
1/13

Stealc – A new stealer emerges in 2023
vmray.com/cyber-security-blog/stealc-a-new-stealer-emerges-in-2023/

Stealc:

A new stealer emerges in 2023

MALWARE ANALYSIS SPOTLIGHT | VMRay Labs Team
05 May 2023

Table of Contents

Overview

https://www.vmray.com/cyber-security-blog/stealc-a-new-stealer-emerges-in-2023/

2/13

A new malware family called Stealc was released recently, which is a Spyware designed to
copy files, credentials and other sensitive information from the victim’s hard drive and make
them available to the attacker. It also employs a variety of techniques to evade detection,
including one technique based on remotely storing a hard disk-based hardware ID, which
prevents the sample from infecting the same machine twice, and thus avoids revealing
malicious behavior in any future analysis runs.

In this blog post, we want to highlight how Stealc, which has been shown to have parallels to
other known malware families (such as Vidar, Raccoon, Mars and RedLine), steals sensitive
data from its victims and how it tries to evade detection. We have aided our analysis with an
in-depth research into how this malware and it’s techniques have been implemented.

Malicious Behavior of Stealc

VMRay Platform uses a dynamic analysis method, which means that the malware is actually
executed in a virtual environment, where the actions of the malware are recorded and later
analyzed to detect malicious behavior.

These detection rules are known as VMRay Threat Identifiers (VTIs). In our case, they reveal
plenty of malicious behavior, ranging from capturing screenshots, reading sensitive e-mail
and web browser data, to searching for cryptocurrency wallets (see Figure 1).

Figure 1: VMRay Platform's VTIs triggering on the malicious behaviors from Stealc.

https://www.vmray.com/analyses/_mb/05bf27139285/report/overview.html
https://www.vmray.com/cyber-security-blog/malware-classification-raccoon-infostealer-case-study/
https://www.vmray.com/analyses/964255412781/report/overview.html
https://www.vmray.com/why-vmray-advanced-threat-detection-and-analysis-platform/technology/
https://www.vmray.com/detection-analysis-technologies/#dynamic-analysis-technologies
https://www.vmray.com/cyber-security-blog/explained-vmray-threat-identifier-vti-scoring-system/
https://www.vmray.com/wp-content/uploads/2023/05/Image-1-Threat-identifiers.png

3/13

The VTIs also provide additional information on what exactly the malware is trying to do if
you open one of the listings (see Figure 2).

In this case, the malware tried to find cryptocurrency wallets for Bitcoin, Ethereum and
Electrum Bitcoin Wallet. Additionally, one of our triggers suggests that large amounts of data
are uploaded to a remote server – a good indicator that some of the information is likely
copied to the attacker (see Figure 3).

All of this behavior leads VMRay Platform to correctly conclude that this must be a malicious
executable, classified as Spyware.

Figure 2: VMRay Platform detects that common cryptocurrency locations are searched for wallets to
steal by Stealc.

Figure 3: Stealc uploads data to the attacker's C2 server.

Now we have a better understanding what kind of information the stealer is collecting, but it
is still unclear how the information is sent to the attacker.

Let us look into the Network tab, which displays all the recorded network traffic mapped to
the associated Windows API calls that were used to send or receive the data. This is a
powerful tool to analyze network traffic – due to our unique and extensive monitoring
approach, we can sometimes even capture communication data before it becomes
encrypted.

Stealc network activity

The Network tab shows some interesting behavior (see Figure 4). We can see that the
malicious sample tries to download a set of DLL files.

Figure 4: VMRay Platform's capture of the network communication by Stealc.

https://www.vmray.com/wp-content/uploads/2023/05/Image-2-behavior-cryptocurrency.png
https://www.vmray.com/wp-content/uploads/2023/05/Image-3-Stealc-apploads-data.png
https://www.vmray.com/wp-content/uploads/2023/05/Image-4-network-communication-by-Stealc.png

4/13

These libraries are used by benign popular applications such as web browsers to access
and, if required, decrypt confidential information belonging to the application itself – Stealc
abuses these libraries to collect the same confidential information, but with malicious intent
(see Table below).

As an example, let’s take “sqlite3.dll” as shown in Figure 4 above. This library allows Stealc
to access a local database created in the SQLite database engine, which is also the method
employed by Mozilla Firefox for storing user session cookies. When an attacker obtains a
session cookie, they can potentially use it to access the victim’s account without needing the
second factor of authentication (e.g., a one-time password or a biometric). In essence, the
attacker bypasses the 2FA mechanism by piggybacking on the authenticated session
established by the victim.

