
1/22

Advanced CyberChef Tips: AsyncRAT Loader
huntress.com/blog/advanced-cyberchef-tips-asyncrat-loader

The Huntress ThreatOps team encountered and investigated an infection involving a
malicious malware loader on a Huntress-protected host. This investigation was initiated via
persistence monitoring, which triggered on a suspicious visual basic (.vbs) script persisting
via a scheduled task.

The script was highly obfuscated and required manual analysis and decoding to investigate.
Today we’ll demonstrate our methods and thought process for manually decoding the
malware.

We'll primarily be using CyberChef, alongside RegExper for validating regular expressions.

If you would like to follow along, here is a link to the malware sample.
 (If you do choose to follow along, make sure you do so inside of a safe virtual machine and

not on your host computer)

Let's Get Started

The initial investigation was for a persistent .vbs file residing inside of a user's startup
directory. There are few legitimate reasons for a .vbs file to be persistent, so we immediately
obtained the file for further analysis and investigation.

Given that .vbs is text-based, we transferred the file into an analysis Virtual Machine and
opened it using a text editor. Upon realizing the script was obfuscated, we transferred the
contents into CyberChef.

Analysing the File

The obfuscated contents of the script can be seen below.

https://www.huntress.com/blog/advanced-cyberchef-tips-asyncrat-loader
https://gchq.github.io/CyberChef/
https://bazaar.abuse.ch/sample/26c9f29fceaee8b13ba0fe4d7170f50c8046e43e11e461a43ce92b22d8e24bf5/

2/22

There are numerous forms of obfuscation used - (Chr(45), StrReverse, Replace, etc.)

We simplified the script using a syntax highlighter set to "vbscript".

Syntax highlighting is a simple and effective means to improve the readability of an
obfuscated script, prior to doing any form of manipulation or analysis.

Tip: Leaving the language as “auto-detect” will work, but we have found that highlighting is
significantly quicker if specified manually. This also solves the occasional issue where
Cyberchef incorrectly identifies the language of an obfuscated script.

3/22

Obfuscation 1: Decimal Encoded Values

Delving into the first few lines of output, there are numerous numerical values scattered
around. Each numerical value is contained within a “chr” function.

A quick Google reveals that "chr" is a built-in visual basic function that converts decimal
values into their plaintext/ascii representation.

You can find a reference to the chr function here and here. You can also find a full list of
decimal values and their ASCII equivalents here.

Here are the “chr” obfuscated values in their original obfuscated form.

These numerical values can be crudely decoded using CyberChef, by manually copying out
each value and applying "From Decimal".

https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/chr-function
https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/chr-function
https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/chr-function
https://www.w3schools.com/asp/func_chr.asp
https://www.asciitable.com/

4/22

Manually copying the values is simple and will work most of the time, but it is time-
consuming for a large script and requires an analyst to manually copy the results back into
the original script.

We'll now show how to automate this process using CyberChef.

Obfuscation 1: Automating the From Decimal Using CyberChef

To automate the decimal decoding, the ThreatOps team utilized some regex and advanced
CyberChef tactics.

At a high level, this consisted of:

Developing a regex that would find decimal encoded values (locate the encoded data)
Converting this regex into a subsection (this tells CyberChef to act ONLY on the
encoded data)
Extracting decimal values (Remove the "chr" and any surrounding data)
Decoding the results (Perform the "From Decimal" decoding)
Removing surrounding junk (Cleaning up any remaining junk)
Restoring the script back to “normal”

So let’s see that in action.

We first implemented a regex pattern to automatically highlight and extract “chr” encoded
values from the original script.

As a means of testing our initial regex, we utilized the “Regular Expression” and “Highlight
Matches” option in CyberChef.

This allowed the effectiveness of our regex to be observed in real-time.
 If anything didn’t match as intended, we could easily adjust the Regex and the highlighting

would update accordingly.

https://en.wikipedia.org/wiki/Regular_expression

5/22

The “Highlight Matches” provides similar functionality to the popular regex testing site
regex101.

A visual representation of the regex can be seen here - courtesy of regexper.com.

(Regexper.com is an excellent site for visually learning and testing regex)

https://regex101.com/
https://regexper.com/#chr%5C%28%5Cd%2B%5C%29

6/22

The regex successfully matched the “chr” and encoded numerical values, so we then
converted it into a “subsection”.

A subsection takes a regex as input, and forces all future operations to match only on values
that match the regex.

