
1/8

By Rahul R June 1, 2023

Encrypted Chaos: Analysis of Crytox Ransomware
labs.k7computing.com/index.php/encrypted-chaos-analysis-of-crytox-ransomware/

Crytox Ransomware is a 64 bit executable, developed in C and usually deployed by
packing the compiled executable with UPX. On unpacking, the size of the payload is
around 2.9 MB, which is unusually high for a malware. On analyzing the binary we came to
know that an entire uTox client was embedded at the start of the .text section.

Figure 1: Embedded uTox binary

https://labs.k7computing.com/index.php/encrypted-chaos-analysis-of-crytox-ransomware/
https://utox.org/

2/8

On execution, the ransomware decrypts a configuration file using AES algorithm, drops the
uTox application in the path mentioned in the configuration file and injects a shellcode into a
native Windows process mentioned in the configuration. This shellcode deletes the volume
shadow copies and then injects a new shellcode into another native process which runs
with a specific cmdline argument (in our case svchost with netsvcs cmdline was targeted).
The final injected shellcode is responsible for encrypting the user files on disk with a
“.waiting” extension.

Analysis

Stage – 1

API Resolving

Win32 APIs are dynamically resolved at runtime, it uses ROR7 for calculating module/DLL
name hash, and ROR5 for calculating the export API hash. The binary contains hardcoded
values which are the sum of module hash and API hash it needs to resolve and call, the
equivalent code converted to python is shown below.

””“””“””“””“””“””“””“””
Crytox API Resolving
“””“””“””“””“””“””“””“””

https://www.geeksforgeeks.org/rotate-bits-of-an-integer/
def rightRotate(n, d):
 return (n >> d) | (n << (INT_BITS - d)) & 0xFFFFFFFF

def calculateHash(moduleName, moduleAPIList):
 moduleName = moduleName.upper()
 moduleName_bytes = moduleName.encode("utf-16le") + b'\x00\x00'
 moduleHash = 0
 for byte in moduleName_bytes:
 val = ord(chr(int(byte)))
 moduleHash = (val + ((rightRotate(moduleHash, 7)) & 0xFFFFFFFF)) &
0xFFFFFFFF
 for api in moduleAPIList:
 api_bytes = api.encode("utf-8") + b'\x00'
 apiHash = 0
 for byte in api_bytes:
 val = ord(chr(int(byte)))
 apiHash = (val + ((rightRotate(apiHash, 5)) & 0xFFFFFFFF)) & 0xFFFFFFFF
 exp = hex((moduleHash + apiHash) & 0xFFFFFFFF)
 if int(exp, 0) in Hash_present_in_Binary:
 print(f"{api} = {exp}")

Complete List of API’s that are resolved by the file, can be seen in Appendix A.

Stage – 1 Configuration and Key Generation

3/8

The AES encrypted configuration is present in the .data section with size 0x1c0, the key to
decrypt the configuration is “A5 C6 63 63 84 F8 7C 7C 99 EE 77 77 8D F6 7B 7B 0D FF F2
F2 BD D6 6B 6B B1 DE 6F 6F 54 91 C5 C5”.

Figure 2: Stage – 1 configuration
The extracted configuration contains the RSA public key, persistence registry, key and data
value for ransom note, native process to inject the next stage into and location to drop the
uTox client respectively.

Once the configuration is decrypted, it checks the value “en” under subkey
“.waiting\\shell\\open\\command\\”, if found, the corresponding data is the RSA public key
and value “n” contains RSA private key encrypted using the public key present in the
configuration.

Figure 3: RSA Key Pair saved in registry
If registry value is not found, a key pair is generated using CryptGenKey API with Algid (0x1
– RSA key exchange). The private key is exported to memory using CryptExportKey with
dwBlobType parameter set as 0x7(PRIVATEKEYBLOB) and it is encrypted in chunks of
0xF4 bytes using CryptEncrypt. The public key is exported in a similar manner using
CryptExportKey with dwBlobType parameter set 0x6(PUBLICKEYBLOB).

4/8

Figure 4: Private key stream
Process Injection

After the generation of public and private key pairs, the malware enumerates all the active
processes and targets the first svchost.exe process to inject into. The shellcode is injected
into this target process, using the conventional API’s VirtualAllocEx, WriteProcessMemory,
and NtCreateThreadEx is invoked to execute the shellcode in a new thread.

Stage – 2

Deleting the Trace

The injected shellcode checks if the target process has “SeDebugPrivilege” Enabled. If it is,
then the Access Token is updated to NTAuthority/SYSTEM. It waits until the stage-1
process exits, to obtain a handle to the stage – 1 file. It reads the stage – 1 file from disk
using MapViewOfFile, copies 0x4400 bytes from offset 0x135CA4 into a new heap which is
nothing but the stage – 2’s encrypted configuration. Probably to evade memory forensic,
the stage-1 file is completely filled with NULL bytes and saved, before deleting it from disk.

Stage – 2 Configuration

The stage-2 configuration is decrypted using AES with key “50 60 30 30 03 02 01 01 A9 CE
67 67 7D 56 2B 2B 19 E7 FE FE 62 B5 D7 D7 E6 4D AB AB 9A EC 76 76”. The extracted
configuration contains a bat file and its name to be dropped on disk and executed.

Figure 5: Stage – 2 Configuration
Deleting Shadow Copies

5/8

 The bat file to delete the volume shadow copies is dropped in the Windows directory and
executed using ShellExecute.