Another use-case for these libraries is decrypting all saved login information, such as
usernames, e-mail addresses and passwords.

DLL Description

sqlite3.dll Accessing SQLite databases, e.g., to extract cookies.

nss3.dll, freebl3.dll,
softokn3.dll,
mozglue.dll

These libraries provide low-level and security-related functionality to
Mozilla Firefox, such as cryptographic algorithms, e.g., to decrypt
passwords.

msvcp140.dll,
vcruntime140.dll

Libraries related to Microsoft Visual C++ Redistributables, required
for some of the functionality.

Stealc does not just use the network connection to download additional DLLs, but also to
communicate to a remote server about what its intended purpose is. The server then
responds, for example, with specific filenames to search for. Analyzing this network behavior
becomes easier thanks to one of the best features of our platform for malware researchers:
the function log (or “flog” for short). This file contains all observed calls to the Windows API
chronologically with human-readable function and parameter names. There is a reason why
we internally see the flog as the malware analysts Swiss Army knife.

In this case, we find the base64 encoded network communication string in the function log,
as well as the decoded version, which allows us analyze the communication more in-depth
(see Figure 5). In one of the exchanges, for example, the C2 server asks our sample to
collect information regarding the MetaMask crypto wallet and other web browser extensions,
mostly related to crypto wallets and password managers.

5/13

Figure 5: VMRay Platform's function log shows decoded C2 communication.

Stealc’s Encrypted Strings

Now that we have gathered all behavior-based information, we take a closer look into how
the malware is implemented. A look at the code gives us a sense that this malware is likely
written in C/C++. However, there are nearly no sensible human-readable strings present.

As we already know by now that this malware tries to find certain sensitive files, it needs to
store file paths and search terms, but the strings associated with that process are nowhere to
be found (see Figure 6).

Figure 6: Encrypted strings in Stealc

Malware often uses obfuscation and encryption to try and hide important information, for
example to evade static analysis tools such as antivirus signatures. In the case of Stealc, the
strings are stored in an encrypted manner and are decrypted at runtime during the

https://www.vmray.com/wp-content/uploads/2023/05/Image-5-function-log-shows-decoded-C2-communication.png
https://www.vmray.com/wp-content/uploads/2023/05/Image-6-Encrypted-strings-in-Stealc.png

6/13

initialization step of the malware.

We have analyzed the sample to identify how the encryption takes place – this not only helps
us to better understand the inner workings of the malware but also to develop a config
extractor later on. Config extractors are tremendously helpful addition to the VMRay Platform
which provides our customers with a malware family classification as well as high-quality
IOCs by automatically extracting the configuration such as C2 URLs, encryption keys etc.,
without requiring manual reverse engineering.

We have identified the encryption algorithm to be RC4, which matches earlier reports about
Stealc, however, we also found an issue involving randomly placed null bytes during
decryption that all current Stealc decryptors seem to suffer from. A closer inspection reveals
a key difference between how RC4 is usually implemented and how it is implemented in
Stealc, namely that the ciphertext is not XORed with the keystream if it results in a null-
byte, demonstrated in pseudo-code in Figure 7.

Figure 7: Patched RC4 code to avoid null bytes.

One powerful feature is VMRay’s Function Strings, which is a collection of all strings that
were passed as an argument to API calls during the analysis of a process. You can access
this log file by going to the Behavior tab, selecting the relevant process and opening up
“Extracted Function Strings” to download the file (see Figure 8).

YARA & Detection Engineering Tips

Another use of the function strings, other than helping malware researchers to extract useful
information even for packed samples, is the possibility of writing YARA rules based on these
runtime strings.

This opens up a robust way for detection engineers to identify certain malware families that
is more resistant to code changes while threat actors continually evolve their software, often
evading existing YARA rules. Basing rules on runtime function strings allows us to write more
robust rules.

https://www.vmray.com/cyber-security-blog/malware-configuration-extraction-vmray-analyzer-4-5-feature-highlight/
https://www.vmray.com/wp-content/uploads/2023/05/Image-7-Patched-RC4-code.png
https://www.vmray.com/cyber-security-blog/beyond-hashes-yaras-impact-on-malware-detection/

7/13

Figure 8: How to download function strings provided by VMRay's Platform.