 The process of "converting to a subsection", is just copy-and-pasting the regex from "Regular
Expression" to "Subsection".

What is a subsection?

A TLDR: A subsection is a feature of CyberChef that forces all future operations to apply
only to values that match a provided regex. (Eg the highlighted values from previous
screenshots)

 A subsection is an effective way to “hone in” on particular content or values, allowing bulk
operations without mangling the entire script.

 This was useful to avoid accidentally decoding numerical values which are unrelated to the
“chr” functions and encoding.

To hone in on our values, we replaced our previous regex with a subsection. (Making sure to
keep the regex the same)

7/22

At first glance this isn't exciting - but the true power arrives when the recipe is expanded.

For example, the “chr” can now be easily removed, leaving only the brackets () and decimal
values.

By applying the subsection before the find/replace, we can use the "chr" as a marker to hone
in on specific values.

 We could skip the subsection and go straight to find/replace, but this may result in
accidentally acting on other numerical values that are unrelated to our current decoding.

A second regex can now be applied, this will extract only the numerical values our previous
regex.

In the below screenshot - note how “chr(45)” becomes “45” and “chr(110)” becomes “110”
and so on.

8/22

Honing in on those results, we can see that the “chr” and “()” have been removed. This
leaves only the integers/numerical values, as well as the “& used for string concatenation.
(We’ll deal with these later.)

A “from decimal” can then be added, which will convert those numerical values back into
ASCII.

9/22

Close up, it’s still a bit messy, but we’ll deal with that in a moment.

For now, we can observe that the “chr” operations have been replaced with their ASCII
equivalents. (Although the The String concatenations make this hard to read)

In order to clean up for good, we needed to do two things.

First, we would need to undo our subsection. This would allow us to remove the “&”
operations that were not included in our initial regex.

This can be done with a “merge” operation. (Essentially an “Undo” button for subsections)

We then utilised a Find/Replace to remove the quote “” and “&” junk.

The recipe then looked like this. The most complex piece is the `&?”&?\+?` regex.

This looks for any quotes that are preceded or followed by a & character. The (?) specifies
that the “&” is optional.

10/22

A visual representation of the regex, courtesy of regexper.com.

We then had a nice decoded value and no remaining “chr” operations in our script.

If you’re confident with your regex, you could incorporate the previous two into one.

This ultimately leaves something like this. Which is conceptually the same, but slightly
cleaner than the original recipe we had before, at the cost of a slightly more complex regex.

https://regexper.com/#%26%3F%E2%80%9D%26%3F%5C%2B%3F

11/22

For a deeper explanation of the regex used, we highly recommend regexper.com and
regex101.com.

 If you’re completely new to regex, we also strongly recommend regexone.com.

Obfuscation 1: Conclusion

TLDR - Defeating Decimal Encoding:

Use regex to locate the encoded values (locate the chr)
Use a subsection to ‘act’ on the encoded values (Hone in on the chr)
Use Find/Replace to remove surrounding junk (remove the chr)
Perform the decoding (from decimal)
If necessary, remove any additional junk (remove the string concatenation)
Make it pretty with a syntax highlighter

https://regexper.com/#%22%3F%26%3Fchr%5C%28%5Cd%2B%5C%29%26%3F%22%3F
https://regex101.com/
https://regexone.com/

12/22

Obfuscation 2: Reversed Strings

Further analysis determined that there were reversed strings scattered throughout the code.
This is typically used to evade simple string-based detection and analysis.

This would likely evade YARA signatures that scan for suspicious strings in files that have
been saved to disk.

Below we can see the reversed content.

This encoding is simple and is literally just reversing the content of a string.

We could perform this operation manually in CyberChef, but like before, we knew it would
take a while to deal with all of the reversed values.

The full StrReverse specification is here.

We decided to do these operations in bulk using CyberChef.

Our approach…

Utilise regex to locate the “reversed” values
Use Find/Replace or regex to remove surrounding junk (The StrReverse function name
in this case)
Perform the decoding (Utilising “Reverse” + “by Character”)
Restore the original state (Utilise a merge to undo the subsection)

First, we developed the regex to locate only the reversed values.

https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/strreverse-function

13/22

We used the same method as before, utilising “regular expression” and “highlight matches”
until the highlight matched exactly what we needed.

(We all have our own regex styles, you can use any regex which successfully highlights the
content that you are interested in).

