Reversing a recent IcedID Crypter

2 leandrofroes.github.io/posts/Reversing-a-recent-lcedID-Crypter/

Leandro Fróes

July 4, 2023

Posted Jul 4, 2023 Updated Jul 4, 2023 By 17 min read

Intro

Last week a friend shared a <u>sample</u> of a recent IcedID malware using an interesting Crypter and although there's nothing new regarding the final payload (it's just the classical IcedID Lite Loader) the analysis of the Crypter was funny, so I decided to take some time to reverse it and share my analysis notes here.

To be honest I'm not that familiar with crypters in general so I ended up doing the analysis not knowing if the crypter was known or not and after finishing the analysis I ended up noticing it's actually a kind of variant of a Crypter named Snow. According to a very nice

<u>report</u> from IBM, Snow is a new/active crypter that has been used by malwares like Pikabot, IcedID and Qakbot and that has some code overlap indicating this is a sucessor of the Hexa crypter.

Before we start, it's worth to mention that I cleaned the code in IDA (at least a good part of it) so if you open this file in your IDA or whatever framework it might not match exactly what you'll see here. I decided to use my clean version in the screenshots to make it easier to the reader to understand the explanation. Also, since the crypter stages contains a lot of junk code splitted in multiple branches I decided to rely on the decompiler most part of the time.

General execution flow

The analyzed malware is a 64 bits DLL file and it's execution starts by calling an exported function named vcab (usually via the rundll32.exe binary). A parameter named /k is passed to the file as well as it's value. In the analyzed sample the parameter value passed is the string zefirka748:

rundll32.exe mw.dll,vcab /k zefirka748

If we take a quick look at the file statically we can notice that there's a lot of exports available other than this "vcab":

Na	me	Address	Ordinal	
f	vcab	000000065855F80	1	
f	theora_version_number	000000065B41480	2	
f	theora_decode_header	000000065B42020	3	
f	theora_decode_init	000000065B41F00	4	
f	theora_decode_packetin	000000065B421A0	5	
f	theora_decode_YUVout	000000065B42200	6	
f	theora_control	000000065B41730	7	
f	theora_packet_isheader	000000065B418D0	8	
f	theora_packet_iskeyframe	000000065B418E0	9	
f	theora_granule_shift	000000065B418F0	10	
f	theora_granule_frame	000000065B41750	11	
f	theora_granule_time	000000065B41780	12	
f	theora_info_init	000000065B41490	13	
f	theora_info_clear	000000065B41520	14	
f	theora_dear	000000065B41600	15	
f	theora_comment_init	000000065B41900	16	٨.
f	theora_comment_add	000000065B41940	17	101
f	theora_comment_add_tag	000000065B41950	18	
f	theora_comment_query	000000065B41910	19	
f	theora_comment_query_count	000000065B41920	20	
f	theora_comment_clear	000000065B41930	21	
f	th_version_string	000000065B51CF0	22	
f	th_version_number	000000065B51D00	23	
f	th_decode_headerin	000000065B422A0	24	
f	th_decode_alloc	000000065B442E0	25	
f	th_setup_free	000000065B42D30	26	
f	th_decode_ctl	000000065B44780	27	
f	th_decode_packetin	000000065B448B0	28	
f	th_decode_ycbcr_out	000000065B4A620	29	
f	th_decode_free	000000065B44710	30	
f	th_packet_isheader	000000065B51D10	31	
f	th_packet_iskeyframe	000000065B51D30	32	
f	th_granule_frame	000000065B55EA0	33	
f	th_granule_time	000000065B55F00	34	

Malware export table

A simple Google search would tell us this seems to be some sort of Trojanized version of a <u>library</u> that implements the Theora video compression format. If we search for the "vcab" export in the <u>library's export list</u> we find zero results and that kind of confirms to us that this export is in fact suspicious and that probably the whole malicious actions would start from there.

Once the export function is executed the malware executes multiple stages (basically shellcodes) and ends up loading and executing the final payload, which is the IcedID Lite Loader.

Stage 0 (vcab export)

Cmdline parameter checking

The first thing performed by this export function is check if the process cmdline has a parameter named /k and a value for it. At this point there's no checks regarding the value passed and the content is just saved for further usage.

responsible for getting the cmdline parameter.

Crypter configuration

The crypter reads and manipulates a lot of fields from what seems to be it's configuration. These fields are splitted in multiple sections such as .text and /81 and contains information like encrypted shellcodes, export function names, shellcode sizes, and more.

In the analyzed sample, the configuration is present 0×16735 bytes after the base address of the malware DLL module. In order to read the configuration the malware gets the current module base address and adds the mentioned RVA to it.

The module base address is obtained by using the function responsible for getting the config offset as a base address and then searching backwards until it finds both the PE Signature and the "MZ" Signature:

Get config offset function.

Get module base function.

The mentioned config has something similar to the following format:

```
struct MAIN_CONFIG_INFO
  DWORD init_export_str_offset;
  DWORD stage2_offset;
  DWORD stage2_size;
  DWORD stage3_offset;
  DWORD stage3_size;
  DWORD stage1_offset;
  DWORD stage1_size;
  DWORD stage4_offset;
  DWORD stage4_size;
  DWORD
main_payload_info_offset;
  DWORD
main_payload_compressed_size;
  DWORD config_xor_key;
};
```

The "offset" word here is actually an RVA since those are added to the main module base address.

API function resolving

Once the necessary information is obtained 3 functions are resolved in runtime: VirtualAlloc, LoadLibraryA and VirtualProtect. Those functions are resolved via the classic API Hashing technique and the algorithm used is the well known Metasploit ROR13 algorithm. To make my life easier during static analysis I used the nice <u>HashDB</u> plugin from OALabs to recognize the function hashes used.

The API Hashing technique is basically the parsing of the Loaded Modules List from PEB as well as the Export Table from the target modules. Each export name entry would have it's hash calculated using the hashing algorithm and the result is compared against the

hashes specified by the malware. Once the desired hash is found the export address is returned.

