
1/24

3CX Software Supply Chain Compromise Initiated by a
Prior Software Supply Chain Compromise; Suspected
North Korean Actor Responsible

mandiant.com/resources/blog/3cx-software-supply-chain-compromise

In March 2023, Mandiant Consulting responded to a supply chain compromise that affected
3CX Desktop App software. During this response, Mandiant identified that the initial
compromise vector of 3CX’s network was via malicious software downloaded from Trading
Technologies website. This is the first time Mandiant has seen a software supply chain attack
lead to another software supply chain attack.

Overview

3CX Desktop App is enterprise software that provides communications for its users including
chat, video calls, and voice calls. In late March, 2023, a software supply chain compromise
spread malware via a trojanized version of 3CX’s legitimate software that was available to

https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
https://www.3cx.com/blog/news/desktopapp-security-alert/

2/24

download from their website. The affected software was 3CX DesktopApp 18.12.416 and
earlier, which contained malicious code that ran a downloader, SUDDENICON, which in turn
received additional command and control (C2) servers from encrypted icon files hosted on
GitHub. The decrypted C2 server was used to download a third stage identified as
ICONICSTEALER, a dataminer that steals browser information. Mandiant tracks this activity
as UNC4736, a suspected North Korean nexus cluster of activity.

Figure 1: 3CX software supply chain compromise linked to Trading Technologies software
supply chain compromise

Software Supply Chain Exploitation Explained

Mandiant Consulting’s investigation of the 3CX supply chain compromise has uncovered the
initial intrusion vector: a malware-laced software package distributed via an earlier software
supply chain compromise that began with a tampered installer for X_TRADER, a software

https://www.3cx.com/blog/news/mandiant-security-update2/

3/24

package provided by Trading Technologies (Figure 1). Mandiant determined that a complex
loading process led to the deployment of VEILEDSIGNAL, a multi-stage modular backdoor,
and its modules.

VEILEDSIGNAL Backdoor Analysis

Mandiant Consulting identified an installer with the filename X_TRADER_r7.17.90p608.exe
(MD5: ef4ab22e565684424b4142b1294f1f4d) which led to the deployment of a malicious
modular backdoor: VEILEDSIGNAL.

Although the X_TRADER platform was reportedly discontinued in 2020, it was still available
for download from the legitimate Trading Technologies website in 2022. This file was signed
with the subject “Trading Technologies International, Inc” and contained the executable file
Setup.exe that was also signed with the same digital certificate. The code signing certificate
used to digitally sign the malicious software was set to expire in October 2022.

The installer contains and executes Setup.exe which drops two trojanized DLLs and a
benign executable. Setup.exe uses the benign executable to side-load one of the malicious
DLLs. Side-loading relies on legitimate Windows executables to load and execute a
malicious file that has been disguised as a legitimate dependency. The loaded malicious
DLLs contains and uses SIGFLIP and DAVESHELL to decrypt and load the payload into
memory from the other dropped malicious executable. SIGFLIP relies on RC4 stream-cipher
to decrypt the payload of choice and uses the byte sequence FEEDFACE to find the
shellcode, in this case DAVESHELL, during the decryption stage.

SIGFLIP and DAVESHELL extract and execute a modular backdoor, VEILEDSIGNAL, and
two corresponding modules. VEILEDSIGNAL relies on the two extracted modules for
process injection and communications with the C2 server.

VEILEDSIGNAL and the accompanying two components provide the following functionality:

The VEILEDSIGNAL backdoor supports three commands: send implant data, execute
shellcode, and terminate itself.

The process injection module injects the C2 module in the first found process instance
of Chrome, Firefox, or Edge. It also monitors the named pipe and reinjects the
communication module if necessary.

The C2 module creates a Windows named pipe and listens for incoming
communications, which it then sends to the C2 server encrypted with AES-256 in
Galois Counter Mode (GCM).