An overview of the regex, courtesy of regexper.com

This basically says

Grab any occurrence of “StrReverse(“ including the opening parenthesis
Grab everything that is not a double quote
Grab the ending double quote and closing parenthesis.

We then converted the regex into a subsection and followed a similar methodology to
before.

Subsection - Extract the “general” content of interest (in this case, “StrReverse” and
any following quoted content)

https://regexper.com/#StrReverse%5C%28%22%5B%5E%22%5D%2B%22%5C%29

14/22

Regular Expression - Extract the “exact” content of interest (Extract only the content in
quotes)
Reverse + By Character - Perform the reverse operation.

We then observed that the “StrReverse” operations were removed and cleaned.

With a before and after of an offending line.

Obfuscation 3: Replace

Building on our last result, we could now see numerous “replace” operations scattered
throughout the code.

We followed the same process as before.

Use regex to “locate” the “encoded” values
Use a subsection to “act” on the encoded values
Perform the decoding
Restore the script to a clean state

15/22

We utilised regex to locate our values of interest.

This essentially grabs “Replace” followed by the next three values contained in double
quotes.

After confirming that our regex worked as intended, we converted the regex into a subsection
and applied a register.

A register would allow us to extract values from the script and store them in “registers”, which
are the CyberChef equivalent of variables. This would allow us to better implement the string
replace operation.

In order to apply a register, we applied the same regex as before, but added parentheses
around the values that we wanted to store as variables.

This concept is also known as a “capture group” if you’re already familiar with regex.

(You can find a short tutorial on capture groups on regexone.com)

We briefly shortened the malware script to better demonstrate this concept. See how the
various values in the “replace” operation are now stored as variables $R0, $R1, $R2 etc.

https://regexone.com/lesson/capturing_groups

16/22

Another graphical explanation courtesy of regexper.com.

We had successfully extracted values of interest using registers. Which we then applied to a
find/replace operation.

https://regexper.com/#Replace%5C%28%28%22%5B%5E%22%5D%2B%22%29%2C%22%28%5B%5E%22%5D%2B%29%22%2C%22%28%5B%5E%22%5D%2B%29%22%5C%29

17/22

18/22

This operation was able to convert this original line into the following.
(Again, the malware script has been shortened to demonstrate the concept)

We then restored the full malware script and were able to obtain the following decoded
content. Noting that the Replace operations were now removed.

The completed recipe can be seen in the screenshot below.

19/22

(Note the optional addition of find/replace to turn backslashes into hyphens. The initial
extracted backslashes were causing issues with the find/replace operation, this isn't
necessary to do but it results in a slightly cleaner output)

Obfuscation 4: String Concatenation

We then had one final obfuscation remaining. It is arguably the simplest so far and ironically
the only one that could not be resolved via CyberChef.

Throughout the code are concatenated strings that the malware previously stored in
variables.

 An attempt was made to resolve this using subsections and registers, but ultimately we could
not find a solution.

We then found a workaround that wasn’t CyberChef, but technically didn’t involve leaving the
CyberChef window so it was close enough.

Here is the script with the original string concatenations "&"

We then replaced the visual basic string concatenations (&) with a javascript equivalent (+)

20/22

The firefox developer console to dynamically concatenate the strings.

The concatenated strings can be seen below. This reveals the ultimate intention and purpose
of the script, which was to utilize Powershell to execute a second payload (a batch script)
stored on the machine.

For the sake of readability and completeness, we manually replaced the last decoded
values, leaving this as the final state of the script.

21/22

Before and After Pics

Here you can see a full before and after of our CyberChef Decoding.

Here you can see a full before/after, with the string concatenations and assigments manually
removed.

Conclusion

At this point, we considered the script to be fully decoded and proceeded to analyze the
remaining .bat script. This .bat script was itself obfuscated, and unravelled itself into another
(unsurprisingly) obfuscated PowerShell script. This PowerShell script contained a loader for
AsyncRat malware.

If you’re interested in seeing some additional analysis of the remaining payloads, we highly
recommend the following posts.

22/22

Matthew Brennan - @embee_research
https://twitter.com/embee_research/status/1589453390450683905?s=20
Michael Elford - @Maverick_011

 https://hcksyd.medium.com/asyncrat-analysing-the-three-stages-of-execution-
378b343216bf

https://twitter.com/embee_research
https://twitter.com/embee_research/status/1589453390450683905?s=20
https://twitter.com/011Maverick
https://hcksyd.medium.com/asyncrat-analysing-the-three-stages-of-execution-378b343216bf