Stage 2, 3 and 4 decryption

With the config in hands the next stages content (2, 3 and 4 specifically) is read and written to a memory location allocated using VirtualAlloc. A key is then read from the config (5c 3b 0c 00 in this case) and is used as a multibyte XOR key to "decrypt" (well, it's just XORed) the mentioned stages:

Address	He	x															ASCII		
000000065B56735	2F	67	01	00	E1	9A	08	00	4A	00	00	00	2B	9B	08	00	/gáJ+	— .	
000000065856745	8F	01	00	00	D6	88	08	00	OB	12	00	00	BA	9C	08	00	ö	-	XOR
000000065B56755	4E	0C	00	00	08	Α9	08	00	AD	1E	00	00	5C	3B	0C	00	N		
000000065B56765	FD	31	0F	FD	C9	0F	6F	E6	OF	FD	CD	0F	F9	F2	0F	FD	ý1.ýÉ.oæ.ýÍ.ùò.ý		
000000000000000000000000000000000000000	0.0	05	65	4.4	40	05	50	2.0	OF.	50	D.4	00	OF.	50	5.0	2.2	18 - 16 26 (mail		
key located in the	e m	nalv	var	e c	onf	ïg.													

```
key_len = w_get_cmdline_params(cmdline_param_xor_key, 0x19u);
if ( xor_key_len )
 current_module_base = mw_get_current_module_base(mw_get_first_config_offset);
 mw_config = &current_module_base[mw_get_first_config_offset()];
 api_table_hashes = 0x91AFCA54EC0E4E8Eui64;
     = 0 \times 7946C61B;
 next_stages_size = mw_config->stage4_size + mw_config->stage2_size + mw_config->stage3_size;
 stage1_shellcode = &current_module_base[mw_config->stage1_offset];
 init_export_str = &current_module_base[mw_config->init_export_str_offset];
 mw_resolve_api_table(&api_table, 24i64, &api_table_hashes, 0xCu);
 next_stages_addr = (api_table.VirtualAlloc)(
                       0i64,
                       next_stages_size,
                       0x3000i64,
                       PAGE READWRITE);
 mw_mem_cpy(next_stages_addr, &current_module_base[mw_config->stage2_offset], mw_config->stage2_size);
 mw_mem_cpy(
   next_stages_addr + mw_config->stage2_size,
   &current_module_base[mw_config->stage3_offset],
   mw config->stage3 size);
 mw_mem_cpy(
   next_stages_addr + mw_config->stage3_size + mw_config->stage2_size,
   &current_module_base[mw_config->stage4_offset],
   mw_config->stage4_size);
 v2 = 0;
 for ( i = 0; i < next stages size; *(next stages addr - 1) ^= *(&mw config->config xor key + (j & 3)) )
    ++next_stages_addr;
```

Config parsing and next stages decryption.

The decrypted content will be saved and passed to the next stage further on.

Stage 1 decryption and call

The LoadLibraryA function is used to load a Windows DLL named dpx.dll. Once the base address of this DLL is obtained via the return value of LoadLibraryA it's PE headers are parsed and it's Export Directory obtained. It then gets the first exported function from the

dpx.dll file (DpxCheckJobExists in this case):

dpx.dll loading and export table parsing.

Considering the DLL is loaded in the same address space of the malware module it's content can be easialy replaced and that's exactly what the crypter does. The content of the Stage 1 that is present in the config is written into the DpxCheckJobExists function. By default this stage is "encrypted" (XOR again!). After it's written to the mentioned function it's decryted using a multibyte XOR calculation using the provided cmdline key as the XOR key.

The final step of the Stage 0 (vcab export) is call the DpxCheckJobExists function from the dpx.dll, passing 5 parameters to it:

- 1. The malware DLL base address
- 2. The address of the "init" string (obtained from the malware config)
- 3. A struct containing information regarding the next stages
- 4. A struct containing information regarding the main payload
- 5. The XOR key used to decrypt the Stage 2, 3 and 4

```
mw_mem_cpy(pDpxCheckJobExists, stage1_shellcode, mw_config->stage1_size);
stage1_size = mw_config->stage1_size;
if ( stage1 size )
    ++pDpxCheckJobExists;
    v1 = v2++;
    *(pDpxCheckJobExists - 1) ^= *(cmdline_param_xor_key + v1 % xor_key_len);
    stage1_size = mw_config->stage1_size;
  while ( v2 < stage1 size );</pre>
}
(pVirtualProtect)(pDpxCheckJobExists, stage1_size, v36, &v36, v35);
config_xor_key = mw_config->config_xor_key;
second_config_info[0] = v28;
second_config_info[1] = v29;
  current module base,
  init export str,
  second_config_info,
  &main_payload_info,
  config_xor_key);
```

Stage 1 decryption and call.

Stage 1 (DpxCheckJobExists export)

This stage is the first "shellcode" involved in the chain. In order to analyze it (as well as the other shellcodes) I dumped it from the process memory using the crypter config fields as a reference (e.g. offset and size). Once it's dumped we can pretty much load it in IDA and force the analysis. Since it's a raw payload IDA will not load the Windows type libraries so we need to do it manually by going to View -> Open subviews -> Type Libraries (or simply Shift + F11). In the opened window we Right Click -> Load type library (or simply Ins) and add the library that better fits our needs. In general I would go with the mssdk64_win10 one.

The beginning of this stage involves a lot of manipulation of the information received via parameter of the DpxCheckJobExists function. Other than that, a kind of new structure is created and receives some new information. We'll refer to this new structure as "final structure":

Example of the final struct manipulation.

The format of this "final structure" is something similar to the following:

```
struct FINAL_STRUCT_INF0
{
    char
main_process_cmdline[2048];
    char init_export_str[56];
    LPVOID main_payload_addr;
    QWORD main_payload_size;
    QWORD config_xor_key;
    LPVOID stage4_shellcode_addr;
    QWORD stage4_shellcode_size;
    char
main_payload_content[7853];
    char
stage4_shellcode_content[3150];
};
```

Fixing the next Stages

Considering the next stages are shellcodes and would use some functions from the Windows API there's only 2 ways to make those adresses available: either via runtime linking performed by the shellcode itself (e.g. the API hashing technique mentioned previously) or those function addresses needs to be written in the correct place inside the shellcodes by an external payload. The Crypter approach is exactly the second one.

It uses the same API Hashing function to resolve 6 functions and then performs a byte pattern search inside both the Stage 2 and 3 content in order to locate specific DWORDs to be replaced by the addresses of the resolved Windows functions. The list bellow shows each pattern searched and the API function used to replace it:

Stage 2:

0xA1A2A3A4A5: ZwCreateThreadEx

Stage 3:

- 0xA1A2A3A4A9: RtlAllocateHeap
- 0xA1A2A3A4A7: ReadProcessMemory
- 0xA1A2A3A4AA: NtClose
- 0xA1A2A3A4A6: LoadLibraryA
- 0xA1A2A3A4A8: VirtualProtect
- 0xA1A2A3A4A5: CreateThread

The <u>x64dbg</u> view bellow shows an example of the Stage 3 content before and after the patch:

000001FA913000A0	49:8BCF	mov rcx,r15	
000001FA913000A3	48:B8 A7A4A3A2A100000	mov rax A1A2A3A4A7	
000001FA913000AD	44:8BCE	mov r9d.esi	
000001FA913000B0	48:8BD3	mov rdx.rbx	rdx:"i
000001FA913000B3	FFD0	call rax	
000001FA913000B5	48:BE AAA4A3A2A100000	mov rsi,A1A2A3A4AA	
000001FA913000BF	85C0	test eax.eax	
000001FA913000C1	V 0F84 F9000000	ie 1FA913001C0	
000001FA913000C7	8B8F 40080000	mov ecx.dword ptr ds:[rdi+840]	
000001FA913000CD	48:8D87 60080000	lea rax gword ptr ds:[rdi+860]	
000001FA913000D4	48:81C1 60080000	add rcx.860	
000001FA913000DB	48:8987 38080000	mov gword ptr ds:[rdi+838].rax	
000001FA913000E2	48:03CF	add rcx.rdi	
000001FA913000E5	C745 40 6470782E	mov dword ptr ss: rbp+40 .2E787064	
000001FA913000EC	48:898F 50080000	mov gword ptr ds:[rdi+850].rcx	
000001FA913000F3	48:88 A6A4A3A2A100000	mov rax. A1A2A3A4A6	
000001EA913000ED	48:8D4D 40	lea rcx. dword ptr ss: [rbp+40]	
000001FA91300101	C745 44 646C6C00	mov dword ptr ss: rbp+441.6C6C64	
000001FA91300108	EEDO	call rax	
000001FA9130010A	48:8500	test rax rax	
000001EA9130010D	V 0E84 AD000000	ie 1EA913001C0	
000001FA91300113	48.6348 30	movsyd new dword ntr ds:[nax+30]	
000001FA91300117	4C:8D4D 38	lea r9 gword ptr ss: [rbp+38]	
000001EA9130011B	49°BC 484443424100000	mov r12. 4142434448	
000001FA91300125	889401 88000000	mov edv. dword ptr ds [rcx+rax+88]	edv:"i
000001FA9130012C	8B4C02 24	mov ecx, dword ptr ds: [rdx+rax+24]	Cux. I
000001FA91300130	885402 10	mov edv. dword ptr ds:[rdx+rax+1C]	edv:"i
000001EA91300134	48:0300	add rdy ray	ndv:"i
000001EA91300137	44:0EB70401	movzy r8d word ptr ds:[rcy+ray]	1 97. 1
000001EA9130013C	42:881082	mov eby dword otr ds [rdy+r8*4]	
000001FA91300140	41.88 0400000	mov r8d 4	
000001EA91300146	8897 58080000	mov edv dword ptr ds [rdi+858]	edv:"i
000001EA9130014C	48:0308	add rby ray	Cux. I
000001EA9130014E	8365 38 00	and dword ptr ss: [rbp+38].0	
000001FA91300153	48:88CB	mov rcx.rbx	
000001EA91300156	41: FED4	call r12	
000001FA91300159	888E 58080000	mov ecx.dword ptr ds:[rdi+858]	
000001EA9130015E	48:88D3	mov rdx.rbx	rdx:"i
000001FA91300162	4C:8887 50080000	mov r8.gword ptr ds:[rdi+850]	
000001FA91300169	48:8509	test rcx.rcx	
000001EA9130016C	× 74 17	ie 1FA91300185	
000001FA9130016E	41:8A00	mov al.byte ptr ds:[r8]	
000001FA91300171	49: FFC0	inc r8	
000001FA91300174	8802	mov byte ptr ds:[rdx].a]	rdx:"i
000001FA91300176	48: FFC2	inc rdx	rdx:"i
000001FA91300179	48:83E9 01	sub rcx.1	
000001FA9130017D	^ 75 EF	ine 1FA9130016E	
000001FA9130017F	8B8F 58080000	mov ecx.dword ptr ds:[rdi+858]	
000001FA91300185	44:8845 38	mov r8d, dword ptr ss: rbp+38	
000001FA91300189	4C:8D4D 38	lea r9.gword ptr ss: rbp+38	
000001FA9130018D	8BD1	mov edx.ecx	edx:"i
000001FA9130018F	48:8BCB	mov rcx.rbx	
000001FA91300192	41: FFD4	call r12	
000001FA91300195	48:836424 28 00	and gword ptr ss: rsp+28.0	
000001FA9130019B	4C:8BCF	mov r9.rdi	
000001FA9130019E	836424 20 00	and dword ptr ss: rsp+20.0	
000001FA913001A3	4C:8BC3	mov r8.rbx	
000001FA913001A6	33D2	xor edx.edx	edx:"i
000001FA913001A8	33C9	xor ecx.ecx	
000001FA913001AA	48:B8 A5A4A3A2A100000	mov rax A1A2A3A4A5	
0000015401200184	CCD0	6011 NOV	