4/24

The C2 configuration of the identified sample of VEILEDSIGNAL (MD5:
c6441c961dcad0fe127514a918eaabd4) relied on the following hard-coded URL:
www.tradingtechnologies[.]com/trading/order-management.

VEILEDSIGNAL Similarities and Code Comparison

The compromised X_TRADER and 3CXDesktopApp applications both contain, extract, and
run a payload in the same way, although the final payload is different. Mandiant analyzed
these samples and observed the following similarities:

Usage of the same RC4 key 3jB(2bsG#@c7 in the SIGFLIP tool configuration to encrypt
and decrypt the payload.
Usage of SIGFLIP, a publicly available project on GitHub leveraging CVE-2013-3900
(MS13-098).
Reliance on DAVESHELL, a publicly available open-source project that converts PE-
COFF files to position-independent code or shellcode and that leverages reflective
loading techniques to load the payload in memory.
Use of the hardcoded cookie variable __tutma in the payloads.
Both payloads encrypt data with AES-256 GCM cipher.

Compromise of the 3CX Build Environment

The attacker used a compiled version of the publicly available Fast Reverse Proxy project, to
move laterally within the 3CX organization during the attack. The file MsMpEng.exe (MD5:
19dbffec4e359a198daf4ffca1ab9165), was dropped in C:\Windows\System32 by the threat
actor.

Mandiant was able to reconstruct the attacker’s steps throughout the environment as they
harvested credentials and moved laterally. Eventually, the attacker was able to compromise
both the Windows and macOS build environments. On the Windows build environment, the
attacker deployed a TAXHAUL launcher and COLDCAT downloader that persisted by
performing DLL search order hijacking through the IKEEXT service and ran with
LocalSystem privileges. The macOS build server was compromised with POOLRAT
backdoor using Launch Daemons as a persistence mechanism.

Previous reporting mentioned the macOS build server was compromised with SIMPLESEA.
Mandiant Intelligence completed analysis of the sample and determined it to be the backdoor
POOLRAT instead of a new malware family.

Threat Actor Spotlight: UNC4736

https://github.com/med0x2e/SigFlip
https://github.com/monoxgas/sRDI
https://github.com/fatedier/frp

5/24

UNC4736 demonstrates varying degrees of overlap with multiple North Korean operators
tracked by Mandiant Intelligence, especially with those involved in financially-motivated
cybercrime operations. These clusters have demonstrated a sustained focus on
cryptocurrency and fintech-related services over time.

Mandiant assesses with moderate confidence that UNC4736 is related to financially
motivated North Korean “AppleJeus” activity as reported by CISA. This is further
corroborated with findings from Google TAG who reported the compromise of
www.tradingtechnologies[.]com in February 2022, preceding the distribution of
compromised X_TRADER updates from the site.

TAGreported on a cluster of North Korean activity exploiting a remote code execution
vulnerability in Chrome, CVE-2022-0609, and identified it as overlapping with
“AppleJeus” targeting cryptocurrency services.
The site www.tradingtechnologies[.]com was compromised and hosting a hidden
IFRAME to exploit visitors, just two months before the site was known to deliver a
trojanized X_TRADER software package.
Within the 3CX environment, Mandiant identified the POOLRAT backdoor using
journalide[.]org as its configured C2 server.
An older sample of POOLRAT (MD5: 451c23709ecd5a8461ad060f6346930c) was
previouslyreported by CISA as part of the trojanized CoinGoTrade application used in
the AppleJeus operation (Figure 2).

The older sample’s infrastructure also has ties to another trojanized trading
application, JMT Trading, also tracked under AppleJeus.

https://blog.google/threat-analysis-group/countering-threats-north-korea/
https://chromereleases.googleblog.com/2022/02/stable-channel-update-for-desktop_14.html
https://www.cisa.gov/news-events/analysis-reports/ar21-048e

6/24

Figure 2: POOLRAT Link to CoinGoTrade and JMT Trading Activity
Weak infrastructure overlap was also identified between UNC4736 and two clusters of
suspected APT43 activity, UNC3782 and UNC4469.

