
1/37

muzi June 29, 2023

GuLoader: Navigating a Maze of Intricacy
malwarebookreports.com/guloader-navigating-a-maze-of-intricacy/

GuLoader TL;DR

GuLoader is a polymorphic shellcode loader packed full of anti-analysis and anti-vm
techniques to evade detection. The malware began as a Visual Basic (VB) 5/6 downloader,
first identified in 2019. VB served as a wrapper for the core component implemented in
shellcode until late last year. GuLoader began experimenting with a variety of delivery
methods including VBS and macro-enabled documents before introducing NSIS (Nullsoft
Scriptable Install System) in 2022. GuLoader and its delivery mechanisms are frequently
updated by the authors to inhibit analysis and make detection more difficult. GuLoader
typically delivers Remote Access Tools such as Remcos, but has been observed delivering
numerous different malware families. Let’s attempt to navigate this mess of anti-analysis
techniques together.

SHA256: ee548086db277e0febd2797b582a734ac451a9cd050540d2a1fd08afa6232721

NSIS Installer

NSIS Primer

A NSIS script is a regular text file with a special syntax. A script file contains Installer
Attributes, Pages and Sections and Functions. Each line is treated as a command. The
following section provides essential knowledge required to analyze a NSIS script. For
additional details, see the following link.

Installer Attributes

Installer attributes determine the behavior, look and feel of the installer. These attributes can
change text shown during installation, the number of installation types, etc. An example of an
Installer Attribute is:

AddBrandingImage left 100

Pages

A non-silent installer has a set of wizard pages that let the user configure the installer. The
Page command is used to set pages to be displayed. A typical set of pages looks like this:

https://malwarebookreports.com/guloader-navigating-a-maze-of-intricacy/
https://nsis.sourceforge.io/Docs/Chapter2.html#tutscriptfiles

2/37

Page license
Page components
Page directory
Page instfiles
UninstPage uninstConfirm
UninstPage instfiles

Sections

Installers commonly have multiple options available to the user during installation. For
example, an installer may allow the user to install additional tools, plug-ins, examples and
more. Each of these components has corresponding code. If the user selects to install this
component, then the installer will execute the respective code for that component. In a script,
that code is defined in sections.

Instructions used in sections are different from instructions for installer attributes. They are
executed at runtime on the user’s computer and can extract files, read from and write to the
registry, INI files or normal files, create directories, create shortcuts and more. See
Instructions for more information. An example of a section looks like this:

Section "My Program"
 SetOutPath $INSTDIR
 File "My Program.exe"
 File "Readme.txt"
SectionEnd

Functions

Functions, like Sections, contain script code. The difference between sections and functions
is the way in which they are called. There are two types of functions: user functions and
callback functions.

User functions are called from Sections by the user or other functions using the Call
instruction. User functions will not execute unless you call them. After the code in the
function has executed, the installer will continue executing the instructions that came after
the Call instruction, unless installation has been aborted inside the function. User functions
are useful if an installer contains a set of instructions that need to be executed in several
locations of the installer. Example user function:

Function Hello
 DetailPrint "Hello world"
FunctionEnd

Callback functions are called by the installer upon certain defined events, such as when the
installer starts. Callbacks are optional. Example callback function:

https://nsis.sourceforge.io/Docs/Chapter4.html#instr
https://nsis.sourceforge.io/Docs/Chapter2.html#tutscriptfiles:~:text=functions%20using%20the-,Call,-instruction.%20User%20functions

3/37

Function .onInit
 MessageBox MB_YESNO "This will install My Program. Do you wish to continue?" IDYES
gogogo
 Abort
 gogogo:
FunctionEnd

GuLoader NSIS Script

NSIS Script

The NSIS install script is located in the .nsi file, which is bundled in the executable.

