
1/52

Matthew April 10, 2023

Redline Stealer - Static Analysis and C2 Extraction
embee-research.ghost.io/redline-stealer-basic-static-analysis-and-c2-extraction/

Ghidra Featured
Deep dive analysis of a redline stealer sample. I will use manual analysis to extract C2
information using a combination of Ghidra and x32dbg

Deep-dive analysis of a packed Redline Stealer sample. Utilising manual analysis and semi-
automated string decryption to extract C2 information and ultimately identify the malware.

https://embee-research.ghost.io/redline-stealer-basic-static-analysis-and-c2-extraction/
https://embee-research.ghost.io/tag/ghidra/

2/52

In this write-up, I intentionally try to touch on as many concepts as possible in order to
demonstrate practical applications and hopefully provide a better learning experience for the
reader.

Quick Caveat

I realized after the initial post that this sample is actually Amadey Bot. The analysis and
RE techniques remain equally relevant, but the sample is not actually Redline as the
title suggests :)

 (There is a second file in the .cab which contains Redline Stealer, which may explain
why the initial file was semi-incorrectly marked as Redline)

I was able to determine this by researching the decrypted strings that are detailed at
the end of the post.

If you're interested in how to use decrypted strings to identify or confirm a malware
family. Jump to the bonus section "Utilising Decrypted Strings To Identify the Malware
Family" of this blog.

Link Sample

The initial file can be downloaded from Malware Bazaar with SHA256: .
 449d9e29d49dea9697c9a84bb7cc68b50343014d9e14667875a83cade9adbc60

Analysis Summary

Feel free to jump to certain sections if you are already comfortable with some of these
concepts.

Saving the file and extracting the initial .exe
Using Entropy to identify that the initial .exe is packed
Using a debugger to manually unpack the first payload
Initial analysis of the unpacked payload
Identifying interesting strings and imports
Static Analysis to establish context of interesting strings and imports
Utilising a debugger to analyse the String Decryption function
Automating the String Decryption using X32dbg
Utilising Decrypted strings to identify the malware family.

Actual Analysis

The analysis can kick off by downloading the above file and transferring it into a safe
analysis machine. (I strongly recommend and personally use FLARE-VM for analysis)

https://malpedia.caad.fkie.fraunhofer.de/details/win.amadey?ref=embee-research.ghost.io
https://malpedia.caad.fkie.fraunhofer.de/details/win.redline_stealer?ref=embee-research.ghost.io
https://bazaar.abuse.ch/sample/449d9e29d49dea9697c9a84bb7cc68b50343014d9e14667875a83cade9adbc60/?ref=embee-research.ghost.io
https://www.mandiant.com/resources/blog/flare-vm-the-windows-malware?ref=embee-research.ghost.io

3/52

The file can be extracted with the password infected.

Unzipping the file with the password "infected"
After successful extraction - detect-it-easy can be used to perform an initial analysis of the
file.

This reveals that the file is a 32 bit executable. Which in this case is actually a Microsoft
Cabinet file. This is essentially a .zip that can be executed as a .exe file.

Initial Malware Analysis using Detect-it-easy
The file is similar enough to a .zip that 7-zip is able to extract the contents of the file just
like a regular zip file.

I was able to use 7zip to extract the contents, creating two new exe's in the process. These
are si684017.exe and un007241.exe in the screenshot below.

https://www.youtube.com/watch?v=FB_e1mIhykk&ref=embee-research.ghost.io
https://learn.microsoft.com/en-us/windows/win32/msi/cabinet-files?ref=embee-research.ghost.io

4/52

Additional files after extracting initial .cab.
For now, I'll focus on the si684017.exe file.

Initial Executable File

The initial is file recognized as a 32-bit exe file by detect-it-easy.

Interestingly - it was not a .NET as most Infostealers generally are. This means that the
usual DnSpy won't be applicable here.

(Check out my analysis of dcrat for tips on using Dnspy)

Initial file analysis using Detect-it-easy
During initial analysis, I always want to determine if the file is potentially a packed loader
rather than a final payload. If I have reason to suspect a packed payload, I typically focus on
unpacking rather than strings or other static analysis.

A packed sample will typically contain areas of significantly high entropy.

https://www.malwarebytes.com/blog/threats/info-stealers?ref=embee-research.ghost.io
https://embee-research.ghost.io/dcrat-manual-de-obfuscation/
https://www.oreilly.com/library/view/practical-malware-analysis/9781593272906/ch02s04.html?ref=embee-research.ghost.io

5/52

To determine areas of entropy - I utilized the Entropy Graph feature within Detect-it-easy.

Malware Entropy Analysis Using Detect-it-easy
This revealed a very area of high entropy within the file. This is a strong indicator that the file
is a packed loader and not the final payload.

In situations like this - I proceed to focus on unpacking the file.

Since this is a "regular" exe file and not a .NET-based file - I proceeded to unpack the file
using X32dbg.

Unpacking Using X32dbg

When a standard-exe-based loader unpacks a file, it typically uses a combination of
VirtualAlloc , VirtualProtect and CreateThread. These functions allow the malware to
allocate new sections of memory that can be used to store and execute the unpacked
payload.