DNS resolutions reveal infrastructure overlap between UNC4736 and activity linked to
APT43 with moderate confidence (Tables 1 – 3)
APT43 frequently targets cryptocurrency users and related services, highlighting such
campaigns are widespread across North Korea-nexus cyber operators.

Table 1: Resolutions for IP 89.45.67.160

Date Domain UNC

https://www.mandiant.com/resources/blog/apt43-north-korea-cybercrime-espionage

7/24

2022-12-20 curvefinances[.]com UNC4469

2022-12-29 pbxphonenetwork[.]com UNC4736

Table 2: Resolutions for IP 172.93.201.88

Date Domain UNC

2022-04-08 journalide[.]org UNC4736

2021-11-26 nxmnv[.]site UNC3782

Table 3: Resolutions for IP 185.38.151[.]11

Date Domain UNC

2023-01-09 msedgepackageinfo[.]com UNC4736

2023-03-22 apollo-crypto.org.shilaerc20[.]com UNC4469

Outlook and Implications

The identified software supply chain compromise is the first we are aware of which has led to
a cascading software supply chain compromise. It shows the potential reach of this type of
compromise, particularly when a threat actor can chain intrusions as demonstrated in this
investigation. Research on UNC4736 activity suggests that it is most likely linked to
financially motivated North Korean threat actors. Cascading software supply chain
compromises demonstrate that North Korean operators can exploit network access in
creative ways to develop and distribute malware, and move between target networks while
conducting operations aligned with North Korea’s interests.

Malware Definitions

ICONICSTEALER

ICONICSTEALER is a C/C++ data miner that collects application configuration data as well
as browser history.

DAVESHELL

8/24

DAVESHELL is shellcode that functions as an in-memory dropper. Its embedded payload is
mapped into memory and executed.

SIGFLIP

SigFlip is a tool for patching authenticode signed PE-COFF files to inject arbitrary code
without affecting or breaking the file's signature.

POOLRAT

POOLRAT is a C/C++ macOS backdoor capable of collecting basic system information and
executing commands. The commands performed include running arbitrary commands,
secure deleting files, reading and writing files, updating the configuration.

TAXHAUL

TAXHAUL is a DLL that, when executed, decrypts a shellcode payload expected at
C:\Windows\System32\config\TxR\<machine hardware profile GUID>.TxR.0.regtrans-

ms. Mandiant has seen TAXHAUL persist via DLL search order hijacking.

COLDCAT

COLDCAT is a complex downloader. COLDCAT generates unique host identifier information,
and beacons it to a C2 that is specified in a separate file via POST request with the data in
the cookie header. After a brief handshake, the malware expects base64 encoded shellcode
to execute in response.

VEILEDSIGNAL

VEILEDSIGNAL is a backdoor written in C that is able to execute shellcode and terminate
itself. Additionally, VEILEDSIGNAL relies on additional modules that connect via Windows
named pipes to interact with the C2 infrastructure.

Acknowledgments

Special thanks to Michael Bailey, Willi Ballenthin, Michael Barnhart, and Jakub Jozwiak for
their collaboration and review. Mandiant would also like to thank the Google Threat Analysis
Group (TAG) and Microsoft Threat Intelligence Center (MSTIC) for their collaboration in this
research.

Technical Annex: MITRE ATT&CK

Resource Development

T1588 Obtain Capabilities

9/24

T1588.004 Digital Certificates
T1608 Stage Capabilities
T1608.003 Install Digital Certificate

Initial Access

T1190 Exploit Public-Facing Application
T1195 Supply Chain Compromise
T1195.002 Compromise Software Supply Chain