Figure 1: Files extracted from NSIS using 7z
The script is relatively small, containing 6 user functions, 1 callback function and 1 unused
section. Though the script is small, the control flow of the script is intentionally convoluted,
with junk commands sprinkled throughout. The callback function .onMouseOverSection
serves as the entry point. The key commands from the entry point function are:

1. Store file path
$INSTDIR\Skrivefelt172\Beskyttelsesprogram\Udledningstilladelses169\Gtter

iernes.The in var $_45_
2. Store the value 41000 in var $R1
3. Store the value 1 in var $R7
4. Store the value 2893 in var $1
5. Store the file path $INSTDIR\Arbejderklassernes.Ato in var $4

4/37

Figure 2: Entry point callback function .onMouseOverSection
The callback function ends by calling func_36. func_36 contains a loop that extracts
individual characters from Arbejderklassernes.Ato to build command strings to load and
execute GuLoader shellcode. Control flow jumps between functions and labels, making
analysis difficult to follow. The following commands are the key components for the loop.

1. Open
$INSTDIR\Skrivefelt172\Beskyttelsesprogram\Udledningstilladelses169\Gtter

iernes and store file handle in var $_46_.
2. Push $_46_ onto the stack and Pop $R2 (store file handle in $R2)
3. Call func_0 to call FileSeek and move the file pointer to var $R1
4. Read 1 byte from

$INSTDIR\Skrivefelt172\Beskyttelsesprogram\Udledningstilladelses169\Gtter

iernes at file pointer location and store in var $_42_
5. Push $_42_ onto the stack and Pop $1 (store the byte read from the file in var $1

5/37

6. Iterate index variable $R1 by 205 (file pointer + 205)
7. Copy Z into var $R9
8. Copy $1 (byte read from file) into var $0
9. Loop condition: If $0 is a not a Z, write the it to the registry key HKCU Software\Allos

Setup and loop again starting at label 37. If $0 is a Z, call func_23 to write the
remaining value to the registry key HKCU Software\Allos Setup and read the string
stored in that key into var $R8, then call func_62 to allocate memory using
System::Alloc followed by System:Call to call the deobfuscated command that uses
the Windows API to execute the GuLoader shellcode.

Figure 3: Main execution loop that extracts commands from file to the registry and executes
shellcode
The resulting deobfuscated commands use the Windows API to:

1. Load the file $INSTDIR\Arbejderklassernes.Ato
2. Set the file pointer to offset 63101
3. Allocate RWX memory of size 19456000
4. Read shellcode starting from offset 63101 size 19456000 into the allocated RWX

memory
5. Execute GuLoader shellcode using EnumWindows callback function

kernel32::CreateFileA(m r4 , i 0x80000000, i 0, p 0, i 4, i 0x80, i 0)i.r5
kernel32::SetFilePointer(i r5, i 63101 , i 0,i 0)i.r3
kernel32::VirtualAlloc(i 0,i 19456000, i 0x3000, i 0x40)p.r2
kernel32::ReadFile(i r5, i r2, i 19456000,*i 0, i 0)i.r3
user32::EnumWindows(i r2 ,i 0)

6/37

Figure 4: EnumWindows callback function executes shellcode

GuLoader Shellcode

PEB Parsing and API Hashing

Shellcode Decrypt and Execute

The first section of shellcode is responsible for decrypting the stage one shellcode.
GuLoader calculates an XOR key by performing arithmetic operations against a constant
value, XOR decrypts the encrypted shellcode byte-by-byte, and transfers execution to the
decrypted shellcode. The screenshots below show the XOR decrypt and the call eax
instruction that executes the decrypted stage one shellcode.

Figure 5: XOR decrypt shellcode using key 0x3AD1577C

Figure 6: Call decrypted GuLoader shellcode
Walking the PEB and Resolving Windows APIs

GuLoader does not have an Import Address Table (IAT) and therefore must manually resolve
addresses of the functions it needs to execute. GuLoader walks the Process Environment
Block (PEB) to locate base addresses of loaded modules and enumerates their export tables
to find the desired Windows APIs . The PEB is always located at offset 0x30 (Win32) within
the Thread Information Block (TIB).

