba4adb7631807

AppleScript main.scpt
 dabb4372050264f389b8adcf239366860662ac52

Communications
 cloud[.]dnx.capital
 crypto.hondchain[.]com.

File Paths

$TMPDIR/ErrorCheck.zip
/Users/Shared/1.zip
/Users/Shared/Internal PDF Viewer.app
/Users/Shared/.pd
~/Library/Metadata/System Update
~/Library/LaunchAgents/com.apple.systemupdate.plist