Stage 3 before the function patch

0000755969964066	40,0005	
0000/FFB6DBC1966	49:88CF mo	V rcx ris
00007FFB6DBC1969	48:B8 F0C4426CFB7F00(mo	v rax. <kernel32.readprocessmemory></kernel32.readprocessmemory>
00007EEB6DBC1973	44:8BCE mo	v r9d.est
0000755868861076	49,9993	v adv abv
0000/FFB6DBC19/6	48:8803	v rux,rbx
00007FFB6DBC1979	FFD0 Ca	rax
00007FFB6DBC197B	48:BE 40CFEE6DFB7F000 mo	v rsi. <ntdll.ntclose></ntdll.ntclose>
0000755960901985	85C0 to	t any way
00007FFB60BC1965		st cax, cax
00007FFB6DBC1987	× 0F84 F9000000]e	USER32./FFB6DBC1A86
00007FFB6DBC198D	8B8F 40080000 mo	v ecx.dword ptr ds:[rdi+840]
00007EEB6DBC1993	48:8D87_60080000 le	a rax gword ptr ds:[rdi+860]
0000755868861004	4010007 00000000 re	d nev 800
00007FFB6DBC199A	40:01C1 00000000 au	u rcx,000
00007FFB6DBC19A1	48:8987 38080000 mo	v qword ptr ds:[rd1+838],rax
00007FFB6DBC19A8	48:03CF ad	d rcx.rdi
00007EEB6DBC194B	C745 40 6470782E mo	word ntr ss. [rbn+40] 25787064
00007FFB60BC15AB		
00007FFB6DBC19B2	48:898F 50080000 mo	v gword btr ds:1rd1+8501.rcx
00007FFB6DBC19B9	48:B8 F004436CFB7F00(mo	v rax, <kernel32.loadlibrarya></kernel32.loadlibrarya>
00007FFB6DBC19C3	48:8D4D 40 le	a rex oword our sstarout40
0000755960901907	C745 44 64606000 mo	w dword ntr ss [nhn+44] SCSCS4
00007FFB60BC19C7		unoru per 55. [i bpt44], ococo4
00007FFB6DBC19CE	FFD0 Ca	rax
00007FFB6DBC19D0	48:85C0 te	st rax,rax
00007EEB6DBC19D3	V 0E84 AD000000 ie	user 32, 7EEB6DBC1A86
0000755860861909	48:6248.20	word new dword ntn dei Enex+201
00007FFB6DBC19D9	40:0540 50 100	vsxu rex, uworu per us [rax+se]
00007FFB6DBC19DD	4C:8D4D 38 Te	a r9, gword ptr ss: rbp+38
00007FFB6DBC19E1	49:BC 70BC426CFB7F00(mo	v r12. <kernel32.virtualprotect></kernel32.virtualprotect>
00007FFB6DBC19EB	8B9401 88000000 mo	v edx.dword ptr ds:lrcx+rax+881
00007EEB6DBC19E2	884C02 24 mo	v ecy dword ntr ds [rdy+ray+24]
0000755868861952	001C02 24 mo	v odv dword oto doi [rdvinovi10]
00007FFB6DBC19F6	065402 IC III0	v eux, uword per us. [rux+rax+ie]
00007FFB6DBC19FA	48:03D0 ad	d rdx,rax
00007FFB6DBC19FD	44:0FB70401 mo	vzx r8d,word ptr ds:[rcx+rax]
00007FFB6DBC1A02	42:8B1C82 mo	v ebx.dword ptr ds:[rdx+r8*4]
0000755860801406	41:88 04000000 mo	v r8d 4
0000755868861406	41.80 0400000 mo	v ody dword oto dei Endii 25.0]
00007FFB6DBC1A0C	8897 58080000 m0	v eux, aword pur us: [rui+858]
00007FFB6DBC1A12	48:03D8 ad	d rbx,rax
00007FFB6DBC1A15	8365 38 00 an	d dword ptr ss: rbp+38,0
00007EEB6DBC1A19	48:8BCB mo	v rcx.rbx
0000755860801410	41:5504	1 012
00007FFB6DBC1AIC	41.FFD4 Ca	I 112
00007FFB6DBC1A1F	888F 58080000 mo	v ecx, aword ptr as:[rd1+858]
00007FFB6DBC1A25	48:8BD3 mo	v rdx,rbx
00007FFB6DBC1A28	4C:8B87 50080000 mo	v r8.aword ptr ds:[rdi+850]
00007EEB6DBC1A2E	48:85C9 te	st rev rev
00007EEB60801422	- 74 17	
00007FFB6DBC1A32	• /4 1/]e	USEL 52.7FFB0DBC1A4B
00007FFB6DBC1A34	41:8A00 mo	v al, byte ptr ds:[r8]
00007FFB6DBC1A37	49:FFC0 in	c r8
00007FFB6DBC1A3A	8802 mo	v byte ptr ds:[rdx].al
00007EEB60BC1A2C	48:EEC2	r dy
00007FFB60BC1A3C	49,9259,04	a nev 1
00007FFB6DBC1A3F	48:83E9 01 Su	D TCX,1
00007FFB6DBC1A43	^ 75 EF jn	e user32.7FFB6DBC1A34
00007FFB6DBC1A45	8B8F 58080000 mo	v ecx.dword ptr ds:[rdi+858]
00007EEB6DBC144B	44.8845 38 mo	v r8d dword ntr sstrhn+38
0000755860861445	40:0040 20 10	n no gword ntr. cci nhp+20
00007FFB6DBC1A4F	40:8040 38 16	a ra, dword pur ss: [rop+s8]
00007FFB6DBC1A53	88D1 (mo	v edx,ecx
00007FFB6DBC1A55	48:8BCB mo	v rcx,rbx
00007FFB6DBC1A58	41: FFD4 ca	1 r12
00007EEB6DBC1AEB	48.836424 28 00 20	d gword ntr sstrsn+28 0
00007FFB60BC1A5B	40.000424 20 00 all	u quor u per ssi [i spizo]; o
00007FFB6DBC1A61	4C:88CF m0	v rs,rui
00007FFB6DBC1A64	836424 20 00 an	d dword ptr ss:[rsp+20],0
00007FFB6DBC1A69	4C:8BC3 mo	v r8,rbx
00007EEB6DBC1A6C	33D2 80	r edx.edx
0000755860801465	2209	n ecy ecy
00007FFB60BC1A6E	10+00 A005 40 CC 00 200 A0	
00007FFB6DBC1A70	48:88 A085426CFB/F000 mo	v rax, kernelsz.creaceinread>
00007FFB6DBC1A7A	FFD0 Ca	rax
	10,0500	

Stage 3 after the function patch.

Syscall stubs usage

At this point (specially in the injection part) most part of the API calls performed would not rely on the regular Windows DLLs and will use a crafted syscall stub array instead.

It first parses the ntdll exports and creates a kind of list of structs containing the addresses of the real syscall stubs, organized in an ascending order based on it's SSN (System Service Number), followed by the hash of the syscall name (same ROR13 algorithm) and then the bytes (opcodes) responsible for performing the syscall instruction (let's say custom stub).

Address	Hex ASCII	
000001FA91310000	60 CD EE 60 FB 7F 00 00 EA DD 49 DA 4C 8B D1 B8 11mûêÝIÚL	. Ň.
000001FA91310010	00 00 00 00 0F 05 C3 00 <u>80 CD EE 6D FB 7F 00 00</u> ÅÍîmû	
000001FA91310020	AD 20 F1 FA 4C 8B D1 B8 01 00 00 00 0F 05 C3 00 . ñúL.N	. Ă.
000001FA91310030	AO CD EE 6D FB 7F 00 00 1A EA B9 05 4C 8B D1 B8 1îmûê'.L	. Ň.
000001FA91310040	02 00 00 00 0F 05 C3 00 <u>C0 CD EE 6D FB 7F 00 00</u> Å.ÀÍîmû	
000001FA91310050	15 BE 1F 2A 4C 8B D1 B8 03 00 00 00 0F 05 C3 00 .%.*L.N	. Ă.
000001FA91310060	<u>EO CD EE 6D FB 7F 00 00</u> 85 87 2F 4C 4C 8B D1 B8 afîmû/LL	. Ň.
000001FA91310070	04 00 00 00 0F 05 C3 00 00 CE EE 60 FB 7F 00 00ÅÎîmû	Cure all
000001FA91310080	4A 9C 03 42 4C 8B D1 B8 05 00 00 0F 05 C3 00 J.BL.N.	A. Syscall
000001FA91310090	20 CE EE 6D FB 7F 00 00 35 3F 4E E7 4C 8B D1 B8 1îmû5?NcL	. Ň.
000001FA913100A0	06 00 00 00 0F 05 C3 00 40 CE EE 6D FB 7F 00 00Å.@Îîmû	
000001FA913100B0	95 37 5E 28 4C 8B D1 B8 07 00 00 00 0F 05 C3 00 .7^(L.N	. Ă.
000001FA913100C0	60 CE EE 6D FB 7F 00 00 BF 57 35 08 4C 8B D1 B8 `1îmû¿W5.L	. Ň.
000001FA913100D0	08 00 00 00 0F 05 C3 00 80 CE EE 6D FB 7F 00 00ÅÎîmû	
000001FA913100E0	1E C1 12 CB 4C 8B D1 B8 09 00 00 00 0F 05 C3 00 .A.EL.N.	. Ă.
000001FA913100F0	AO CE EE 6D FB 7F 00 00 7E 13 89 AD 4C 8B D1 B8 1îmû~L	. Ň.
000001FA91310100	OA 00 00 00 0F 05 C3 00 C0 CE EE 60 FB 7F 00 00Å.Alîmû	
000001FA91310110	24 B3 E3 98 4C 8B D1 B8 08 00 00 00 0F 05 C3 00 \$*0.1.N	. A.

stubs.