Persistence

T1574 Hijack Execution Flow
T1574.002 DLL Side-Loading

Privilege Escalation

T1055 Process Injection
T1574 Hijack Execution Flow
T1574.002 DLL Side-Loading

Defense Evasion

T1027 Obfuscated Files or Information
T1036 Masquerading
T1036.001 Invalid Code Signature
T1055 Process Injection
T1070 Indicator Removal
T1070.001 Clear Windows Event Logs
T1070.004 File Deletion
T1112 Modify Registry
T1140 Deobfuscate/Decode Files or Information
T1497 Virtualization/Sandbox Evasion
T1497.001 System Checks
T1574 Hijack Execution Flow
T1574.002 DLL Side-Loading
T1620 Reflective Code Loading
T1622 Debugger Evasion

Discovery

T1012 Query Registry
T1082 System Information Discovery
T1083 File and Directory Discovery
T1497 Virtualization/Sandbox Evasion

10/24

T1497.001 System Checks
T1614 System Location Discovery
T1614.001 System Language Discovery
T1622 Debugger Evasion

Command and Control

T1071 Application Layer Protocol
T1071.001 Web Protocols
T1071.004 DNS
T1105 Ingress Tool Transfer
T1573 Encrypted Channel
T1573.002 Asymmetric Cryptography

Impact

T1565 Data Manipulation
T1565.001 Stored Data Manipulation

Technical Annex: Detection Rules

YARA Rules

rule M_Hunting_3CXDesktopApp_Key {

 meta:

 disclaimer = "This rule is meant for hunting and is not tested to run in
a production environment"

 description = "Detects a key found in a malicious 3CXDesktopApp file"

 md5 = "74bc2d0b6680faa1a5a76b27e5479cbc"

 date = "2023/03/29"

 version = "1"

 strings:

 $key = "3jB(2bsG#@c7" wide ascii

 condition:

 $key

}

11/24

rule M_Hunting_3CXDesktopApp_Export {

 meta:

 disclaimer = "This rule is meant for hunting and is not tested to run in
a production environment"

 description = "Detects an export used in 3CXDesktopApp malware"

 md5 = "7faea2b01796b80d180399040bb69835"

 date = "2023/03/31"

 version = "1"

 strings:

 $str1 = "DllGetClassObject" wide ascii

 $str2 = "3CXDesktopApp" wide ascii

 condition:

 all of ($str*)

}

rule TAXHAUL
 {

 meta:
 author = "Mandiant"

 created = "04/03/2023"
 modified = "04/03/2023"
 version = "1.0"

 strings:
 $p00_0 = {410f45fe4c8d3d[4]eb??4533f64c8d3d[4]eb??4533f64c8d3d[4]eb}

 $p00_1 = {4d3926488b01400f94c6ff90[4]41b9[4]eb??8bde4885c074}
 condition:

 uint16(0) == 0x5A4D and any of them
 }

12/24

rule M_Hunting_MSI_Installer_3CX_1

{

meta:

author = "Mandiant"

md5 = "0eeb1c0133eb4d571178b2d9d14ce3e9, f3d4144860ca10ba60f7ef4d176cc736"

strings:

$ss1 = { 20 00 5F 64 33 64 63 6F 6D 70 69 6C 65 72 5F 34 37 2E 64 6C 6C 5F }

$ss2 = { 20 00 5F 33 43 58 44 65 73 6B 74 6F 70 41 70 70 2E }

$ss3 = { 20 00 5F 66 66 6D 70 65 67 2E 64 6C 6C 5F }

$ss4 = "3CX Ltd1" ascii

$sc1 = { 1B 66 11 DF 9C 9A 4D 6E CC 8E D5 0C 9B 91 78 73 }

$sc2 = "202303" ascii

condition:

(uint32(0) == 0xE011CFD0) and filesize > 90MB and filesize < 105MB and all
of them

}

13/24

rule M_Hunting_TAXHAUL_Hash_1

{

meta:

author = "Mandiant"

disclaimer = "This rule is meant for hunting and is not tested to run in a
production environment"

description = "Rule looks for hardcoded value used in string hashing
algorithm observed in instances of TAXHAUL."

md5 = "e424f4e52d21c3da1b08394b42bc0829"

strings:

$c_x64 = { 25 A3 87 DE [4-20] 25 A3 87 DE [4-20] 25 A3 87 DE }

condition:

filesize < 15MB and uint16(0) == 0x5a4d and uint32(uint32(0x3C)) ==
0x00004550 and any of them

}

14/24

rule M_Hunting_SigFlip_SigLoader_Native

{

meta:

author = "Mandiant"

disclaimer = "This rule is meant for hunting and is not tested to run in a
production environment"

description = "Rule looks for strings present in SigLoader (Native)"

md5 = "a3ccc48db9eabfed7245ad6e3a5b203f"

strings:

$s1 = "[*]: Basic Loader..." ascii wide

$s2 = "[!]: Missing PE path or Encryption Key..." ascii wide

$s3 = "[!]: Usage: %s <PE_PATH> <Encryption_Key>" ascii wide

$s4 = "[*]: Loading/Parsing PE File '%s'" ascii wide

$s5 = "[!]: Could not read file %s" ascii wide

$s6 = "[!]: '%s' is not a valid PE file" ascii wide

$s7 = "[+]: Certificate Table RVA %x" ascii wide

$s8 = "[+]: Certificate Table Size %d" ascii wide

$s9 = "[*]: Tag Found 0x%x%x%x%x" ascii wide

$s10 = "[!]: Could not locate data/shellcode" ascii wide

$s11 = "[+]: Encrypted/Decrypted Data Size %d" ascii wide

condition:

filesize < 15MB and uint16(0) == 0x5a4d and uint32(uint32(0x3C)) ==
0x00004550 and 4 of ($s*)

}

15/24

rule M_Hunting_Raw64_DAVESHELL_Bootstrap

{

meta:

author = "Mandiant"

disclaimer = "This rule is meant for hunting and is not tested to run in a
production environment"

description = "Rule looks for bootstrap shellcode (64 bit) present in
DAVESHELL"

md5 = "8a34adda5b981498234be921f86dfb27"

strings:

$b6ba50888f08e4f39b43ef67da27521dcfc61f1e = { E8 00 00 00 00 59 49 89 C8 48
81 C1 ?? ?? ?? ?? BA ?? ?? ?? ?? 49 81 C0 ?? ?? ?? ?? 41 B9 ?? ?? ?? ?? 56
48 89 E6 48 83 E4 F0 48 83 EC 30 C7 44 24 20 ?? ?? ?? ?? E8 ?? 00 00 00 48
89 F4 5E C3 }

$e32abbe82e1f957fb058c3770375da3bf71a8cab = { E8 00 00 00 00 59 49 89 C8 BA
?? ?? ?? ?? 49 81 C0 ?? ?? ?? ?? 41 B9 ?? ?? ?? ?? 56 48 89 E6 48 83 E4 F0
48 83 EC 30 48 89 4C 24 28 48 81 C1 ?? ?? ?? ?? C7 44 24 20 ?? ?? ?? ?? E8
?? 00 00 00 48 89 F4 5E C3 }

condition:

filesize < 15MB and any of them

}

16/24

rule M_Hunting_MSI_Installer_3CX_1

{

meta:

author = "Mandiant"

disclaimer = "This rule is meant for hunting and is not tested to run in a
production environment"

description = "This rule looks for hardcoded values within the MSI installer
observed in strings and signing certificate"

md5 = "0eeb1c0133eb4d571178b2d9d14ce3e9"

strings:

$ss1 = { 20 00 5F 64 33 64 63 6F 6D 70 69 6C 65 72 5F 34 37 2E 64 6C 6C 5F }

$ss2 = { 20 00 5F 33 43 58 44 65 73 6B 74 6F 70 41 70 70 2E }

$ss3 = { 20 00 5F 66 66 6D 70 65 67 2E 64 6C 6C 5F }

$ss4 = "3CX Ltd1" ascii

$sc1 = { 1B 66 11 DF 9C 9A 4D 6E CC 8E D5 0C 9B 91 78 73 }

$sc2 = "202303" ascii

condition:

(uint32(0) == 0xE011CFD0) and filesize > 90MB and filesize < 100MB and all
of them