Additionally, obfuscated scripts are challenging to detect as they can change widely from
version to version or depending on the packer, but runtime strings often reveal unique
identifiers or sometimes even the unobfuscated version of the script, which allows us to
write YARA rules in these difficult cases as well. For Stealc, the function strings log indeed
reveals the decrypted strings, which were harder to extract before (see Figure 9). Here, we
see the decrypted configuration, including the expiration date and the URL to the C2 server.

https://www.vmray.com/wp-content/uploads/2023/05/Image-8-ownloading-function-.png

8/13

Figure 9: VMRay Platform's function strings log reveals decrypted strings.

Evasion and Obfuscation Techniques used by Stealc

We have been able to observe a number of evasion techniques that Stealc employs to avoid
detection by antivirus and sandboxing technologies. One interesting technique uses a unique
hardware identifier to limit a machine to just a single infection, which could be intended as a
evasion techniques on platforms where the hardware ID does not change in-between
analysis runs. This would limit the detonation to the very first run and avoid revealing
malicious behavior in future runs.

Additionally, we have identified common evasion techniques like checking for the size of
RAM or refusing to run on machines with certain language settings. In summary, we have
found the following evasion and obfuscation techniques.

Hardware ID check

Stealc uses the serial number of the volume on the main hard disk to generate a unique
identifier (see Figure 10). This hardware ID is sent to the C2 server (see Figure 11), which
likely checks if this ID has ever been seen before (and thus has been infected before
already), in which case the sample is terminated.

While we do not have access to the server-side code where this logic is implemented, we
think there are two likely explanations for this behavior, (1) to avoid reinfecting the same
machine and collecting duplicate data, and (2), as an evasion technique for dynamic,
behavior based analyzers.

In the latter case, the first analysis would reveal malicious behavior while any analysis runs
in the future on the same virtual machine would force the sample to terminate itself – if the
volume serial number remained identical in-between runs and was thus banned.

https://www.vmray.com/wp-content/uploads/2023/05/Image-9-function-strings-log-reveals-decrypted-strings.png

9/13

Figure 10: Stealc's hardware ID generation.

Figure 11: Stealc sends a hardware ID to the C2 server, as seen here in the Network tab.

Size of RAM

If the RAM size is smaller than 1GB, the execution is aborted as this is the case for some
virtualized environments (see Figure 12).

Figure 12: Stealc's detection of VMs via RAM-size check.

Limit to certain languages

https://www.vmray.com/wp-content/uploads/2023/05/Image-10-Stealc-hardware-ID-generation.png
https://www.vmray.com/wp-content/uploads/2023/05/Image-11-Stealc-sends-hardware-ID-to-C2-server.png
https://www.vmray.com/wp-content/uploads/2023/05/Image-12-Stealc-detects-VMs-via-RAM-size.png

10/13

Stealc does not run on machines where the user language is set to Russian, Ukrainian,
Belarusian, Kazakh or Uzbek – as this is hard-coded and does not seem to be up for
configuration, this is a choice made by the developers (Figure 13).

Figure 13: Stealc aborting execution when user language is block-listed.

Avoid antivirus emulators

The execution is aborted if the computer name is set to “HAL9TH” and the user name is
“JohnDoe”, which is an indicator that the sample is emulated by the Windows Defender (see
Figure 14).

Another check for antivirus sandboxing is implemented through a call to VirtualAllocExNuma,
which is often not implemented in emulated environments.

Figure 14: Stealc's check for Windows Defender emulation.

Indirect loading of DLL functions

Instead of importing functions statically, Stealc dynamically traverses the Process
Environment Block to import DLL functions (see Figure 15), which is a well-known technique
of dynamically resolving imports to avoid AV detection.

Figure 15: Stealc's dynamically loaded functions.

https://www.vmray.com/wp-content/uploads/2023/05/Image-13-Stealc-aborts-execution-when-user-language-is-block-listed.png
https://www.vmray.com/wp-content/uploads/2023/05/Image-14-Stealc-checks-for-Windows-Defender-emulation.png
https://www.vmray.com/wp-content/uploads/2023/05/Image-15-Stealc-dynamically-loaded-functions.png

11/13

Encrypted strings / function names

As already mentioned earlier, most strings, including function names, are base64 encoded
and RC4 encrypted, which are only decrypted at runtime.

Anti-disassembly

Stealc uses random bytes and jumps to confuse disassemblers and decompilers, thus
impeding manual analysis by threat researchers. See the following code snippet where
a random byte was placed in the middle of the code, surrounded by a jump instruction that
would skip this random byte when executed.

During static analysis this would require the disassembler to have a deeper understanding of
the code to avoid being fooled, which most static analysis tools do not posses and thus
generate invalid code (see Figure 16). We fix these by defining the random byte as data and
exclude it from being parsed as code, which reveals the correct disassembly.