6/52

Advanced malware will heavily obfuscate these functions and/or avoid using them
completely. But in 90% of cases - the previously mentioned functions are relevant.

 (Check out my blog on API hashing for how this obfuscation can be done)

In most malware - We can set breakpoints on the VirtualAlloc and VirtualProtect
function calls and monitor the results using Hardware Breakpoints . This will alert when the
newly allocated buffer is accessed, from there it is generally simple to obtain the decoded
payload.

To summarise this:

Identify a Function of Interest (In this case VirtualAlloc)
Create a breakpoint to monitor VirtualAlloc
Obtain the Memory Buffer created by VirtualAlloc
Use a Hardware Breakpoint - to alert when the new memory buffer is accessed
Allow the malware to execute until the buffer is filled
Save the buffer to a file

I've previously written a thread on how to use Hardware Breakpoints to unpack Cobalt Strike
Loaders. You can check it out here.

Loading the File into X32dbg

To initiate this process - I dragged the file into a debugger (x32dbg) and allowed the file to
execute until the Entry Point. This can be done by loading the file and once clicking the F9
button.

Viewing the Entrypoint using a Debugger (x32dbg)

Creating The Breakpoints

https://www.huntress.com/blog/hackers-no-hashing-randomizing-api-hashes-to-evade-cobalt-strike-shellcode-detection?ref=embee-research.ghost.io
https://stackoverflow.com/questions/8878716/what-is-the-difference-between-hardware-and-software-breakpoints?ref=embee-research.ghost.io
https://twitter.com/embee_research/status/1568910991244820481?lang=en&ref=embee-research.ghost.io
https://x64dbg.com/?ref=embee-research.ghost.io
https://stackoverflow.com/questions/3745672/about-the-entry-point-of-pe-in-windows?ref=embee-research.ghost.io

7/52

Breakpoints were then required in order to inspect the appropriate VirtualAlloc function.

Note that in this case - the primary interest is in the output (or return value) of
VirtualAlloc. The relevance of this is that we care about the data at the "end" of the
breakpoint, and not at the moment where the breakpoint is hit.

If that's confusing then let's just see it in action (it's always confusing the first dozen times)

Set two breakpoints using the following commands

bp VirtualAlloc , bp VirtualProtect

Setting a breakpoint on VirtualAlloc using x32dbg
Hit F9 (Continue) again, allowing the malware to execute until a breakpoint is hit.

A breakpoint is immediately hit on the VirtualAlloc function

Triggering a breakpoint on VirtualAlloc
The primary purpose of VirtualAlloc is to allocate memory and return an address to the
newly allocated buffer. This newly allocated memory is contained in the EAX register when
the function is completed.

TLDR: Since I'm only interested in that buffer - I utilized the Execute Until Return or
CTRL+F9 to jump straight to the end of the function and obtain the result.

8/52

How to "Execute Until Return"

using x32dbg
Allowing the malware to Execute Until Return - provides an EAX register containing the
address of the memory buffer to be used by the malware.

9/52

Viewing the memory buffer returned by VirtualAlloc

There is nothing particularly special about EAX, it is just the standard register used for
returning the results of a function.

 To learn more about EAX and calling conventions - there's a great video on that from
OALABS.

To monitor the buffer returned by VirtualAlloc, Right-Click on the returned address
02250000 address and select Follow in Dump.

This will cause the bottom-left window to display the newly-allocated memory.

The buffer of memory currently contains all 00's, as nothing has used or written to the buffer
yet.

Using x32dbg (Follow In Dump) to view the contents of a memory buffer

https://www.youtube.com/watch?v=9lzW0I9_cpY&ref=embee-research.ghost.io

10/52

It is important to be notified when that buffer of 00's is no longer a buffer of 00's.

To achieve this - A hardware breakpoint can be applied on the first byte of the newly
allocated buffer.

Setting a Hardware Breakpoint Using x32dbg

Successful

creation of a Hardware Breakpoint
Once the hardware breakpoint is set - the malware can continue to execute using the F9
button.

The Hardware Breakpoint will immediately be triggered.

11/52

Triggering a Hardware Breakpoint using X32dbg
Once this happens, use CTRL+F9 (Execute Until Return, aka "just finish what you're doing
now, but don't do anything else") to allow the malware to continue writing to the buffer without
actually executing it.

(Utilising CTRL+F9 will cause the malware to stop at the end of the current function -
preventing the execution of the rest of the malware)

Once the current function is finished - the buffer will look something like this.

Identifying a Memory Buffer containing Shellcode
Unfortunately - the first buffer does not contain an unpacked PE file. It does contain a large
buffer of shellcode which is used to unpack the next section using another VirtualAlloc.

12/52

If the file was sucessfully unpacked - it would typically look something more akin to this

Identifying an unpacked PE file in a memory buffer

In this case there is only shellcode in the buffer. You can typically determine that the buffer is
shellcode by the presence of the EB (jmp) byte. You can also confirm suspected shellcode by
inspecting the instruction using Right-Click -> Follow in Disassembler.