7/37

typedef struct _PEB {
 BYTE Reserved1[2];
 BYTE BeingDebugged;
 BYTE Reserved2[1];
 PVOID Reserved3[2];
 PPEB_LDR_DATA Ldr;
 PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
 PVOID Reserved4[3];
 PVOID AtlThunkSListPtr;
 PVOID Reserved5;
 ULONG Reserved6;
 PVOID Reserved7;
 ULONG Reserved8;
 ULONG AtlThunkSListPtr32;
 PVOID Reserved9[45];
 BYTE Reserved10[96];
 PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
 BYTE Reserved11[128];
 PVOID Reserved12[1];
 ULONG SessionId;
} PEB, *PPEB;

Once a pointer to the PEB is acquired, the shellcode gets a pointer to the PEB_LDR_DATA
structure, which is located at offset 0xC. Ldr contains an entry, InMemoryOrderModuleList,
which is a doubly-linked list that contains the loaded modules for the process.

Figure 7: Walking the PEB
Each item in the list is a pointer to an LDR_DATA_TABLE_ENTRY structure, including the
DllBase address and the DllName.

8/37

typedef struct _LDR_DATA_TABLE_ENTRY {
 PVOID Reserved1[2];
 LIST_ENTRY InMemoryOrderLinks;
 PVOID Reserved2[2];
 PVOID DllBase;
 PVOID EntryPoint;
 PVOID Reserved3;
 UNICODE_STRING FullDllName;
 BYTE Reserved4[8];
 PVOID Reserved5[3];
 union {
 ULONG CheckSum;
 PVOID Reserved6;
 };
 ULONG TimeDateStamp;
} LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY;

Figure 8: Walking the PEB (continued)
Once the DLL has been identified, GuLoader iterates the exports of the DLL in search of the
desired API. GuLoader uses DJB2 to hash the name of the API and compare it against the
pre-computed hash value. This method reduces the number of strings visible in memory,
increasing the difficulty of detection.

9/37

Figure 9: Iterate DLL exports and calculate DJB2
GuLoader leverages the DJB2 algorithm throughout the codebase to hash strings. The
constant 5381 (0x1505) and instruction shl 5 are a clear indication of the use of the
algorithm. Below is a representation of the algorithm,

 unsigned long
 hash(unsigned char *str)
 {
 unsigned long hash = 5381;
 int c;

 while (c = *str++)
 hash = ((hash << 5) + hash) + c; /* hash * 33 + c */

 return hash;
 }

GuLoader employs an additional XOR as part of its DJB2 algorithm for additional
obfuscation. This ensures that the DJB2 hashes of specific APIs cannot be used for
detection mechanisms such as Yara rules.

Figure 10: Loop to calculate DJB2 hash

Vectored Exception Handler

10/37

GuLoader registers a custom vectored exception handler (VEH), using
RtlAddVectoredException, as a control flow obfuscation technique to hinder analysis in
debuggers and disassemblers. A VEH is an extension to structured exception handling that
are not frame-based, therefore the VEH will be called for unhandled exceptions regardless of
the location in a call frame. VEHs are called in the order they are added and can be
designated to run first when registered via AddVectoredExceptionHandler.

PVOID AddVectoredExceptionHandler(
 ULONG First,
 PVECTORED_EXCEPTION_HANDLER Handler
);

GuLoader calls RtlAddVectoredExceptionHandler with the First argument set to 1, which
indicates the handler should be the first handler to be called. The VEH is used to control
execution by dynamically calculating the address of EIP based on instructions following the
address in which the exception occurred. GuLoader incorporates code throughout the
shellcode that intentionally triggers the following three exceptions, causing the VEH code to
execute.

1. 0xC0000005 EXCEPTION_ACCESS_VIOLATION
2. 0x80000004 EXCEPTION_SINGLE_STEP
3. 0x80000003 EXCEPTION_BREAKPOINT

EXCEPTION_ACCESS_VIOLATION

GuLoader triggers access violation exceptions by performing mathematical operations on a
constant stored in a register, then uses this value to attempt to write data the the [invalid]
memory address referenced by this constant. This causes an access violation exception
0xC0000005, triggering the VEH.

Figure 11: Code to trigger access violation exception
EXCEPTION_SINGLE_STEP

Setting the Trap Flag is a well-known way to detect if a debugger is currently attached to a
process. When the Trap Flag is set, a Single Step exception is raised. If a debugger is
attached, it will handle the raised exception and continue execution. If a debugger is not
attached, the exception will be handled by the exception handler, in this case, the GuLoader
VEH.