We can imagine that each entry in this list has the following fields:

```
struct
SYSCALL_STUBS_INFO
{
    QWORD
syscall_stub_addr;
    DWORD syscall_hash;
    char
stub_bytes[16];
};
```

The "stub_bytes" field represents the following assembly instructions (custom stub):

mov r10,
rcx
mov,
eax,<id>
ret

Once this list is created every time a function needs to be resolved it first sets the function arguments and then calls a function responsible for getting the proper custom stub. This function receives the base of the created stub list as well as the desired hash. The hash is then compared against each hash in the stub list and once it's found the respective custom stub is returned:

Syscall stub resolving.

The usage of this approach usually is to avoid usermode hooks performed by AV/EDR engines as well as make the RE process a bit more complicated since breakpoints in the regular API functions for example wouldn't work as expected. I'll not go into more details regarding this technique cause there's a thousand of reports about it available already.

Process injection

At this point the preparation to inject into a target process begins and the "svchost.exe" process is the target of this crypter.

First, the crypter obtains information from all the processes using the NtQuerySystemInformation function passing the SystemProcessInformation parameter to it. By using this parameter a struct of type SYSTEM_PROCESS_INFORMATION is returned for each available process. The field ImageName of this structure is obtained, the same hash algorithm used before is applied to it and then it's then compared against the expected "svchost" hash. If there's a match the process PID is obtained:

Get list of process information.

Since the next stages would be injected into svchost process the function responsible for the injection receives our "final structure" as a parameter. The injection function starts resolving multiple "custom syscall stubs" to be used:

Injection stubs resolving.

A call to NtOpenProcess is performed to get a handle to the svchost process using the collected PID. All svchost threads are then enumerated and for each thread opened via NtOpenThread it creates an event using NtCreateEvent, duplicate it to the target process using NtDuplicateObject and then queues an user APC passing the NtSetEvent as the APC function and the created event handle as it's parameter. Once all the threads had an APC queued it calls NtWaitForMultipleObjects passing a list of all event handles to it.

The injection approach used by this crypter is via a basic APC injection. APCs are basically a way to execute code in the context of a thread and whenever the kernel receives a request to queue an APC it first checks the mode (user or kernel) and then inserts the APC

into the proper thread queue. In order to execute an user APC a thread needs to be in an alertable state and this is why the calls mentioned above are used.

These calls are a kind of preventive measure to make sure there's a thread in svchost process in alertable state via the duplicated events being triggered:

Queue an APC for each remote thread.

an object is ready.

Once the proper thread is identified the function WinHelpW is overwritten with the Stage 2 content and the function WinHelpA with the Stage 3 content (both exported by user32.dll). For performance reasons once a DLL is mapped to a process memory Windows tries to maintain the same address for all the other processes and this is why use the addresses obtained from the main process (rundl32.exe) would match the addresses inside svchost.exe process (considering the user32.dll is already loaded, of course).

A new hex pattern (0xA1A2A3A4AB) is searched in the Stage 3 content and replaced by the main process handle and this handle is duplicated. This way the code injected in the target process would have access to the main process memory. The final step of Stage 1 is

then call NtQueueApcThread function to queue the tampared WinHelpW function to the alertable thread, passing both the WinHelpA address and the "final struct" address in the main process to it:

Write Stage 2 and 3 content and queue an APC.

Stage 2 (WinHelpW export)

This is the first function executed inside the "svchost.exe" process and it's job is very straight forward: it creates a thread using ZwCreateThreadEx to call the tampered WinHelpA function (Stage 3) and passes the address of our "final structure" inside the main process (rundll32.exe) as the thread function parameter.

WinHelpW call.

Stage 3 (WinHelpA export)

This stage is the one responsible for calling the final stage in this whole chain, which is the Snow Crypter loader (Stage 4). The first thing done here is get the content of the loader inside the "final structure". It does so by using the address passed as the thread parameter and calling the ReadProcessMemory function to read the content from this address. The access to the main process is possible cause a handle to it was written to this stage by stage 1 already:

00007FFB6DBC195C	49:BF 5805000000000000000 r15,558	R15 0000000000558
00007FFB6DBC1966	49:8BCF mov rcx.r15	
00007FFB6DBC1969	48:B8 F0C4426CFB7F000mov rax. <kernel32.readprocessmemory></kernel32.readprocessmemory>	RTP 000075558608C1979 USer 32 000075558608C1979
00007FEB6DBC1973	44:88CF MOV CM0. eS1	
00007EEB6DBC1976	48:88D3 mov rdx rbx	
00007EEB608C1979	EEDO Call rax	RFLAGS 0000000000244
00007EEB6DBC197B	48 BE 400 EEE 60 EB 7 E001 MOV 151 ontdll NtCloses	ZF 1 PF 1 AF 0
0000755860801985		OF 0 SF 0 DF 0
0000755860861983		CF 0 TF 0 IF 1
00007FFB60BC1987		
00007FFB60BC1980	abor 4000000000000000000000000000000000000	LastError 0000000 (ERROR SUCCESS)
00007FFB6DBC1993	48: 808/ 60080000 Tea rax, dword ptr us: [rd1+860]	
00007FFB6DBC199A	48:81C1 60080000 add PCX,860	Laststatus COUDOOD (STATUS_INVALID_PARAMETER)
00007FFB6DBC19A1	48:8987 38080000 mov gword ptr ds:[rd1+838],rax	
00007FFB6DBC19A8	48:03CF add rcx,rd1	GS 002B FS 0053
00007FFB6DBC19AB	C745 40 6470782E mov dword ptr ss:[rbp+40],2E787064	ES 002B DS 002B
00007FFB6DBC19B2	48:898F 50080000 mov qword ptr ds:[rd1+850],rcx	CS 0033 SS 002B
00007FFB6DBC19B9	48:B8 F004436CFB7F00(mov rax, <kernel32.loadlibrarya></kernel32.loadlibrarya>	
00007FFB6DBC19C3	48:8D4D 40 lea rcx.gword ptr ss:[rbp+40]	ST(0) 00000000000000000000000000000000000
00007FFB6DBC19C7	C745 44 646C6C00 mov dword ptr ss: rbp+44 6C6C64	STOT 00000000000000000000000000000000000
00007FFB6DBC19CE	FFD0 call rax	<
00007FEB6DBC19D0	48:85C0 test rax.rax	Defends (and feeders)
00007EEB6DBC19D3	V 0E84 AD000000 1e USer 32, ZEEB6DBC1486	Default (x64 fastcall)
00007EEB6DBC19D9	48:6348 3C moveyd new dword ntr ds:[ray+3C]	1: rcx 00000000000558 000000000558
00007EEB6DBC19DD	4C:804D 38	2: rdx 000001CCDB33E230 000001CCDB33E230
0000755860801951	49 PC 70PC426CEP7E00 mov r12 ckerpel22 VirtualProtects	3: r8 000001ACE9EBE0D0 000001ACE9EBE0D0
SOUCH BODBCISEI	The role for bridden bridden of 12. Kkel hersz. Vir tuarer dieter	4: r9 000000000000335B 0000000335B
<		5: [rsp+20] 00000000000000000000000000000000000
ssMemory>		5: [rsp+29] 000000000000000000000000000000000000
		6. [15]+28] 000000000000000000000000000000000000

Read the final structure from the main process memory.