Process Injection into Explorer and Svchost

The shellcode enumerates all the active processes and on each enumeration ROR13
hashes the process name. If the calculated hash is equal to
0xDCF164CD(EXPLORER.EXE) or 0x561F1820(SVCHOST.EXE), but for svchost, it
performs the following to target only specific service.

1. Obtain the handle using OpenProcess
2. Retrieves the PEB of the target process using NtQueryInformationProcess with

ProcessInformationClass parameter set to 0.
3. Reads the cmdline argument from target process PEB using ReadProcessMemory

If the cmdline argument of the target process contains the parameter “netsvcs”, it is chosen
for the injection of final stage shellcode. The Process id of the identified target process is
copied to a Heap, followed by the encrypted final stage payload which is present in the
stage-1 resource section under RCDATA.

A mutex with name “itkd< 4_characters_generated_based_on_targetPID>” is created, then
the encrypted resource data is decrypted using the same AES Key “50 60 30 30 03 02 01
01 A9 CE 67 67 7D 56 2B 2B 19 E7 FE FE 62 B5 D7 D7 E6 4D AB AB 9A EC 76 76” used
before. The decrypted payload is the final stage shellcode which is injected into target
process and executed using NtCreateThreadEx

Figure 6: Final Stage Shellcode

Stage – 3 (Final Ransomware)

6/8

The Final stage creates a new heap, and decrypts another configuration which is present at
offset 0x14FF with size 0x2F11 using the same AES key used in stage – 1. The
configuration contains the entire ransom note which is dropped to disk in .hta format, the
same public key present in stage-1 configuration and the extension to encrypt files with.

Figure 7: Ransomware Configuration
A new thread is created for each logical disk, the files are encrypted using AES algorithm,
with a new private key generated for every file and it is encrypted with the hardcoded public
key and appended at the end of each file. The files are encrypted with the .waiting
extension. The uTox application allows the victims to communicate with the attacker with
the unique id displayed in the ransom note.

Figure 8: Crytox Ransom Note

7/8

IOCs

Hash: 823E4C4E47E8DABE32FC700409A78537

K7 Detection Name: Trojan (00564c011)

References

1. https://www.zscaler.com/blogs/security-research/technical-analysis-crytox-
ransomware

Appendix A (Dynamically Resolved API’s)

AdjustTokenPrivileges 0x34F2E741 RtlMoveMemory 0x97465417

CryptAcquireContextA 0x3F954B63 Sleep 0x32661A6D

CryptDestroyKey 0xD7397F82 TerminateProcess 0xB92BD08

CryptEncrypt 0x835A425D UnmapViewOfFile 0x672A2B80

CryptExportKey 0x16E52981 VirtualAllocEx 0xD18887FC

CryptGenKey 0x8483E097 VirtualFreeEx 0x4F2BA5CE

CryptImportKey 0xC052981 VirtualProtectEx 0x94955ED7

LookupPrivilegeValueA 0x43AA560B WaitForSingleObject 0x2671BB8F

OpenProcessToken 0xA3628BFF WriteFile 0x70E3C54A

RegCloseKey 0x56F03636 WriteProcessMemory 0xF6E87FBA

RegCreateKeyA 0x5E723FC0 lstrcatA 0x8A1D9BCA

RegOpenKeyExA 0xFDE81F1E lstrcmpiA 0xB1DC3443

RegQueryValueExA 0x7829A4A1 lstrcmpiW 0x61DC3443

RegSetValueExA 0x170C3FCB NtCreateThreadEx 0x58A71ECB

CloseHandle 0xF2B7C89A NtQueryInformationProcess 0xE650C32F

CreateFileA 0x9EB8EB8F CreateFileW 0x4EB8EB8F

CreateFileMappingA 0x87C4720C FileTimeToSystemTime 0x74C1905A

CreateMutexA 0xD648D4DD FindClose 0x92A140B

CreateRemoteThread 0x4583365E FindFirstFileW 0xD7CE34E1

CreateThread 0xE888AE7A FindNextFileW 0xD1FDC87F

https://www.zscaler.com/blogs/security-research/technical-analysis-crytox-ransomware

8/8

CreateToolhelp32Snapshot 0x99F5245 GetDateFormatA 0x82D70B24

DeleteFileA 0xA2EDAD8F GetLogicalDrives 0xBA21023

GetExitCodeThread 0xFBD76D17 GetSystemTimeAsFileTime 0x8FBB53E7

GetFileSize 0x4966632A GetSystemTimes 0xFE2CDA22

GetLastError 0x87E43BC GetTickCount 0x20841296

GetWindowsDirectoryA 0x63061FFC GlobalMemoryStatus 0x74C9FD10

GlobalAlloc 0x5287A129 MoveFileW 0x9BDBE590

GlobalFree 0x8CEF887D ReadFile 0xCE2BC47E

LoadLibraryA 0x2EB89E41 SetEndOfFile 0xCC719466

MapViewOfFile 0xA48A2B6F SetFileAttributesW 0xB0DB724A

OpenProcess 0xBF2A3840 SetFilePointerEx 0xD90CDB68

Process32First 0x6CB1F1E6 SetThreadPriority 0x704F3375

Process32Next 0x2D65D010 ShellExecute 0x3A6952BF

ReadProcessMemory 0xF08369FA lstrcatW 0x3A1D9BCB

ReleaseMutex 0x36C87830 lstrlenW 0x38A62BCB