The code below is an example of the code blocks located throughout the GuLoader
shellcode that cause a Single Step exception 0x80000004. Constant obfuscation is used to
conceal the value of 0x100, which is eventually stored in edx. pushfd is used to push the
EFLAGS register to the top of the stack. Next, the value of the EFLAGS is calculated via or

11/37

dword ptr ds:[edi] (0x206), edx (0x100), resulting in the value 0x306. 0x306 is
1100000110 in binary, meaning the bit in position 8 (Trap Flag) is set. Finally, pushfd pops
the dword on top of the stack into the EFLAGS register, setting the Trap Flag and triggering a
Single Step exception (when the debugger is not attached).

Figure 12: Code to trigger single step exception
EXCEPTION_BREAKPOINT

The INT3 (0xCC) instruction is a single-byte instruction defined for use by debuggers to
temporarily replace an instruction in a running program in order to set a breakpoint. When an
INT3 instruction is executed, a breakpoint exception 0x80000003 is triggered and the VEH is
executed. If a debugger is attached, the exception is handled by the debugger, the VEH is
not called, and program execution is paused. Instructions following the INT3 instructions are
often invalid, causing exceptions and breaking execution in the debugger.

Figure 13: int3 instruction to trigger breakpoint exception
GuLoader VEH

When an exception is thrown, the VEH receives an EXCEPTION_POINTER structure, which
contains a pointer to the ExceptionRecord and ContextRecord.

typedef struct _EXCEPTION_POINTERS {
 PEXCEPTION_RECORD ExceptionRecord;
 PCONTEXT ContextRecord;
} EXCEPTION_POINTERS, *PEXCEPTION_POINTERS;

The ExceptionRecord contains a machine-independent description of the exception. The
most important member for the GuLoader VEH is the ExceptionCode, which is used to
determine the code branch to execute in order to calculate EIP and continue execution.

typedef struct _EXCEPTION_RECORD {
 DWORD ExceptionCode;
 DWORD ExceptionFlags;
 struct _EXCEPTION_RECORD *ExceptionRecord;
 PVOID ExceptionAddress;
 DWORD NumberParameters;
 ULONG_PTR ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS];
} EXCEPTION_RECORD;

12/37

Once the ExceptionCode is identified, the VEH accesses the ContextRecord to retrieve EIP,
then calculates a new EIP and continues execution using the following formula:

1. Exception_Access_Violaton and Exception_Single_Step: eip = ((eip + 2) ^
0xDB) + eip

2. Exception_Breakpoint: eip = ((eip + 1) ^ 0xDB) + eip

Note: The XOR value changes in each sample of GuLoader.

13/37

typedef struct _CONTEXT {
 DWORD64 P1Home;
 DWORD64 P2Home;
 DWORD64 P3Home;
 DWORD64 P4Home;
 DWORD64 P5Home;
 DWORD64 P6Home;
 DWORD ContextFlags;
 DWORD MxCsr;
 WORD SegCs;
 WORD SegDs;
 WORD SegEs;
 WORD SegFs;
 WORD SegGs;
 WORD SegSs;
 DWORD EFlags;
 DWORD64 Dr0;
 DWORD64 Dr1;
 DWORD64 Dr2;
 DWORD64 Dr3;
 DWORD64 Dr6;
 DWORD64 Dr7;
 DWORD64 Rax;
 DWORD64 Rcx;
 DWORD64 Rdx;
 DWORD64 Rbx;
 DWORD64 Rsp;
 DWORD64 Rbp;
 DWORD64 Rsi;
 DWORD64 Rdi;
 DWORD64 R8;
 DWORD64 R9;
 DWORD64 R10;
 DWORD64 R11;
 DWORD64 R12;
 DWORD64 R13;
 DWORD64 R14;
 DWORD64 R15;
 DWORD64 Rip;
 union {
 XMM_SAVE_AREA32 FltSave;
 NEON128 Q[16];
 ULONGLONG D[32];
 struct {
 M128A Header[2];
 M128A Legacy[8];
 M128A Xmm0;
 M128A Xmm1;
 M128A Xmm2;
 M128A Xmm3;
 M128A Xmm4;
 M128A Xmm5;

