
1/56

Mohamed Adel April 23, 2023

Aurora Stealer Builder
d01a.github.io/aurora-stealer-builder/

Contents

Mohamed Adel included in Malware Analysis
 2023-04-23 4904 words 24 minutes views

Introduction

in the previous article, I discussed what’s inside Aurora Stealer. After the release, @Gi7w0rm
provided me samples of some versions of Aurora Stealer builder, a new version that was created
recently and another one that was created in 2022. The newer version has some improvements in
the builder and new features we will discuss in this article. Before we start this article, it is
important to note that the Builder also contains and creates the Web panel to control the bots. This
means the binaries we are looking at are actually a hybrid between a builder and a panel.

Startup info

In main_main the first display page is prepared to accept the credentials of the user and start
checking them. It first displays an ASCII art of the word Aurora and provides communication
channels for contacting the Aurora developers.

https://d01a.github.io/aurora-stealer-builder/
https://d01a.github.io/
https://d01a.github.io/categories/malware-analysis/
https://twitter.com/gi7w0rm

2/56

After the initial screen, it saves the UUID of the user, with the same function discussed before to
make sure that only one user is using the builder.

Then it asks for the login and password of the user

3/56

Authentication method

After the credentials where provided, it calls main_createAccess. it saves the string 123 It passes
the directory ./cache/Auth.aurora to a function called main_exists that checks if the file exists
or not. If it existed it will ask for hand deleting it, if not it will create it.

It appends the UUID and the string AURORA_TECHNOLOGY and calculates the MD5 hash to it using
the form

<UUID>AURORA_TECNOLOGY

after which it takes this hash to make a string in the following form:

123_aurora_<MD5_OF(<UUID>AURORA_TECNOLOGY)>_technology_123

Then the SHA1 hash is calculated for this string:

4/56

It generates the first string again and its MD5 hash. It uses the MD5 hash as a key for the AES
GCM encryption routine. The generated bytes are then written to ./cache/Auth.aurora

To know what was written to the file, we can use this script:

from Crypto.Cipher import AES
import binascii

key is MD5 hash of <UUID>AURORA_TECHNOLOGY
key = b"<KEY>"
Auth.aurora content
cipher = "<CIPHER>"

data = binascii.unhexlify(cipher)
nonce, tag = data[:12], data[-16:]
cipher = AES.new(key, AES.MODE_GCM, nonce)
cleartext = cipher.decrypt_and_verify(data[12:-16], tag)
print(cleartext)
cleartext is SHA1 hash of the string
"123_aurora_<MD5_OF(<UUID>AURORA_TECNOLOGY)>_technology_123 "

which shows us the SHA-1 Hash of the string:
123_aurora_<MD5_OF(<UUID>AURORA_TECNOLOGY)>_technology_123

5/56

Server Authentication check

Going back to main_main , where it creates yet another hash:

This time, the password and login is used to create a string using the following form
<LOGIN>_*Aurora_2023_Technology_<PASS>. then it calculates the SHA1 hash of it.*

Then, it calls main_server . This could be where the authentication of the user happens, just a
hypothesis.

it sleeps 1000000000 nanoseconds. Then it makes a TCP connection with
185.106.93.237:56763 which seems to be the server where user authentication is done.

Dynamic Key calculation

6/56

If the connection is established, it calls main_DynamicKey which generates a key based on the
current minutes in the current time, In America/Los_Angeles time format.

and calculate the SHA1 hash of it.

Back in the main_Server function the builder then puts all the hashes in JSON format to be sent to
the server.

Server Response Info

the remote server then verifies the given data and response with one of the few response strings
below:

7/56

Response Action

HWID_BAD [Aurora] HWID has a different value on the license server, write
support

NOT_FOUND_ACCOUNT [Aurora] Account has been not found, wrong login or password.

LOST_LICENSE [Aurora] License expired.

DYNAMIC_KEY [Aurora] Dynamic key wrong, check time your OS or write support.

Network emulation

I tried to emulate the C2 communication with fakenet. After a very long time trying to do that. it
works to respond to it with the format of data it waits for, but there is something still missing.