The LoadLibraryA function is then called to load the dpx.dll module again, but now inside the "svchost.exe" process. The address of the DpxCheckJobExists function is resolved and replaced by the Stage 4 content (same approach applied by the Stage 0 payload). The screenshot bellow shows the DLL being loaded, the export being resolved and the Stage 4 content being written:

00007EEB6DBC19B2	48:898E 50080000	mov gword ptr ds. [rdi+850].rcx	nex: "dox. dll"
00007FFB6DBC19B9	48:88 F004436CFB7F00	mov rax. <kernel32.loadlibrarva></kernel32.loadlibrarva>	
00007FFB6DBC19C3	48:8D4D 40	lea rex. oword otr sstarbotte	
00007EEB6DBC19C7	C745 44 646C6C00	mov dword ptr ss: rbp+441,6C6C64	
00007FFB6DBC19CE	FFD0	call rax	
00007FFB6DBC19D0	48:85C0	Lest rax rax	
00007FFB6DBC19D3	V 0F84 AD000000	ie user32.7FFB6DBC1A86	
00007FFB6DBC19D9	48:6348 3C	movsxd rcx.dword ptr ds:[rax+3C]	rcx:"dpx.dll"
00007FFB6DBC19DD	4C:8D4D 38	lea r9 gword ptr ss:[rbp+38]	
00007FFB6DBC19E1	49:BC 70BC426CFB7F00	mov r12 <kernel32.virtualprotect></kernel32.virtualprotect>	
00007FFB6DBC19EB	8B9401 88000000	mov edx.dword ptr ds:[rcx+rax+88]	
00007FFB6DBC19F2	8B4C02 24	mov ecx.dword ptr ds:[rdx+rax+24]	
00007FFB6DBC19F6	8B5402 1C	mov edx,dword ptr ds:[rdx+rax+1C]	
00007FFB6DBC19FA	48:03D0	add rdx,rax	
00007FFB6DBC19FD	44:0FB70401	movzx r8d,word ptr ds:[rcx+rax]	
00007FFB6DBC1A02	42:8B1C82	mov ebx,dword ptr ds:[rdx+r8*4]	
00007FFB6DBC1A06	41:B8 04000000	mov r8d,4	
00007FFB6DBC1A0C	8B97 58080000	mov edx,dword ptr ds:[rdi+858]	rdi+858:"N\f"
00007FFB6DBC1A12	48:03D8	add rbx,rax	
00007FFB6DBC1A15	8365 38 00	and dword ptr ss: rbp+38,0	
00007FFB6DBC1A19	48:8BCB	mov_rcx,rbx	rcx:"dpx.dll"
00007FFB6DBC1A1C	41:FFD4	call r12	
00007FFB6DBC1A1F	8B8F 58080000	mov ecx,dword ptr ds:[rdi+858]	rdi+858:"N\f"
00007FFB6DBC1A25	48:8BD3	mov rdx,rbx	
00007FFB6DBC1A28	4C:8B87 50080000	mov r8,qword ptr ds:[rdi+850]	
00007FFB6DBC1A2F	48:85C9	test rcx,rcx	rcx:"dpx.dll"
00007FFB6DBC1A32	× 74 17	1e user32 7EEB6DBC144B	
00007FFB6DBC1A34	41:8A00	mov al,byte ptr ds:[r8]	
00007FFB6DBC1A37	49:FFC0	Inc r8	
00007FFB6DBC1A3A	8802	mov byte ptr ds:[rdx],al	
00007FFB6DBC1A3C	48:FFC2	inc rdx	
00007FFB6DBC1A3F	48:83E9 01	sub rcx,1	rcx: "apx. dil"
00007FFB6DBC1A43	^ 75 EF	jne user32.7FFB6DBC1A34	
00007FFB6DBC1A45	888F 58080000	mov ecx, aword per us. [rut+858]	ra1+858: N\T
00007FFB6DBC1A4B	44:8845 38	mov rsa, awora ptr ss: rbp+38	
00007FFB6DBC1A4F	4C:8D4D 38	Tea r9, gword ptr ss:[rbp+38]	
00007FFB6DBC1A53	8801	mov eux, ecx	n even li deve i da a li
00007FFB6DBC1A55	48:8608	mov rex, rbx	rex: upx.uti
00007FFB6DBC1A58	41;FFD4		

DpxCheckJobExists export tampering.

The tampered function (Stage 4) is then called via a CreateThread call, passing the "final struct" (now accesible locally) as the thread parameter:

00007FF808C196 00007FF808C196 00007FF808C196 00007FF808C197 00007F8808C197 000007F8808C197 00007F8808C197 00007F8808C197 00007F8808C197 00007F8808C197 00007F8808C197 00007F8808C197 00007F8808C197 00007F8808C197 00007F8808C197 00007F8808C198 000078808 000008808 0000088080	49:88F 5000000000000000000000000000000000000	R15 000000000000000558 R1P 00007FF8GD8C1979 user32.00007FF8GD8C1979 RFLAGS 00000000000000244 ZF 1 PF 1 AF 0 OF 0 SF 0 DF 0 LastStatus C0000000 (SRCG_SUCCESS) LastStatus C0000000 (SRCG_SUCCESS) LastStatus C0000000 (SRCG_SUCCESS) Company Sector Status Sector Sta
ssMemory>		 5: Trsp+281 00000000000000 00000000000000000

Stage 4 call via a new thread.

Stage 4 (DpxCheckJobExists export, again)

We finally reached the final stage! With access to the "final structure" this payload can read and decrypt the final payload. The algorithm used to "decrypt" it is again a multibyte XOR operation using the key read from the initial config and then subtracting the byte next to the XORed byte in the array.

The result content is not exactly a valid PE file, it's more of a struct containing a compressed binary as well as some other information such as it's size. This data is passed to a function in which seems to perform some sort of decompression and then it returns both the fully "unpacked" PE file as well as it's size.

Regarding the decompression algorithm used, I'm assuming it's QuickLZ due to what I saw in IBM's report, but to be honest I know close to nothing about those type of algorithms so I'm just assuming it's true:

Final payload decryption and decompression.