14/37

 M128A Xmm6;
 M128A Xmm7;
 M128A Xmm8;
 M128A Xmm9;
 M128A Xmm10;
 M128A Xmm11;
 M128A Xmm12;
 M128A Xmm13;
 M128A Xmm14;
 M128A Xmm15;
 } DUMMYSTRUCTNAME;
 DWORD S[32];
 } DUMMYUNIONNAME;
 M128A VectorRegister[26];
 DWORD64 VectorControl;
 DWORD64 DebugControl;
 DWORD64 LastBranchToRip;
 DWORD64 LastBranchFromRip;
 DWORD64 LastExceptionToRip;
 DWORD64 LastExceptionFromRip;
} CONTEXT, *PCONTEXT;

Figure 14: VEH Calculating EIP for Access Violation/Single Step Violation

Anti-Analysis and Anti-Debug

Figure 15: Your new favorite MessageBox indicating your debugger/VM has been detected
and GuLoader is terminating
Software Breakpoint Check

15/37

GuLoader performs anti-analysis/debug checks prior to calling Windows APIs by checking
for breakpoints at the start of the function. When setting a software breakpoint on a function
in a debugger, the debugger patches the first byte with a 0xCC, 0x3CD or 0xB0F, depending on
the type of breakpoint selected, to trigger a software interrupt. GuLoader checks the first byte
of the function for these values in order to detect software breakpoints. If detected, GuLoader
jumps to code that crashes the process.

16/37

Figure 16: Check for software breakpoints
Scan Memory for Pre-Computed DJB2 Hashes of Strings

17/37

GuLoader scans the entire memory area using ZwQueryVirtualMemory from 0x00010000 to
0x7FFFF000 for strings indicating the malware is running in a virtualized environment or for
various security tools.

Figure 17: ZwQueryVirtualMemory to scan entire memory area
ZwQueryVirtualmemory returns the MEMORY_BASIC_INFORMATION struct, which contains
information including the BaseAddress as well as Protect, which describes current page
protection.

typedef struct _MEMORY_BASIC_INFORMATION {
 PVOID BaseAddress;
 PVOID AllocationBase;
 ULONG AllocationProtect;
 USHORT PartitionId;
 SIZE_T RegionSize;
 ULONG State;
 ULONG Protect;
 ULONG Type;
} MEMORY_BASIC_INFORMATION, *PMEMORY_BASIC_INFORMATION;

GuLoader access the State member, looking for memory pages with protection
PAGE_EXECUTE, PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE, PAGE_WRITE, and
PAGE_READWRITE (not pictured). GuLoader then scans the identified memory pages for
strings, hashes the string using DJB2 and compares the hash against pre-computed hashes.

Figure 18: Check memory page protection

18/37

Figure 19: Check memory string hash against pre-computed DJB2 hashes
QEMU Agent Detection

GuLoader uses CreateFileA to check for of C:\Program Files\Qemu-ga\qemu-ga.exe and
C:\Program Files\qga\qga.exe to identify the QEMU emulator.

Figure 20: Check for existence of Qemu

19/37

Figure 21: Check for existence of Qemu continued
DbgBreakPoint and DbgRemoteBreakin

GuLoader gets the address of DbgBreakPoint and patches the first byte 0xCC (int3) with
0x90 (nop), meaning breakpoints will no longer pause execution in the debugger.

Note: Setting a breakpoint on this function inserts a CC at the beginning of the function,
negating this anti-debug technique.

Figure 22: DbgBreakPoint patched with 0x90
DbgUiRemoteBreakin

The DbgUiRemoteBreakin API is used by the debugger to break in to a process. GuLoader
patches this API to ensure that the process cannot be attached to for debugging by replacing
the beginning of the API with a call to ExitProcess.

Figure 23: Patched DbgUiRemoteBreakin API to call ExitProcess
Patch ldrLoadDll

GuLoader patches the initial bytes of LdrLoadDll, presumably to prevent hooks.