I edited the configs of the TCPListener of fakenet as can be seen below:

1. In default.ini edit the default configs to the following:

8/56

[RawTCPListener]
Enabled: True
Port: 56763 # port it comm over
Protocol: TCP
Listener: RawListener
UseSSL: No
Timeout: 100
Hidden: False
To read about customizing responses, see
docs/CustomResponse.md
Custom: sample_custom_response.ini

1. Create or use the sample_custom_response.ini provided to contain the following, this is
already set by default:

[ExampleTCP]
InstanceName: RawTCPListener
TcpDynamic:
CustomProviderExample.py

1. The builder waits for a JSON string delimited by the character 0x0A if this is not in the
response it will wait forever.

As a result CustomProviderExample.py should contain a JSON string ending with 0x0A , I was
testing with the following code:

9/56

def HandleTcp(sock):
 """Handle a TCP buffer.

 Parameters

 sock : socket
 The connected socket with which to recv and send
data
 """
 while True:
 try:
 data = None
 data = sock.recv(1024)
 except socket.timeout:
 pass

 if not data:
 break

 resp = b'{"Test":"test","Test2":"Test2"}\x0A'
 sock.sendall(resp)

10/56

A value of the JSON string accepted must be the Dynamic key which is generated based on the
local time of the user.

Anti-Debugging check

This Dynamic key is calculated again and the two values are compared in order to check if the
sample is being debugged. Nice!

License info and IP used

The JSON strings also contain some other information about the User and the license

11/56

Also, it contains an IP that is used later in some other interesting functions. the author expects
only one IP to be used by the builder.

It calls convTstring which takes a generic value -any type- and converts it to a string. I don’t
really know why it calls convTstring as it is an IP it would be passed as a string in the JSON.
maybe later we realize what’s going on here.

12/56

We see some calls to runtime.newProc . This function generates a new go running function and
put it in a running Queue of other go functions waiting to run. This is generated by the compiler
when using go keyword. Interested topic hah? Read more about it here. Sadly it makes debugging
more difficult.

Why network emulation doesn’t work well

Back to the JSON data, it’s decoded with json.Unmashal function which takes a structure as an
input and with the second parameter being the data in bytes. How is the data mapped to the
structure? Well, according to Go documentation

https://www.golang-book.com/books/intro/10
https://go.dev/blog/json

13/56

How does Unmarshal identify the fields in which to store the decoded data? For a given
JSON key "Foo", Unmarshal will look through the destination struct’s fields to find (in order
of preference):

An exported field with a tag of "Foo" (see the Go spec for more on struct tags),
An exported field named "Foo", or
An exported field named "FOO" or "FoO" or some other case-insensitive match
of "Foo".

What happens when the structure of the JSON data doesn’t exactly match the Go type?

Unmarshal will decode only the fields that it can find in the destination type

So, we should guess the names of the JSON data. One of them is Dynamic key but we should
figure out how it’s decoded.

We can use the pattern of the previously sent data, It was called DK . Sadly, this and other
attempts didn’t work. So, I will continue the other things only static in IDA.

Main Functionality

The main functionality of the builder is invoked with a series of goroutine calls. Each called
function is preparing some data to be used later or to start the server itself. This serves as the
main function of the builder.

IP Geolocation database

The first function of the series of newProc calls is main_LoadToDB which loads a very huge file
called geo.aurora that contains a list of IP ranges all over the world.

https://go.dev/ref/spec#Struct_types

14/56

Viewing the cross-reference we can deduce that it is used to identify the geo-location of a victim.

A sample of the content of geo.Aurora can be seen below. The file contains ~380MB of data like
this.

