
1/5

May 8, 2023

Extracting DDosia targets from process memory
viuleeenz.github.io/posts/2023/05/extracting-ddosia-targets-from-process-memory/

6 minutes

Introduction

This post is part of an analysis that I have carried out during my spare time, motivated by a
friend that asked me to have a look at the DDosia project related to the NoName057(16)
group. The reason behind this request was caused by DDosia client changes for performing
the DDos attacks. Because of that, all procedures used so far for monitoring
NoName057(16) activities did not work anymore.

Before starting to reverse DDosia Windows sample, I preferred to gather as much
information as possible about NoName057(16) TTPs and a few references to their samples.

Avast wrote a very detailed article about that project and described thoroughly all changes
observed in the last few months. Because of that, before proceeding with this post, If you feel
you are missing something, I strongly recommend that you read their article.

Client Setup

According to the information retrieved from the Telegram channel of DDosia Project, there
are a couple of requirements before executing the client. The very first action is to create
your id through a dedicated bot that will be used later on for authentication purposes. After
that, it’s necessary to put the client_id.txt file (generated from DDosia bot) and the
executable file in the same folder. If everything has been done properly, it should be possible
to observe that authentication process will be done correctly and the client is going to
download targets from its server:

https://viuleeenz.github.io/posts/2023/05/extracting-ddosia-targets-from-process-memory/
https://decoded.avast.io/martinchlumecky/ddosia-project-how-noname05716-is-trying-to-improve-the-efficiency-of-ddos-attacks/

2/5

Figure 1: Client authenticated correctly

Dynamic analysis and process memory inspection

Here we are with the fun part. Because of the issues of analyzing GO binaries statically, I
preferred to use a dynamic approach supported by Cape sandbox. In fact, executing the
client with Cape it was possible to gather behavioral information to speed up our analysis
(ref). Since the executable is going to be used for DDoS attacks, it’s easy to expect that most
of the functions are related to network routines. One of the most interesting WindowsAPI
refers to WSAStartup. This is interesting for us, because according to Microsoft
documentation, it must be the first function to be used in order to retrieve socket
implementation for further network operations:

The WSAStartup function must be the first Windows Sockets function called by an
application or DLL. It allows an application or DLL to specify the version of Windows
Sockets required and retrieve details of the specific Windows Sockets implementation.
The application or DLL can only issue further Windows Sockets functions after
successfully calling WSAStartup.

Moreover, starting to monitor network requests with Wireshark, give us additional information
about client-server interactions and targets retrieving procedure:

Figure 2 - Request for target list

https://capesandbox.com/analysis/385183/
https://learn.microsoft.com/en-us/windows/win32/api/winsock/nf-winsock-wsastartup

3/5

As already mentioned on Avast blogspot, the target list is encrypted and retrieved after the
authentication process. However, performing DDoS attacks requires a decryption routine to
make targets in cleartext and forward them to a proper procedure. With this insight, it’s
possible to open up a debugger and set a breakpoint of WSAStartup and start exploring the
process flow from that point.

Figure 3 - Exploring DDosia executable control flow

Exploring the process execution, it’s possible to observe that WSAStartup API is called two
times before starting the attack. The first one has been used from the main thread to
perform the authentication process on the server side, instead the second call will be done
right after retrieving the target file and it will be used from another thread to start the attack
phase. Since that information we are looking for has been already downloaded and hopefully
decrypted (at the time of the second call) we could explore the process memory trying to
identify our target list.

Figure 4 - Target stored in cleartext within process memory

4/5

As we expected, information is actually decrypted right before being used from threads that
are in charge to flood the targets. From the cleartext sample, it’s also possible to reconstruct
the original json file structure that follow this format:

{"target_id":"435te3af574b95e395847362","request_id":"23cer8c5mmp4434dlad53f2s","host
":"www.tartuhly.ee","ip":"90.190.99.85","type":"http","method":"GET","port":443,"use_
ssl":true,"path":"/otsi/$_1","body":{"type":"","value":""},"headers":null}

At this point I have shown all procedures to quickly follow the execution flow until the
decryption routine is called. From now on, it’s just a matter of looking for those data within
process memory and extracting them for your own purpose. It’s worth noting that information
won’t be stored decrypted forever, in fact, as the executable keeps running, the json file is
actually mangled in a way that is not easy to resemble it properly.

A little bit of automation

Even if the analysis has been completed and targets are correctly retrieved, I thought that
giving a little tool to extract that information would be useful. Instead of doing complex stuff, I
wrote two simple scripts called targets.js and recover.py. The purpose of these two files is to
allow analysts from different backgrounds to extract those targets, even performing a simple
memory dump. Probably there are easier and smarter techniques out there, but it was also a
good chance to put in practice DBI, which I have already covered in a previous post.

target.js: Frida script that aims to get a memory dump after the WSAStartup has been
called for the second time (when payloads are in cleartext in memory).

recover.py: it’s a simple python script that retrieves structured information from the files
dumped. It’s worth noting that I limited my script to look for structured information,
retrieving IP and Hostname (additional improvements are left to user’s needs).

Script Testing

In order to run the mentioned scripts there are two requirements to fulfill:

Installing frida-tool (pip install frida-tools).
Create a folder named “dumps” in the same place where you run the target.js file.

If all requirements are satisfied it’s just a matter of running those scripts and getting the
results. The first step is to run frida.exe, using the targets.js file that contains all the
information to dump the process memory:

frida.exe <ddosia_client.exe> -l targets.js

If everything has been done correctly (please keep in mind the requirements), you should be
able to see a message “[END] Memory dumped correctly” in your console.

https://viuleeenz.github.io/posts/2023/03/dynamic-binary-instrumentation-for-malware-analysis/
https://github.com/Viuleeenz/Reversing_Notes/blob/main/DynamicBinaryInstrumentation/DDosia_Targets/targets.js
https://github.com/Viuleeenz/Reversing_Notes/blob/main/DynamicBinaryInstrumentation/DDosia_Targets/recover.py

5/5

Figure 5 - Dumping process Memory with Frida

Now you can navigate in dumps folder and run the python script using the following
command line that is going to forward all dumped file from the current directory to the script
that is going to print the result in your console:

python.exe recover.py (Get-Item .*dump)

Figure 6 - Extracting DDosia targets from dump files

Final Notes

Before concluding, It’s worth mentioning that updates on these scripts and new techniques to
dealing with further improvements of DDosia project are not going to be shown, because it
represents a topic that I’m not following personally and I’m sure that more authoritative
voices will keep track of this threat and its evolution.

References:

Binary analyzed: d_windows_amd64.exe |
726c2c2b35cb1adbe59039193030f23e552a28226ecf0b175ec5eba9dbcd336e
(sha256) | 19/04/2023

1123 Words

2023-05-08 02:00

https://www.virustotal.com/gui/file/726c2c2b35cb1adbe59039193030f23e552a28226ecf0b175ec5eba9dbcd336e