Address	He	ĸ															ASCII
000001ACF9EC1440	4D	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	00	Mzÿÿ
000001ACF9EC1450	B8	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00	@
000001ACF9EC1460	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001ACF9EC1470	00	00	00	00	00	00	00	00	00	00	00	00	D0	00	00	00	Đ
000001ACF9EC1480	0E	1F	BA	0E	00	B4	09	CD	21	B8	01	4C	CD	21	54	68	°′.Í!LÍ!⊤h
000001ACF9EC1490	69	73	20	70	72	6F	67	72	61	6D	20	63	61	6E	6E	6F	is program canno
000001ACF9EC14A0	74	20	62	65	20	72	75	6E	20	69	6E	20	44	4F	53	20	t be run in DOS
000001ACF9EC14B0	6D	6F	64	65	2E	0D	0D	0A	24	00	00	00	00	00	00	00	mode\$
000001ACF9EC14C0	21	C9	10	93	65	A8	7E	C0	65	A8	7E	C 0	65	A8	7E	C 0	!Ée¨~Àe¨~Àe¨~À
000001ACF9EC14D0	42	6E	05	C 0	67	A8	7E	C0	16	CA	7F	C1	6E	A8	7E	C 0	Bn.Àg¨~À.Ê.Án¨~À
000001ACF9EC14E0	65	A8	7F	C 0	4F	A8	7E	C 0	83	CC	7A	C1	6E	A8	7E	C 0	e".Ao"~A.ÌzÁn"~A
000001ACF9EC14F0	83	CC	7E	C1	64	A8	7E	C 0	83	CC	7C	C1	64	A8	7E	C 0	.ì~Ád¨~À.Ì Ád¨~À
000001ACF9EC1500	52	69	63	68	65	A8	7E	C 0	00	00	00	00	00	00	00	00	Riche ~A
000001ACF9EC1510	50	45	00	00	64	86	07	00	9A	9F	87	63	00	00	00	00	PEdc
0000014050501530	00	00	00	00	50	00	22	20	0.0	0.2	05	00	00	20	00	00	3 "
Decompression r	esι	ılt.															

The final step here is the old manual mapping technique. A region of memory is allocated and then the clean payload is mapped to it: it's dependencies resolved via LoadLibrary + GetProcAddress, realocation applied and so on. The final payload is a DLL and has it's DllMain function executed, followed by the previously mentioned init export function:

58	<pre>init_export_addr = 0i64;</pre>
59	
60	<pre>v14 = manual_map_and_execute(final_payload_clean, v13, _final_config->init_export_str, &init_export_addr);</pre>
61	<pre>pRtlFreeHeap(NtCurrentTeb()->ProcessEnvironmentBlock->ProcessHeap, 0i64, final_payload_clean);</pre>
62	if (init_export_addr)
63	<pre>init_export_addr(0i64, v14, _final_config, 0i64);</pre>

Final payload map and execution.

Some reversing shortcuts:

In case you're only interested in the final payload I have some shortcuts for you!

Considering the fact dpx.dll will be loaded at svchost.exe process and the execution will be transfered to the final IcedID payload at some point we can use tools like <u>Process Explorer</u>, <u>System Informer</u> or <u>Process Hacker</u> and search for any process that has the dpx.dll loaded. If it's svchost.exe there's a high chance this is our target. After it we would just need to find an allocated region inside it that contains a PE file and dump it:

齢 Find	handles or l	DLLs 📌 Syste	em information	🗆 🗔 🗙				
work Disk								
	PID	CPU I/O to	otal Private b	User name		Description		
:	4672		1.54 M	В		Host Process for Wi	ndows Ser	
2	4696 4980		Find Han	dles or DLLs				×
:	5524		Filter: dox o	411				av Find
2	5556		Tildett upx.e					
:	5640		Process	` i	Гуре	Name		Handle
:	5844		svchost.exe	(5524)	DLL	C:\Windows\Syster	m32\dpx.dll	0x7ffb571
exe	5904	0.42	x64dbg.exe	(9308)	File	C:\Windows\System	m32\dpx.dll	0xc24
:	5964		x64dbg.exe	(9308)	Section	C:\Windows\System	m32\dpx.dll	0xc58
:	548		x64dbg.exe	(9308)	Mapped file	C:\Windows\System	m32\dpx.dll	0x1cb4577
:	6516							
:	6860							
xer.exe	6296							
rotocolH	4484							

dpx.dll search in Process Hacker.

Base address	Туре	Size	Protect	Use	Total WS	Private WS	Shareable WS	Shared WS	Locked WS	
> 0x7ffe0000	Private	4 kB	R	USER_SHARED_DATA	4 kB		4 kB	4 kB		
> 0x7ffed000	Private	4 kB	R		sychost exe (5524) (0x18000000 -	0x180001000)		- 0)
✓ 0x180000000	Private	36 kB	RW		Sienostiexe (SSE4)	000000000	0x100001000)			
0x180000000	Private: Commit	4 kB	RW		00000000 44 5a 90	00.03.00.0	0 00 04 00 0	0 00 ff ff 0	0 00 MZ	
0x180001000	Private: Commit	12 kB	RX		00000010 b8 00 00	00 00 00 00	0 00 40 00 0 0 00 40 00 0	0 00 00 00 0	0 00	
0x180004000	Private: Commit	4 kB	R		00000020 00 00 00	00 00 00 00	0 00 00 00 0	0 00 00 00 0	0 00	
0x180005000	Private: Commit	4 kB	RW		00000030 00 00 00	00 00 00 00	0 00 00 00 0	0 00 d0 00 0	0 00	
0x180006000	Private: Commit	8 kB	R		00000040 0e 1f ba	0e 00 b4 0	9 cd 21 b8 0	1 4c cd 21 5	4 68!l.!Th	
0x180008000	Private: Commit	4 kB	RW		00000050 69 73 20	70 72 6f 6	7 72 61 6d 2	0 63 61 6e 6	e 6f is program canno	
> 0x9d31e00000	Private	2,048 kB	RW	PEB	00000060 74 20 62	65 20 72 7	5 6e 20 69 6	e 20 44 4f 5	3 20 t be run in DOS	
> 0x9d32000000	Private	512 kB	RW	Stack (thread 5528)	00000000 21 00 10	65 ZE 00 00	1 0a 24 00 0		0 00 mode\$	
> 0x9d32080000	Private	512 kB	RW	Stack (thread 8520)	00000000 21 09 10	c0 67 a8 7	e c0 65 ac 7 a c0 16 ca 7	e co 63 a 6 7 f cl 6e a 8 7	e c0 Bn g =	
> 0x9d32100000	Private	1,024 kB	RW	Stack (thread 9644)	000000a0 65 a8 7f	c0 4f a8 7e	- c0 83 cc 7	a cl 6e a8 7	e c0 e0.~Z.D.~.	
> 0x9d32200000	Private	1,024 kB	RW	Stack (thread 10192)	000000b0 83 cc 7e	cl 64 a8 7	e c0 83 cc 7	c c1 64 a8 7	e c0~.d.~ .d.~.	
> 0x9d32380000	Private	512 kB	RW	Stack (thread 5832)	000000c0 52 69 63	68 65 a8 7	e c0 00 00 0	0 00 00 00 0	0 00 Riche.~	
> 0x9d32400000	Private	512 kB	RW	Stack (thread 5860)	000000d0 50 45 00	00 64 86 0	7 00 9a 9f 8	7 63 00 00 0	0 00 PEdc	_
					000000e0 00 00 00	00 f0 00 2	2 20 00 02 0	e 0c 00 20 0	0 00 "	_

Allocated memory search in Process Hacker.