[
 {
 "Country_short":
"AU",
 "City":
"Queensland",
 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In": "1.0.0.0",
 "Out":
"1.0.0.255"
 },
 {
 "Country_short":
"CN",
 "City": "Fujian",

15/56

 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In": "1.0.1.0",
 "Out":
"1.0.3.255"
 },
 {
 "Country_short":
"AU",
 "City":
"Victoria",
 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In": "1.0.4.0",
 "Out":
"1.0.7.255"
 },
 {
 "Country_short":
"CN",
 "City":
"Guangdong",
 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In": "1.0.8.0",
 "Out":
"1.0.15.255"
 },
 {
 "Country_short":
"JP",
 "City": "Tokyo",
 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In": "1.0.16.0",
 "Out":
"1.0.16.255"
 },
 {
 "Country_short":
"JP",
 "City": "Tokyo",
 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In": "1.0.17.0",
 "Out":
"1.0.31.255"
 },
 {
 "Country_short":
"CN",
 "City":
"Guangdong",
 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In": "1.0.32.0",
 "Out":
"1.0.63.255"
 },
 {

16/56

 "Country_short":
"JP",
 "City":
"Hiroshima",
 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In": "1.0.64.0",
 "Out":
"1.0.64.255"
 },
 {
 "Country_short":
"JP",
 "City":
"Hiroshima",
 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In": "1.0.65.0",
 "Out":
"1.0.66.255"
 },
 {
 "Country_short":
"JP",
 "City":
"Hiroshima",
 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In": "1.0.67.0",
 "Out":
"1.0.67.255"
 },
 {
 "Country_short":
"JP",
 "City":
"Hiroshima",
 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In": "1.0.68.0",
 "Out":
"1.0.68.127"
 },
 {
 "Country_short":
"JP",
 "City": "Miyagi",
 "Region": "",
 "Zipcode": "",
 "Timezone": "",
 "In":
"1.0.68.128",
 "Out":
"1.0.69.255"
 },
 {
 "Country_short":
"JP",
 "City":
"Hiroshima",
 "Region": "",
 "Zipcode": "",

17/56

 "Timezone": "",
 "In": "1.0.70.0",
 "Out":
"1.0.71.255"
 },
....
]

18/56

19/56

20/56

21/56

22/56

Bot state

The second function is to get the status of the infected systems. This includes a check if the bot is
active, the last connection time of the bot, and the current time.

Clear old screenshots

The third function deletes all the screenshots stored in the bot directory!

It sorts the pictures to be deleted by _ in it, then it gets what has ACTUAL word in it, lastly, it deletes
the file extension .png from the string using strings.Trim and the new string should be a number
as it calls strconv.atoi and then gets the current time. What a mess!

23/56

It then proceeds to finally delete the file.

Command Receiver

The next function is main_CommandReceiver. It queues the commands received by the builder.

24/56

The function map.Range has the definition:

func (m *Map) Range(f func(key, value any)
bool)

where f is a function called for each <key,value> pair. So the variable CMD_QUEUE would contain the
received commands.

Going through the function main_CommandReceiver_func2 we see that the software first checks if
the received command is STOP. If the STOP command is received, the builder exits.

25/56

For all other commands, it goes to another function main_CommandReceiver_func2_1 . It’s
expecting a 3-character long command MIX .

It packs data about the victims with GZip and base64 encode it then, stores it back using
map.store

26/56

There were some log messages related to other commands here. However, I couldn’t figure out
how the commands are treated. Based on the sample I discussed in a previous article, I guess this
is connected to the messages sent from the victim machine.

Main server functionality

The server is now ready to work and build the graphical interface of the builder to view the victim’s
data and state and further use the victims as Bots and Stealer hosting servers using SFTP.

27/56

server start!

Next function is main_SERVER_func1 it calls main_ForwardPort with argument :7367

Then this function calls aurora_core_server__Server_Start , this long value is passed with the
port number passed to its driver function

This function starts the main server that displays the dashboard. I tried to adjust the execution to
continue, but the program crashed.

Note: SixSixSix is the author of the Stealer and not my username.

TCP listener

Back to function main_Server_0 (main_Server).

28/56

It logs the start of the server in the main display.

The server is started using net.Listen function that takes the protocol = tcp and port = 456 .

Main Client

After setting up the Server, the function main_server_func2 is called.

This function only calls the main_Client function.

29/56

Handling incoming data

To handle incoming data from the victim, the panel/builder reads the data on the listening port
using bufio__Reader_ReadString. This data must be delimited by 0x0A as discussed previously.
It comes in a compressed format, so the function main_uncompress is used to decompress it.

30/56

To do so, the function takes the base64 encoded data and decodes it, then it is decompressed
using GZip. You might remember from my last article, that this is the way the data was sent from
the victim’s device.