Figure 24: Code to patch initial bytes of LdrLoadDll
Unhooking API Calls

20/37

AV and EDR products insert hooks into commonly used NTDLL API functions, allowing the
security tool to monitor API calls and arguments to monitor for malicious behavior. User
mode hooks are generally inserted in the form of an unconditional jump, replacing the initial
0xB8 mov instruction with a jump 0xE9 to the handler. GuLoader identifies and removes these
hooks by searching for byte patterns (\xB8\x00.{3}\xB9) common of those in NTDLL
functions.

Figure 25: Check for byte pattern indicating NTDLL call to syscall
If a hook is identified, GuLoader replaces the first 5 bytes to remove any hooks.

Figure 26: Replace initial 5 bytes to original NTDLL
GuLoader uses 0x33C9, 0xC2, and 0xE8 as anchor bytes in order to retrieve relative byte
positions in order to patch.

21/37

Figure 27: Example of using byte anchor to retrieve relative byte positions
GuLoader calls ZwProtectVirtualmemory to change the page permissions back to
PAGE_EXECUTE_READ (0x20) once it has finished replacing any hooks.

Figure 28: Call ZwProtectVirtualMemory to set page permissions to PAGE_EXECUTE_READ
0x20
EnumWindows

GuLoader uses the Windows API EnumWindows to enumerate all top-level windows on the
user’s screen to attempt to identify an analysis/sandbox environment. If the number of
windows is less than 12, it calls TerminateProcess to terminate itself.

22/37

Figure 29: Bypassing EnumWindows check by setting number of top-level windows to 15
NtSetInformationThread

The Windows API NtSetInformationThread is used to modify thread specific data for a
provided thread.

__kernel_entry NTSYSCALLAPI NTSTATUS NtSetInformationThread(
 [in] HANDLE ThreadHandle,
 [in] THREADINFOCLASS ThreadInformationClass,
 [in] PVOID ThreadInformation,
 [in] ULONG ThreadInformationLength
);

GuLoade calls NtSetInformationThread and passes 0x11 as the argument for
ThreadInformationClass. 0x11 corresponds to ThreadHideFromDebugger. This is a known
anti-debug technique that causes the debugger to crash when a breakpoint is hit in the
specified thread or when the debugger steps through instructions.

23/37

Figure 30: GuLoader calls NtSetInformationThread passing ThreadHideFromDebugger
Enumerate Device Drivers

GuLoader uses EnumDeviceDriver and GetDeviceDriverBaseNameA from psapi.dll to
enumerate system driver names, searching for VM-related drivers. Similar to the
methodology used to search for strings, GuLoader uses DJB2 to hash each driver name and
compares it to a list of pre-computed hashes.

Figure 31: EnumDeviceDrivers to enumerate drivers

Figure 32: GetDriverBaseNameA returns vmmouse.sys
Enumerate Installed Products

24/37

GuLoader uses MsiGetProductInfoA and MsiEnumProductsA to enumerate installed
software, hashes the name of the software, and compares them to a list of pre-computed
hashes.

Figure 33: GuLoader calling MsiEnumProductsA to enumerate installed software
Enumerate System Services

GuLoader enumerates system services using OpenSCManagerA and EnumServiceStatusA,
hashes the service names, and compares them to a list of pre-computed hashes.

Figure 34: GuLoader calling OpenSCManagerA to enumerate system services
NtQueryInformationProcess

NtQueryInformationProcess is a Windows API that retrieves information about the specified
process.

__kernel_entry NTSTATUS NtQueryInformationProcess(
 [in] HANDLE ProcessHandle,
 [in] PROCESSINFOCLASS ProcessInformationClass,
 [out] PVOID ProcessInformation,
 [in] ULONG ProcessInformationLength,
 [out, optional] PULONG ReturnLength
);

Among the process information available, the ProcessInformationClass provides the
ProcessDebugPort (0x7), which provides the port number of the debugger for the process.
A nonzero value indicates that the process is being run under the control of a ring 3
debugger. If a debugger is detected, the malware exits.