Figure 16: Stealc's anti-disassembly technique via unexpected jumps, fixed by changing the
classification of the random byte to "data".

Note that the behavior-based monitoring approach utilized by VMRay Platform is not
confused by this as static analysis via disassembly is not necessary to detect malicious
behavior on our end.

Detecting the new versions of Stealc

While researching this malware family, we found a few versions very similar to Stealc but
with key differences, suggesting that these are likely updated versions. In these cases, the
developers removed some of the evasion techniques, namely the check for the RAM size
(see Figure 12), as well as the detections designed for antivirus emulators (see Figure 14).
Notably, they have also decided to encrypt those few strings that had remained unencrypted
in the original version, probably to avoid strictly YARA based detection methods.

https://www.vmray.com/wp-content/uploads/2023/05/Stealc-anti-disassembly-technique.png

12/13

This also demonstrates our robustness against these kinds of changes as our behavior-
based VMRay Platform still identifies Stealc as malicious in the newest version.

Config Extractor

Based on this analysis, we have developed a config extractor which allows customers to
peek into the configuration built into the executable by the attacker.

This enables our customers to upload a sample and get a listing of all the important
configuration parameters, such as remote servers the malware communicates with, the
expiration date and the encryption key (see Figure 17). In addition, the config extractor
provides access to high-quality IOCs which can be used to proactively secure environments.

Figure 17: VMRay Platform's extracted configuration for this Stealc sample reveals the encryption
key, the C2 URL and the expiration date.

Conclusion

Here at VMRay, we are always on the look out for malware families that have the potential to
become a prominent tool among threat actors. Detecting these threats early allows us to
investigate their behavior and be prepared to protect the assets of our customers.

One of the strength of VMRay Platform is it’s ability to detect new attacks before malware
families are known to researchers. In this regard, VMRay Platform reveals itself to be a
helpful tool: our behavior-based analysis at the core of the detection engine can detect
malicious behavior before static detection signatures are developed by threat researchers –
in fact, threat researchers can further benefit from the detailed report on the behavior of the
malware our product generates, which can be used as a strong, detailed basis to assist
additional in-depth manual analysis efforts.

In malware research, one wants to quickly understand what a piece of malware does
and how it is accomplished. In this post, we have seen how different features of VMRay
Platform, such as the VTI’s, the function log, and the function strings allow a very quick but
still deep overview of what the core mechanism of the malware is in just a few minutes of
analysis time.

https://www.vmray.com/wp-content/uploads/2023/05/Image-17-extracted-configuration-Stealc.png

13/13

References

https://blog.sekoia.io/stealc-a-copycat-of-vidar-and-raccoon-infostealers-gaining-in-
popularity-part-1/

https://blog.sekoia.io/stealc-a-copycat-of-vidar-and-raccoon-infostealers-gaining-in-
popularity-part-2/

https://www.bleepingcomputer.com/news/security/new-stealc-malware-emerges-with-a-wide-
set-of-stealing-capabilities/

IOCs

Hashes:

Sample (Jan/Feb 2023)

1e09d04c793205661d88d6993cb3e0ef5e5a37a8660f504c1d36b0d8562e63a2
 87f18bd70353e44aa74d3c2fda27a2ae5dd6e7d238c3d875f6240283bc909ba6

 77d6f1914af6caf909fa2a246fcec05f500f79dd56e5d0d466d55924695c702d

Hashes

Sample (Mar 2023)

cde2e36ae1fef4bce98792daf14064a5e5027e5e152d653284601a698d98ef3b
 464f57bb810e30c1be3765ec17bd268cfa1b4019e9ba9625329669f8385e52ab
 4314a53c2c41eb8a57a933a4d1d2e3f29f9b5417074c7a12d081411418928f89

Hashes

Sample (April 2023)

660f62a2f0eb7ccae6170ec09629ade73d1874486027f22dddd92326a8e0b18e

Emre Güler
Threat Researcher

See VMRay in action.
 Solve your own challenges.

REQUEST FREE TRIAL NOW

https://blog.sekoia.io/stealc-a-copycat-of-vidar-and-raccoon-infostealers-gaining-in-popularity-part-1/
https://blog.sekoia.io/stealc-a-copycat-of-vidar-and-raccoon-infostealers-gaining-in-popularity-part-2/
https://www.bleepingcomputer.com/news/security/new-stealc-malware-emerges-with-a-wide-set-of-stealing-capabilities/
https://www.vmray.com/try-vmray-products/