The data is in form of JSON so it’s extracted with a call to json.Unmarshal . The resulting data is
then stored in a victim database file. The last message is additionally stored in the map function.

Update victims DB

One of the first packets received from the victim is a large base64 blob. After decoding it using the
above-mentioned method, it can be seen that this blob is a screenshot from the victim’s machine.

31/56

This image is used to update the screenshot that contains _ACTUAL.png . The old one is then
deleted.

32/56

The other screenshots are stored in a similar way but the name is different.

It updates the stolen victim data as well, and the last response from each infected host is stored in
the previously created map.

33/56

The victim’s Location identification

main_GetGeo is then called. If we remember, the loaded JSON string was referenced in this
function.

34/56

It parses the string IP to convert to IP to a Go IP type which is a decimal dotted IP address.

Then it goes through a very large loaded JSON string that contains every IP range associated to
each region all over the world.

The new victims will have an identifier is the string MIX that is checked to handle the new victims

35/56

If the victim is new, it will store the screenshot with _ACTUAL tag as discussed before but there is
no old one to delete.

At the very end of the function, a call to main_Registration is made. This function just adds a
new entry to the victims’ list and gets the geolocation of the victim.

Main web server

At the beginning of the function main_Server there was a goroutine that I missed initially. It calls
main_web before the call to net.Listen .

main_web initializes the web interface of the builder and the dashboard with all of its functionality.
the server starts at port 8181 .

The function follows the same pattern to set the methods of the handler for APIs:

The following table contains all available APIs with their associated handlers:

36/56

API
APIHandler
name

APIHandler
address DescriptionAPI

APIHandler
name

APIHandler
address Description

getbots main_web_func1 0x7635A0 List all the victims by walking through
main_BOT_CONN map

callback main_web_func2 0x763800 get the callback message of each victim
through the
main_BOT_LASTMESSAGE or
Queriyng the raw query of the
connection address and get the
message associated with victim IP

callback_STR main_web_func3 0x763A00 get the callback message string for
each victim stored at
main_BOT_LASTMESSAGE_STRING

callback_ps main_web_func4 0x763C00 get the PowerShell response of each
victim through
main_BOT_POWERSHELL_MESSAGE
or Queriyng the raw query of the
connection address and get the
PowerShell message.

Statistic main_web_func5 0x763E00 shows statistics about the victims stored
in .Aurora file in ./bots/ folder and
redirects to web/statistic.html html
template. The statistics show all the
users with their IP addresses and
geolocation

send_pw main_web_func6 0x764428 sends a base64 encoded PowerShell
command to the victim using the json
format. The associated key in the query
is argument string

GiveMeBuild main_web_func7 0x7648E0 checks\builds the executable file of the
stealer .The build file is stored in .\build
it first checks if it exists on the system. if
exists, tries to read it. If read is not
successfully done, it exits. If not, the
author prepared the file to be sent as an
attachment for another remote system.
it’s sent in the Content-deposition as
follows: Content-Desposition:
attachment = .exe

send main_web_func8 0x764E60 sends cmd \ PowerShell commands to
the victims. They are sent through the
argument key in the URL raw query

37/56

API
APIHandler
name

APIHandler
address Description

sftp_stop_reverse main_web_func9 0x7655A0 closes the SFTP connection with the
victims and closes the associated port
forwarding functionality. Also, it deletes
the entry associated with the deleted
victim’s SFTP connection in
main_BOT_CLIENT_SFTP map

sftp_reverse main_web_func10 0x765820 start a SFTP server with the victim. the
connection is done through port 7273 .
The successful connection is indicated
by WORK string. the configuration and
data about the connection in the
associated maps
main_BOT_CLIENT_SFTP ,
main_BOT_LASTMESSAGE . This
reverse shell is then used to host the
stealer. The infected Bots can be used
in DoS attacks too.

screenshot main_web_func11 0x766540 Takes a screenshot of the victim, it first
checks if it’s active. SHA1 hash is
calculated to the png file to see if the
screenshot is the same as the stored or
not before updating the database of the
victims. the process is identified by Bad
or Good statement.