}

17/24

rule M_Hunting_VEILEDSIGNAL_1

{

meta:

author = "Mandiant"

disclaimer = "This rule is meant for hunting and is not tested to run in a
production environment"

md5 = "404b09def6054a281b41d309d809a428, c6441c961dcad0fe127514a918eaabd4"

strings:

$rh1 = { 68 5D 7A D2 2C 3C 14 81 2C 3C 14 81 2C 3C 14 81 77 54 10 80 26 3C
14 81 77 54 17 80 29 3C 14 81 77 54 11 80 AB 3C 14 81 D4 4C 11 80 33 3C 14
81 D4 4C 10 80 22 3C 14 81 D4 4C 17 80 25 3C 14 81 77 54 15 80 27 3C 14 81
2C 3C 15 81 4B 3C 14 81 94 4D 1D 80 28 3C 14 81 94 4D 14 80 2D 3C 14 81 94
4D 16 80 2D 3C 14 81 }

$rh2 = { 00 E5 A0 2B 44 84 CE 78 44 84 CE 78 44 84 CE 78 1F EC CA 79 49 84
CE 78 1F EC CD 79 41 84 CE 78 1F EC CB 79 C8 84 CE 78 BC F4 CA 79 4A 84 CE
78 BC F4 CD 79 4D 84 CE 78 BC F4 CB 79 65 84 CE 78 1F EC CF 79 43 84 CE 78
44 84 CF 78 22 84 CE 78 FC F5 C7 79 42 84 CE 78 FC F5 CE 79 45 84 CE 78 FC
F5 CC 79 45 84 CE 78}

$rh3 = { DA D2 21 22 9E B3 4F 71 9E B3 4F 71 9E B3 4F 71 C5 DB 4C 70 94 B3
4F 71 C5 DB 4A 70 15 B3 4F 71 C5 DB 4B 70 8C B3 4F 71 66 C3 4B 70 8C B3 4F
71 66 C3 4C 70 8F B3 4F 71 C5 DB 49 70 9F B3 4F 71 66 C3 4A 70 B0 B3 4F 71
C5 DB 4E 70 97 B3 4F 71 9E B3 4E 71 F9 B3 4F 71 26 C2 46 70 9F B3 4F 71 26
C2 B0 71 9F B3 4F 71 9E B3 D8 71 9F B3 4F 71 26 C2 4D 70 9F B3 4F 71 }

$rh4 = { CB 8A 35 66 8F EB 5B 35 8F EB 5B 35 8F EB 5B 35 D4 83 5F 34 85 EB
5B 35 D4 83 58 34 8A EB 5B 35 D4 83 5E 34 09 EB 5B 35 77 9B 5E 34 92 EB 5B
35 77 9B 5F 34 81 EB 5B 35 77 9B 58 34 86 EB 5B 35 D4 83 5A 34 8C EB 5B 35
8F EB 5A 35 D3 EB 5B 35 37 9A 52 34 8C EB 5B 35 37 9A 58 34 8E EB 5B 35 37
9A 5B 34 8E EB 5B 35 37 9A 59 34 8E EB 5B 35 }

condition:

uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and 1 of ($rh*)

}

18/24

rule M_Hunting_VEILEDSIGNAL_2

{

meta:

author = "Mandiant"

disclaimer = "This rule is meant for hunting and is not tested to run in a
production environment"

md5 = "404b09def6054a281b41d309d809a428"

strings:

$sb1 = { C1 E0 05 4D 8? [2] 33 D0 45 69 C0 7D 50 BF 12 8B C2 41 FF C2 C1 E8
07 33 D0 8B C2 C1 E0 16 41 81 C0 87 D6 12 00 }

$si1 = "CryptBinaryToStringA" fullword

$si2 = "BCryptGenerateSymmetricKey" fullword

$si3 = "CreateThread" fullword

$ss1 = "ChainingModeGCM" wide

$ss2 = "__tutma" fullword

condition:

(uint16(0) == 0x5A4D) and (uint32(uint32(0x3C)) == 0x00004550) and
(uint16(uint32(0x3C)+0x18) == 0x020B) and all of them

}

19/24

rule M_Hunting_VEILEDSIGNAL_3

{

meta:

author = "Mandiant"

disclaimer = "This rule is meant for hunting and is not tested to run in a
production environment"

md5 = "c6441c961dcad0fe127514a918eaabd4"

strings:

$ss1 = { 61 70 70 6C 69 63 61 74 69 6F 6E 2F 6A 73 6F 6E 2C 20 74 65 78 74
2F 6A 61 76 61 73 63 72 69 70 74 2C 20 2A 2F 2A 3B 20 71 3D 30 2E 30 31 00
00 61 63 63 65 70 74 00 00 65 6E 2D 55 53 2C 65 6E 3B 71 3D 30 2E 39 00 00
61 63 63 65 70 74 2D 6C 61 6E 67 75 61 67 65 00 63 6F 6F 6B 69 65 00 00 }

$si1 = "HttpSendRequestW" fullword

$si2 = "CreateNamedPipeW" fullword

$si3 = "CreateThread" fullword

$se1 = "DllGetClassObject" fullword

condition:

(uint16(0) == 0x5A4D) and (uint32(uint32(0x3C)) == 0x00004550) and
(uint16(uint32(0x3C)+0x18) == 0x020B) and all of them

}

20/24

rule M_Hunting_VEILEDSIGNAL_4

{

meta:

author = "Mandiant"

disclaimer = "This rule is meant for hunting and is not tested to run in a
production environment"

md5 = "404b09def6054a281b41d309d809a428, c6441c961dcad0fe127514a918eaabd4"

strings:

$sb1 = { FF 15 FC 76 01 00 8B F0 85 C0 74 ?? 8D 50 01 [6-16] FF 15 [4] 48 8B
D8 48 85 C0 74 ?? 89 ?? 24 28 44 8B CD 4C 8B C? 48 89 44 24 20 }

$sb2 = { 33 D2 33 C9 FF 15 [4] 4C 8B CB 4C 89 74 24 28 4C 8D 05 [2] FF FF 44
89 74 24 20 33 D2 33 C9 FF 15 }

$si1 = "CreateThread" fullword

$si2 = "MultiByteToWideChar" fullword

$si3 = "LocalAlloc" fullword

$se1 = "DllGetClassObject" fullword

condition:

(uint16(0) == 0x5A4D) and (uint32(uint32(0x3C)) == 0x00004550) and
(uint16(uint32(0x3C)+0x18) == 0x020B) and all of them

}

21/24

rule M_Hunting_VEILEDSIGNAL_5

{

meta:

author = "Mandiant"

disclaimer = "This rule is meant for hunting and is not tested to run in a
production environment"

md5 = "6727284586ecf528240be21bb6e97f88"

strings:

$sb1 = { 48 8D 15 [4] 48 8D 4C 24 4C E8 [4] 85 C0 74 ?? 48 8D 15 [4] 48 8D
4C 24 4C E8 [4] 85 C0 74 ?? 48 8D 15 [4] 48 8D 4C 24 4C E8 [4] 85 C0 74 ??
48 8D [3] 48 8B CB FF 15 [4] EB }

$ss1 = "chrome.exe" wide fullword

$ss2 = "firefox.exe" wide fullword

$ss3 = "msedge.exe" wide fullword

$ss4 = "\\\\.\\pipe*" ascii fullword

$ss5 = "FindFirstFileA" ascii fullword

$ss6 = "Process32FirstW" ascii fullword

$ss7 = "RtlAdjustPrivilege" ascii fullword

$ss8 = "GetCurrentProcess" ascii fullword

$ss9 = "NtWaitForSingleObject" ascii fullword

condition:

(uint16(0) == 0x5A4D) and (uint32(uint32(0x3C)) == 0x00004550) and
(uint16(uint32(0x3C)+0x18) == 0x020B) and all of them