The downside of this approach is that the file would be already mapped in memory so it would be aligned to a page boundary and we would need to fix it. A better approach is to try to find the real final payload before it's mapped by the loader. Since that would be the raw binary it's alignent will be all good and it will be way easier to manipulate.

As we saw the earlier, the decompression function receives the decrypted final payload and returns the uncompressed one as well as it's size. If we perform a simple check in x64dbg hex dump we'll see there's 0x400 bytes (the headers) from the first byte of the file until the first byte of the .text section. Considering 0x400 is usually the value of the File Aligment field in the IMAGE_OPTIONAL_HEADER we can assume this is the final payload, clean and ready to be dumped!

Address	Hex ASCII	1				
000001ACF9EC17D0	00 00 00 00 00 00 00 00 00 00 00 00 00					
000001ACF9EC17E0	00 00 00 00 00 00 00 00 00 00 00 00 00					
000001ACF9EC17F0	00 00 00 00 00 00 00 00 00 00 00 00 00					
000001ACF9EC1800	00 00 00 00 00 00 00 00 00 00 00 00 00					
000001ACF9EC1810	00 00 00 00 00 00 00 00 00 00 00 00 00					
000001ACF9EC1820	00 00 00 00 00 00 00 00 00 00 00 00 00					
000001ACF9EC1830	00 00 00 00 00 00 00 00 00 00 00 00 00					
000001ACF9EC1840	48 89 5C 24 10 48 89 6C 24 18 48 89 74 24 20 57 H.\\$.H.1\$.H.t\$ W				
000001ACF9EC1850	48 83 EC 20 48 8B EA 48 8B D9 8B 51 08 41 B8 00 H.i H.êH.	Ú.Q.A.				
000001ACF9EC1860	30 00 00 33 C9 44 8D 49 04 FF 15 01 30 00 00 33 03ED.I.	ÿ03				
000001ACF9EC1870	FF 48 8B F0 48 85 C0 75 15 FF 15 41 30 00 00 25 ŷH.ÒH.Àu.	ÿ.A0%				
000001ACF9EC1880	FF FF FF 00 0D 00 00 00 05 E9 C8 00 00 00 8B D7 ÿÿÿ	é£x				
000001ACF9EC1890	39 7B 1C 76 40 8B C2 48 6B C8 11 44 8B 44 19 28 9{.v@.AHk	E.D.D.(
000001ACF9EC18A0	44 8B 54 19 20 4C 03 C3 44 8B 4C 19 2C 4C 03 D6 D.T. L.AD	,L.,L.O				
000001ACF9EC18B0	74 1C 4D 85 C0 74 17 4D 85 C9 74 12 41 8A 00 49 t.M.At.M.	Et.A.I				
000001ACF9EC18C0	FF CO 41 88 02 49 FF C2 49 83 E9 01 75 EE FF C2 yAA.,IyAI	.e.uiyA				
<						
Command: Commands are comma separated (like assembly instructions): mov eax, ebx						
Paused Dump: 000001ACF9EC1440 -> 000001ACF9EC183F (0x00000400 bytes)						

Alignment of the decompressed payload.

The only thing we need to do to dump it using x64dbg is select the 0x3400 bytes (unpacked payload size) in the hex dump -> Right Click -> Binary -> Save to File. And there we go! A clean payload to be analyzed. We can check it with <u>DIE</u> and see some of the known IcedID strings and names:

							and the second sec
Name	Offset	Туре	2	Value			•
Characteristics	0000	DWORD		0000000)		
TimeDateStamp	0004	DWORD		fffffff	2106-02-06 22:28:15	Ð	
MajorVersion	8000	WORD	(0000			
MinorVersion	000a	WORD	(0000			
Name	000c	DWORD	Ĩ	000043b2	Hex	loader_dll_64.dll	
Base	0010	DWORD	Ĩ	0000001			
NumberOfFunctions	0014) î	0000001) <u></u>		•
🗌 Show valid							Save
dinal 🕈 🛛 🛛 🖁	VA	Name	_				
0001 000027	758 0	00043c4	init				

General information.

;	# OriginalFirstThunk	TimeDateStamp	ForwarderChain	Name	FirstThunk	Hash	Name	
(00004558	0000000	00000000	000046b8	00004100	2aed7525	WINHTTP.dll	
	1 00004538	00000000	00000000	000046d8	000040e0	8ea4a8d4	SHELL32.dll	
í	2 000045b8	00000000	00000000	000046ee	00004160	46da9247	msvcrt.dll	
	3 00004548	00000000	00000000	00004706	000040f0	4e58d6e8	USER32.dll	
4	4 00004470	00000000	00000000	00004884	00004018	8fa9dfbc	KERNEL32.dll	
5	5 00004458	00000000	00000000	000048b8	00004000	84128dd5	ADVAPI32.dll	
•								
								Save
	#	Thunk	Ordin	al Hint Nam	e			
(00000000	000045f2		0007 Win	HttpCloseHandle			
	1 00000000	00045e4		0025 Win	HttpOpen			
2	2 00000000	0004608		0008 Winl	HttpConnect			
	3 00000000	00046a2		002a Win	HttpQueryHeader			
4	4 000000000004688			002f Win	002f WinHttpReceiveResponse			
-	5 00000000	0004672		0032 Win	HttpSendRequest			

Payload imports.

	Offset 🔻	Size Type	String	
01	2050	05.11		
91	3008	UD U	Cookie: _s=	
92	3080	05 U	;_u=	
93	3090	0c A	IPHLPAPI.DLL	
94	30a0	09 A	NTDLL.DLL	
95	30c0	13 A	GetNativeSystemInfo	
96	30d8	0c A	KERNEL32.DLL	
97	30e8	07 U	; _io=	
98	30f8	Of A	c:\ProgramData\	
99	3106	08 U	\; _gat=	
100	3120	10 A	0123456789ABCDEF	
101	3138	07 U	;_gid=	
102	3150	Od A	RtlGetVersion	
103	3160	06 U	;_ga=	
104	3170	Of A	GetAdaptersInfo	
105	317e	10 U	oCookie:gads=	

Some famous IcedID strings.

Conclusion

I hope you enjoyed the reading and if you have any feedback regarding this analysis I would love to know about it.

Happy reversing!