25/37

Figure 35: Call to NtQueryInformationProcess querying ProcessDebugPort to identify a ring
3 debugger
CPUID & RDTSC Sandwich

GuLoader calls CPUID leaf 1 (eax == 1)and checks whether a hypervisor is present by
checking bit 31 of register ECX, indicating the malware is running in a virtual environment.
This CPUID call is wrapped in rdtsc instructions, which GuLoader uses to calculate the
amount of time needed to execute the CPUID call. This is another measure to detect a virtual
environment, as a hypercall is required to execute the CPUID instruction within a virtual
environment, therefore taking a longer amount of time to execute than on a virtualized
system.

Figure 36: CPUID and RDTSC Sandwich

String Decryption

GuLoader decrypts all strings at runtime, making static analysis difficult.
NtAllocateVirtualMemory is called to allocate a buffer to store the encrypted and decrypted
data. Once the buffer is allocated, the length of the encrypted string is written to the first
word. Next, the encrypted data is written to the buffer, overwriting the length. GuLoader
iterates through the ciphertext, XORing each byte by the key. The decrypted byte is then
written back to the buffer in place.

https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/hypercall-interface

26/37

Figure 37: String Decryption

Code Injection

GuLoader uses process hollowing in order to inject code into a suspended process, then
resume execution inside the new process. GuLoader has been observed using process
hollowing injection into a number of different executables, as well as spawning a child
process of itself to inject into. In the case of this sample, GuLoader injected into a copy of
itself using the following APIs.

CreateProcessInternalW

GuLoader first calls CreateProcessInternalW, passing its own path as an argument, as well
as the creation flag of 0x4 (Suspended). GuLoader uses a direct syscall rather than calling
the API directly to avoid EDR/AV detection.

27/37

Figure 38: CreateProcessInternalW Suspended

Figure 39: Suspended process created
NtUnmapViewOfSection

GuLoader uses NtUnmapViewOfSection to unmap the image at 0x400000 in the suspended
process.

Figure 40: NtUnmapViewOfSection unmapping the original image in the suspended process
NtOpenFile

GuLoader decrypts the path to C:\Windows\System32\mshtml.dll and opens a file handle
to it using NtOpenFile.

28/37

Figure 41: NtOpenFile acquiring a file handle to C:\Windows\System32\mshtml.dll
NtCreateSection

After opening a handle to mshtml.dll, GuLoader calls NtCreateSection using the file
handle received from NtOpenFile in order to create a section object. A section object
represents a section of memory that can be shared with other processes. A section object
that is not backed by a file is suspicious, so GuLoader hardcodes a file to create the section
object to avoid potential detection.

Figure 42: NtCreateSection creating a section object
NtMapViewOfSection

29/37

Next, GuLoader calls NtMapViewOfSection to map the mshtml.dll section that was just
created using NtCreateSection into the virtual address space of the suspended process.

Figure 43: Mapping the section object created from mshtml.dll to memory

Figure 44: Section successfully mapped to memory
ZwWriteVirtualMemory

After the image is mapped in the suspended process, GuLoader writes its shellcode into the
memory of the suspended process. Note: The shellcode is not written into the mapped
section. The payload will be mapped over it later on.

30/37

Figure 45: GuLoader writing itself to the suspended process
NtGetContextThread

Next, GuLoader calls NtGetContextThread to retrieve a pointer to the Context structure of
the thread in the suspended process. This is the same context structure as discussed in the
VEH section and contains processor-specific register data.

Figure 46: GuLoader retrieving Context structure from suspended process
ZwSetContextThread

31/37

GuLoader calculates an entry point for the suspended process and updates the EAX register
(RtlUserThreadStart is EIP and will jump to the address in EAX). in the context structure
retrieved with NtGetContextThread. If abnormal execution is detected, GuLoader will set a
decoy entry point, breaking execution in the new process.

Figure 47: Accessing EIP in Context structure to update EIP
Once the entry point is calculated, GuLoader calls ZwSetContextThread to set the thread
context in the suspended process.

Figure 48: Setting Context structure in suspended process with updated registers/EIP
NtResumeThread

Finally, GuLoader calls NtResumeThread to resume execution of the suspended process,
executing the injected GuLoader shellcode.