bot main_web_func12 0x766C00 displays the status of the bots and all
information , online boots its geo
location, SFTP connected bots in the
web/bot.html html template page. it also
reads the content of ./core/scr_n_f.png
but I don’t see any use of it. It encodes
the data in it and then redirect to
bot.html

logout main_web_func13 0x767680 Logs out!

auth main_web_func14 0x767780 Authenticate the access of the client. It
uses the file ./cache/Auth.Aurora to
compare its content with the newly
calculated hashes as discussed before.

dashboard main_web_func15 0x767BA0 The dashboard of the stealer, which
shows some data about the active and
offline Bots.

del_cmd main_web_func16 0x768220 deletes a registered command from the
main_CMD_QUEUE assigned to the
victim

38/56

API
APIHandler
name

APIHandler
address Description

commands main_web_func17 0x768380 display the command selection interface
in the web/commands.html html
template

AddCommand main_web_func18 0x768840 add a new command to the victim
commands list, it reads the assigned
commands JSON data and adds a new
command to it buy calling
main_AddCommand that updates
main_CMD_QUEUE map assigned to
the victim.

AddLoaderCommand main_web_func19 0x768B60 add loader command. reads the
response of the Client.Get() method
and then the associated JSON data and
base64 encode it. There are some
strings used in the identification like
EXTERNAL_RUN_PE_X64 . the data
then stored in the associated map
(main_CMD_QUEUE) and the victims
DB

net.Query in Go parses the raw query and returns the values.

u, err := url.Parse("https://example.com/?
a=1&b=2")
q := u.Query()
// q will have the values associated to a & b
fmt.Println(q.Get("a")) // print 1
fmt.Println(q.Get("b")) // print 2

Older version of the builder

There’s another sample provided to me, executable
hash33fc61e81efa609df51277aef261623bb291e2dd5359362d50070f7a441df0ad

This sample looks like it was one of the first trials of the author to create a stealer in Go. It
depends on so many additional legitimate packages from GitHub to create the server and handle
the database manipulation and some other things. In the newer builder, it seems like he got more
familiar with the Go Language and didn’t rely on the packages from GitHub.

39/56

The package used to grab the favicon (from the first GitHub account), create the GUI web
application (the second account), provide sqlite3 interface and provide a library like ReadLine in C.

The repositories are in the following table:

Old sample New sample

http://github.com/adampresley/gofavigrab http://github.com/vmihailenco/tagparser

http://github.com/asticode/go-astikit http://github.com/vmihailenco/msgpack

http://github.com/chzyer/readline

http://github.com/go-telegram-bot-api/telegram-bot-api

http://github.com/gorilla/mux

http://github.com/jroimartin/gocui

http://github.com/manifoldco/promptui

http://github.com/mattn/go-runewidth

http://github.com/nsf/termbox-go

The old sample has some functions that were described before, which were extended in the 2023
version. The hash calculation method and dynamic key but instead of Aurora_Stealer_2023 it is
Aurora_Stealer_2022. Then it connects to the remote server to authenticate the user data, to the
IP 185.106.93.237:6969 using TCP protocol.

http://github.com/adampresley/gofavigrab
http://github.com/vmihailenco/tagparser
http://github.com/asticode/go-astikit
http://github.com/vmihailenco/msgpack
http://github.com/chzyer/readline
http://github.com/go-telegram-bot-api/telegram-bot-api
http://github.com/gorilla/mux
http://github.com/jroimartin/gocui
http://github.com/manifoldco/promptui
http://github.com/mattn/go-runewidth
http://github.com/nsf/termbox-go

40/56

Another dynamic key is used to authenticate with the server, based on the current time too
however in the old sample the string Aurora_Stealer_SERVER is used.

41/56

This key is sent to the remote server and calculated later in the following code to verify the user
access and the dynamic key to make sure there is no debugging session started.

42/56

If the keys do not match, the function breaks and the program is terminated.

Another dynamic key is calculated but this time for the client, it uses the string
Aurora_Stealer_2033 with the same timing method of calculation discussed.

The hashes are stored then in ATX.Aurora in ./cache folder.

It then checks the existence of some files: ./cache/ATX.Aurora , ./cache/telegram.Aurora ,
./cache/Config.Aurora and ./cache/Trash .