}

22/24

rule M_Hunting_VEILEDSIGNAL_6

{

meta:

author = "Mandiant"

disclaimer = "This rule is meant for hunting and is not tested to run in a
production environment"

md5 = "00a43d64f9b5187a1e1f922b99b09b77"

strings:

$ss1 = "C:\\Programdata\\" wide

$ss2 = "devobj.dll" wide fullword

$ss3 = "msvcr100.dll" wide fullword

$ss4 = "TpmVscMgrSvr.exe" wide fullword

$ss5 = "\\Microsoft\\Windows\\TPM" wide fullword

$ss6 = "CreateFileW" ascii fullword

condition:

(uint16(0) == 0x5A4D) and (uint32(uint32(0x3C)) == 0x00004550) and
(uint16(uint32(0x3C)+0x18) == 0x010B) and all of them

}

rule MTI_Hunting_POOLRAT {
 meta:

 author = "Mandiant"
 disclaimer = "This rule is meant for hunting and is not tested to run in

a production environment"
 description = "Detects strings found in POOLRAT. "

 md5 = "451c23709ecd5a8461ad060f6346930c"
 date = "10/28/2020"

 version = "1"
 strings:

 $str1 = "name=\"uid\"%s%s%u%s" wide ascii
 $str2 = "name=\"session\"%s%s%u%s" wide ascii

 $str3 = "name=\"action\"%s%s%s%s" wide ascii
 $str4 = "name=\"token\"%s%s%u%s" wide ascii

 $boundary = "--N9dLfqxHNUUw8qaUPqggVTpX-" wide ascii nocase
 condition:

 any of ($str*) or $boundary
 }

23/24

rule M_Hunting_FASTREVERSEPROXY

{

 meta:

 author = "Mandiant"

 disclaimer = "This rule is meant for hunting and is not tested to run
in a production environment"

 md5 = "19dbffec4e359a198daf4ffca1ab9165"

 strings:

 $ss1 = "Go build ID:" fullword

 $ss2 = "Go buildinf:" fullword

 $ss3 = "net/http/httputil.(*ReverseProxy)." ascii

 $ss4 = "github.com/fatedier/frp/client" ascii

 $ss5 = "\"server_port\"" ascii

 $ss6 = "github.com/armon/go-socks5.proxy" ascii

 condition:

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and all of
them

}

Snort Rules

alert tcp any any -> any any (msg:"Possible malicious 3CXDesktopApp
Identified"; content:"raw.githubusercontent.com/IconStorages/images/main/";
threshold:type limit, track by_src, count 1, seconds 3600; sid: 99999999;)

alert tcp any any -> any any (msg:"Possible malicious 3CXDesktopApp
Identified";
content:"3cx_auth_id=%s\;3cx_auth_token_content=%s\;__tutma=true";
threshold:type limit, track by_src, count 1, seconds 3600; sid: 99999999;)

alert tcp any any -> any any (msg:"Possible malicious 3CXDesktopApp
Identified"; content:"__tutma"; threshold:type limit, track by_src, count 1,
seconds 3600; sid: 99999999;)

alert tcp any any -> any any (msg:"Possible malicious 3CXDesktopApp
Identified"; content:"__tutmc"; threshold:type limit, track by_src, count 1,
seconds 3600; sid: 99999999;)

24/24

Mandiant Security Validation

Organizations can validate their security controls using the following actions with Mandiant
Security Validation.

VID Name

A106-
319

Command and Control - UNC4736, DNS Query, Variant #1

A106-
321

Command and Control - UNC4736, DNS Query, Variant #2

A106-
323

Command and Control - UNC4736, DNS Query, Variant #3

A106-
324

Host CLI - UNC4736, 3CX Run Key, Registry Modification

A106-
322

Malicious File Transfer - UNC4736, SUDDENICON, Download, Variant #1

S100-
272

Evaluation: UNC4736 Conducting Supply Chain Attack Targeting 3CX Phone
Management System