32/37

Figure 49: Executing GuLoader shellcode in injected process

Payload Download and Execution

Decrypt C2

GuLoader resumes execution in the new process, repeating all anti-analysis and anti-vm
checks covered above. Once completed, GuLoader decrypts the C2 in memory using the
same decryption methodology mentioned above.

Figure 50: Decrypted C2 String
If the fifth byte of the C2 is an ‘s’, GuLoader replaces the prefix to https://. Otherwise, it
replaces the prefix with http://.

Figure 51: https:// prepended to C2
Download Payload

GuLoader resolves the addresses of the following APIs InternetOpenA,
InternetSetOptionA, InternetOpenUrlA, InternetReadFile, InternetCloseHandle in
order to perform a GET request and download the payload. GuLoader payloads are
frequently hosted on Google Drive and other cloud storage and file-sharing solutions.
Payloads are generally long-lived as the payloads are XOR encrypted, making it difficult for
providers to detect and remove them.

33/37

Figure 52: Call to InternetOpenUrlA in process of downloading payload
Decrypt Payload

GuLoader’s decryption routine consists of three steps:

1. Calculate XOR key
2. Decrypt payload key
3. Decrypt payload

Calculate XOR Key

When calculating the XOR key, GuLoader retrieves the first two bytes from the payload,
which start at byte offset 40. The two bytes are then XORed against the first two bytes of the
encrypted key as well as a counter value. This process is repeated until the first two bytes of
the payload are decrypted to 0x4D5A (MZ). When the first two bytes of the payload are
0x4D5A, the value in the counter register is used as the decryption key for the payload key.
For this sample, the XOR key is 0x8BF7.

Figure 53: First part of routine to calculate XOR key

Figure 54: XOR key loop condition checking for 4D5A, completing calculation of XOR key
Decrypt Payload Key

34/37

With the XOR key now calculated, GuLoader moves to a routine to decrypt the payload key.
The decryption routine iterates through the downloaded payload 2 bytes at a time, XORing
against the two byte XOR key. The length of the payload key in this sample is 468 bytes.

Figure 55: Using XOR key to decrypt 468 byte payload key

Figure 56: Decrypted 468 byte payload key
Decrypt Payload

After the payload key is fully decrypted, GuLoader finally XOR decrypts the downloaded
payload in place, byte-by-byte using the 468 byte payload key.

35/37

Figure 57: Payload decryption routine

Figure 58: Decrypted Remcos Payload
Execute Payload

Zero Base Address 0x400000

Once the payload has been decrypted, GuLoader sets memory permissions at 0x400000 to
RW and zeroes out the image that is in place.

36/37

Figure 59: Zeroed out image base
Copy Payload to Base Address

Next, GuLoader copies the new payload to 0x400000.

Figure 60: Remcos payload written to 0x400000
NtCreateSection

GuLoader then calls NtCreateSection to create a section object so that it can map the image
to memory.

NtMapViewOfSection

After the section is created, GuLoader maps the section into memory, then calls
ZwProtectVirtualMemory to set memory protection appropriately.

Figure 61: Payload mapped to memory with permissions set
NtCreateThreadEx

Finally, GuLoader calls NtCreateThreadEx to execute the image that is now mapped at
0x400000, executing the payload.

Bonus: Remcos Configuration Extraction

37/37

The payload downloaded by this sample of GuLoader is Remcos. Remcos is a commercial
Remote Access Tool advertised as legitimate software for surveillance and penetration
testing, though it is frequently used in malware campaigns.

I previously wrote a Remcos configuration extractor for another project and it looks like the
configuration has not changed. The configuration extractor can be found on my GitHub.

❯ python3 extract_config.py remcos_payload.bin
Remcos Config Extractor - CRITICAL Extracting config from: remcos_payload.bin
Malware Family: Remcos
Botnet: RemoteHost
C2s: ['194.59.218[.]165:2408']

https://malpedia.caad.fkie.fraunhofer.de/details/win.remcos
https://github.com/MuziSec/malware_scripts/blob/main/remcos/extract_config.py