./cache/Trash contains older Aurora executables, the older executables are auto-moved to this
folder using PowerShell command, and the new version, which is expected to be in .zip format
with the name Update.zip, is then unzipped and replaces the older version. The program is then
restarted using PowerShell. This is all done in main_AutoUpdate function.

The function main_ReadTGData reads telegram data from the file ./cache/telegram.Aurora which
is AES encrypted. The authentication is done using a telegram bot through the telegram API. This
authentication method is removed from the new version, where everything is done through
communicating with the remote server.

The old builder additionally contains an important function called main_LoadStealer . This
function calls two other goroutines. both two functions execute PowerShell commands that
configure the firewall to allow it to receive incoming TCP connections through Port 80 and 8081.

43/56

#function main_LoadStealer_func2 allow it on local port 80
netsh advfirewall firewall add rule name=”Port 80 dir=in action=allow protocol=TCP
localport=80
#function main_LoadStealer_func2 allow it on local port 80
netsh advfirewall firewall add rule name=”Port 8081 dir=in action=allow protocol=TCP
localport=8081

At the end of the main function, it creates a new hidden instance of CMD and starts the Web
service of the stealer. using the function main_StartWeb

This function starts the web service on localhost http://127.0.0.1/dashboard . It has a different
set of APIs and different associated handlers then the newer version.

The command strings are highlighted.

API APIHandler name
APIHandler
address Description

44/56

API APIHandler name
APIHandler
address Description

receive main_StartWeb_func1 0x140421B00 It receives the incoming
commands and connects to the
remote server
185.106.93.237:6969 to get
match the stored hashes with
the calculated one in form of
Aurora<PASSWORD .this
function has a lot of other
functionality. it reads the
command from the response of
the server. It allows the user to
delete a directory Delete,
remove file grabber RemoveG,
or remove the loader
RemoveL.GEO_URL to get the
geolocation of all victims.
AddDmen Add a new domain
name received from the
server.BuildGen builds a new
version of the stealer and the
ability to increase the file size
PumbMB.DeleteTG ,
AddTelegram delete\add
telegram configuration.DeleteAll
Delete all the
configs.ChangePassword ,
change password and download
all logs files Download_AllLogs.
Download_OnlyCrypto
downloads the crypto wallet
information only.

api.exe main_StartWeb_func2 0x140421B60 adds a new telegram API key to
the stealer and adds an icon
using resource hacker cmd
command
./resource/ResourceHacker.exe
-open
./builds/<STEALER_NAME>.exe
-save
./builds/<STEALER_NAME>.exe
-action addskip -res
./resource/main.ico -mask
ICONGROUP,MAIN .

45/56

API APIHandler name
APIHandler
address Description

dashboard/{id:
[0-9]+}

main_productsHandler 0x14041D080 display the main window of the
web service displays information
about a specific victim ID:
Cookies, passwords, the
Geolocation, and crypto wallet
information. Logs are stored in
./logs/ folder contain passwords
in passwords.txt , cookies in
folder Cookies . All the
information is shown through the
HTML template
./gui/Dashboard.html

download_geo main_StartWeb_func3 0x140422100 retrieves the geolocation
information, the same as the
new one.

download_l main_StartWeb_func4 0x1404222A0 gets the logs in a .zip archive,
uncompresses it and deletes the
archive. the logs contain all the
stolen data

api/get-log-
build

main_StartWeb_func5 0x140422620 get the build logs from ./logs
associated with a specific API
key used

build.exe main_StartWeb_func6 0x140422B60 gets a build executable of the
stealer stored at ./builds

dashboard main_StartWeb_func7 0x140422EA0 display the dashboard of the
stealer, and shows some
statistics about the infected
system. IPs, geo-location and
the stolen information

loader main_StartWeb_func8 0x140422FE0 display information about the
Loader and file grabber. the
threat actor can use this section
to configure the loader and
specify the target file to grab. file
./config/telegram.txt is used to
extract the telegram connection
configuration. The information is
viewed by executing
gui/Loader.html HTML template.

46/56

API APIHandler name
APIHandler
address Description

setting main_StartWeb_func9 0x1404234A0 builder settings, display
information about the subscribed
plan and change the password
and telegram configuration and
API. and shows the used
domains

auth main_StartWeb_func10 0000000140423A40 the AUTH page that the user
signs in to where the used
credentials and AUTH cache file
in ./cache/AuthHash.Aurora are
checked. Whenever the user
navigates, the credentials and
hashes are checked. if not valid,
will be redirected to this page

builder main_StartWeb_func11 0x140423CC0 creates a new build through it.
the build target architecture
victims group is chosen.

checker main_StartWeb_func12 0x140424380 checks the wanted information
from the victim DB. check the
build used and get the
geolocation of the victim
specified.

then the server is started on port 80

In function main_AddNewClient , the victim entries on the data based are created by calling
main_CreateDB data stored about the user in UserInformation.txt:

HWID
Build ID
Log date
IP
Country
Region
City
PC INFORMATION

CPU
Screen Size
Screen Size
RAM
Display Device (GPU)

in addition to the stolen information the following credentials are received:

47/56

Steam
Passwords
cookies
crypto wallets -stored in subdirectory /wallets
Telegram info
screenshots
grabbed files -stored in subdirectory ./FileGrabber
Cards information

Browser cookies are stored in .db files in ./cache to be decrypted and the extracted data is
stored in .txt file.

The end of the packet is checked by END_PACKET_ALL_SEND sentence. And the last packet sent to
the victim is Thanks , then, the data are zipped and sent to the telegram account configured.

The function main_DecryptLog_Card is used to decrypt the credit card information collected. It
uses the following sqlite3 query to achieve that:

select name_on_card, expiration_month, expiration_year, card_number_encrypted,
date_modified, use_date, use_count, nickname from credit_cards

Web service HTML templates

You can find screenshots of the HTML templates in this tweet.

Yara Rules

all the rules can be found here.

new builder version

rule aurora_stealer_builder_new{
 meta:
 malware = "Aurora stealer Builder new version 2023"
 hash =
"ebd1368979b5adb9586ce512b63876985a497e1727ffbd54732cd42eef992b81"
 reference = "https://d01a.github.io/"
 Author = "d01a"
 description = "detect Aurora stealer Builder new version 2023"

 strings:
 $is_go = "Go build" ascii

 $s1 = "_Aurora_2023_Technology_" ascii
 $s2 = "AURORA_TECHNOLOGY" ascii
 $s3 = "scr_n_f.png" ascii
 $s4 = "EXTERNAL_RUN_PE_X64" ascii
 $s5 = "[Aurora]" ascii //log messages begin with [Aurora] __LOGMSG__

 $fun1 = "main.Server" ascii

https://twitter.com/Gi7w0rm/status/1649899595307048966
https://github.com/d01a/yara-rules

48/56

 $fun2 = "main.GetAcess" ascii
 $fun3 = "main.AddCommand" ascii
 $fun4 = "main.GetGeoList" ascii
 $fun5 = "main.GiveMeBuild" ascii

 condition:
 uint16(0) == 0x5a4d and ($is_go and (2 of ($s*)) and (2 of ($fun*))
)
}

old builder version

49/56

rule aurora_stealer_builder_old{
 meta:
 malware = "Aurora stealer Builder old version 2022"
 hash1 =
"33fc61e81efa609df51277aef261623bb291e2dd5359362d50070f7a441df0ad"
 reference = "https://d01a.github.io/"
 Author = "d01a"
 description = "detect Aurora stealer Builder old version 2022"

 strings:
 $is_go = "Go build" ascii

 $s1 = "ATX.Aurora" ascii
 $s2 = "Aurora_Stealer_2033" ascii
 $s3 = "Aurora_Stealer_SERVER" ascii
 $s4 = "[Aurora Stealer]" //log messages

 $fun1 = "main.DecryptLog" ascii
 $fun2 = "main.CreateDB" ascii
 $fun3 = "main.GenerateKey" ascii
 $fun4 = "main.TGParce" ascii

 condition:
 uint16(0) == 0x5a4d and ($is_go and (2 of ($s*)) and (2 of ($fun*))
)
}

50/56

IOCs:

ebd1368979b5adb9586ce512b63876985a497e1727ffbd54732cd42eef992b81
aurora.exe
(2023 version)

e7aa0529d4412a8cee5c20c4b7c817337fabb1598b44efbf639f4a7dac4292ad builder archive
(2023 version)

33fc61e81efa609df51277aef261623bb291e2dd5359362d50070f7a441df0ad aurora.exe
(2022 version)

33b61eb5f84cb65f1744bd08d09ac2535fe5f9b087eef37826612b5016e21990 geo.Aurora

1def6bdec3073990955e917f1da2339f1c18095d31cc12452b40da0bd8afd431 ds.html

f1ba92ae32fcaeea8148298f4869aef9bcd4e85781586b69c83a830b213d3d3c statistic.html

8b1abbb51594b6f1d4e4681204ed97371bd3d60f093e38b80b8035058116ef1d bot.html

e9cf3e7d2826fa488e7803d0d19240a23f93a7f007d66377beb1849c5d51c0af commands.html

d7829f17583b91fb1e8326e1c80c07fc29e0608f1ba836738d2c86df336ea771 rergister.html

1b88624936d149ecdea6af9147ff8b2d8423125db511bdf1296401033c08b532 settings.html

185.106.93.237:56763 Aurora server -
version 2023-
used in user
account
verification

185.106.93.237:6969 Aurora server -
version 2022-
used in user
account
verification

Auth.aurora locally created
for each Aurora
panel user and
used in account
verification

scr_n_f.png contains config
information

51/56

ebd1368979b5adb9586ce512b63876985a497e1727ffbd54732cd42eef992b81
aurora.exe
(2023 version)

screenshot/ a local folder
that contains
victims’
screenshots

<*>_ACTUAL.png screenshot of
current state of
online bots

<>_<>.png custom
screenshots
format

The following go files were identified in the binary, all starting with the path:
“C:/Users/SixSixSix/Desktop/Botnet 2023/26.01.2023/new/”

auth.go
crypt.go
command.go
compressor.go
core.go
geo.go
main.go
pfor.go
port.go
web.go

core/statistics/window.go
core/statistics/winfuns.g
o
core/statistics/queue.go
core/monitor/monitor.go
core/common/copy.go
core/common/udpconn.go
core/common/util.go
core/logger/logger.go
core/schema/monitor.go
core/schema/util.go
core/server/client.go
core/server/client_handle
rs.go
core/server/server.go
core/server/server_handle
rs.go

52/56

There are similar files identified in the old version of the builder/panel.

The common path for this older sample is: “C:/Users/SixSixSix/Desktop/Aurora 2022/server”

53/56

auth.go
compressor
.go
config.go
cryptograp
hy.go
favicon.go
geo.go
gui.go
main.go
notify.go
other.go
server.go
telegram.g
o
zip.go

Yara Seeds

To create the Yara rules, the following strings were used. Those are all present in the builder:

127.0.0.1:7273

POWR

WORK

PORT_FORWARD

FTP_RUN - REVESRE START

_*Aurora_2023_Technology_*

AURORA_TECHNOLOGY

./cache/Auth.aurora

54/56

_ACTUAL

./bots/screenshot/

./core/scr_n_f.png

EXTERNAL_RUN_PE_X64

[Aurora] Botnet - SERVER - RUN

- old sample.

 ./cache/Config.Aurora

 ./cache/Aurora.Aurora

 ./cache/telegram.Aurora

 ./cache/ATX.Aurora

 Aurora_Stealer_2033

 Aurora_Stealer_SERVER

 Aurora_Stealer_2022

https://api.telegram.org/bot%s/%
s

 ./cache/AuthHash.Aurora

 [Aurora Stealer]: Yes i am
work!

55/56

Acknowledgments:

56/56

@gi7w0rm for providing me with the samples and helping me formatting the article to make it
better.

Updated on 2023-04-23 80e2ac1
Aurora Stealer

https://twitter.com/gi7w0rm
https://github.com/dillonzq/LoveIt/commit/80e2ac15859c0d0fb416bf36eca5a2c605158fbd
https://d01a.github.io/aurora-stealer/