If the code disassembles without errors (No glaring red sections) - it is highly likely to be
shellcode.

Using x32dbg to validate shellcode contained in a memory buffer
At this stage - the shellcode could be dumped into a file for further analysis.

However, It is often better to allow the shellcode to execute. Malicious actions taken by the
shellcode will often trigger the same breakpoints intended for the "original" malware.

Obtaining The Unpacked Payload

Hitting F9 (Continue) to allow the malware to execute - another breakpoint is hit on
VirtualAlloc

13/52

Viewing VirtualAlloc function in a debugger (x32dbg)
Using the same trick of Execute Until Return , Select EAX and Right-Click -> Follow
in Dump, the second allocated buffer can be obtained.

Using x32dbg to locate another memory buffer returned by VirtualAlloc
Another Hardware Breakpoint will need to be set at the start of the buffer.

14/52

Creating another Hardware Breakpoint on the memory address
Allowing the malware to continue to execute - the hardware breakpoint is hit. This time
containing a promising M. (First half on an MZ header)

(Side note that my debugger suddenly crashed here and had to be restarted - hence the
slight change of address in future screenshots)

https://subscription.packtpub.com/book/security/9781789610789/4/ch04lvl1sec57/mz-header?ref=embee-research.ghost.io

15/52

Memory buffer - potentially containing an unpacked pe-file payload
Allowing the malware to continue to execute - A complete MZ/PE file can be found. At this
point, the unpacked file has been successfully loaded into memory.

A complete Pe-file written to the memory buffer
Saving the Unpacked File

To save the unpacked file - Right-Click on the start address and select Follow in Memory
Map

16/52

How

17/52

to save a memory buffer using x32dbg
This will reveal the location where the buffer was allocated. The entire memory buffer can
then be saved by using Right-Click and Dump Memory to File

Using Memory Map to save a specific memory section in x32dbg

The final

button used to dump the memory to a file using x32dbg
The file can now be saved as unpacked.bin (or any other file name of choosing)

Specifying a name for the unpacked file

Initial Analysis - Unpacked Payload

The file is a 32-bit executable with no (recognized) packers or obfuscation.

18/52

Initial analysis of suspected unpacked payload using detect-it-easy

The entropy graph does not contain any areas of significantly high or flat entropy -
suggesting that the file is not packed and does not contain any additional payloads.

19/52

Additional Entropy Analysis - Suggesting no hidden payloads - No significant areas of
entropy
Since this was potentially a final payload - I checked the strings for any unobfuscated
information.

This revealed some base64 encoded data - but I wasn't able to successfully decode it.

20/52

The base64 encoding has likely been combined with additional obfuscation.

Base64 Encoded Strings contained within the malware file
Failing to decode the "base64"

Cyberchef - Failure to decode the base64 strings - signs of additional obfuscation

21/52

Import Analysis

Imported functions are an additional valuable source of information. Especially for suspected
unpacked files.

The imported functions referenced capability that suggested the file can download data and
make internet connections.

Since these functions need C2 information in order to work, this is a good sign that the C2
config may be contained within this file.

Malware Import Analysis Using Detect-it-easy

Ghidra Analysis

At this point I decided to analyze the file further using Ghidra. My plan was to utilise Ghidra
to gather more information on the suspicious imports related to c2 connections
InternetReadFile, InternetConnectA, HttpSendRequestA etc.

In addition to this - I wanted to investigate the suspicious "base64" strings identified with
detect-it-easy.

To investigate both - I intended to utilise cross references or X-refs to observe where the
strings and imports were used throughout the code. From here I hoped to find arguments
passed to the internet functions (hopefully containing a C2), or to find the logic behind the
function that accesses the base64 encoded strings.

22/52

To Summarise - My plan was to Utilise Ghidra to...

Investigate the suspicious strings - which function are they passed to? what does that
function do with them? Can I trace the input and output of that function?
Investigate Suspicious Imports - Check where the imports were used, and what
arguments were being passed. Can I set a breakpoint and view the decrypted C2's?

String Searching with Ghidra

I took the first approach first, using Ghidra to search for strings within the file.

Searching for Strings Using Ghidra
By filtering on ==, I was quickly able to narrow the results down to the previously identified
base64 strings. This was not all relevant strings but was a solid starting point.

23/52

Locating base64 strings using Ghidra
I double clicked on one of the larger strings, taking me to it's reference within the file.

From here I could hit CTRL+SHIFT+F to find references to this string. Alternatively you could
Right Click -> References -> Show References to Address

Using Ghidra to locate Cross-references from strings
Clicking on the one available reference - reveals an undefined function acting upon the
string.

24/52

Encountering an Undefined Function in Ghidra
By clicking on the first address of the function and hitting F, we can define a function at the
current address.

Defining a Function in Ghidra
After defining a function - the decompiler output now looks much cleaner.

Viewing a new function in Ghidra - an obfuscated string can be seen
From here we can enter the function at FUN_00414550 and investigate.

The function contains a bunch of c++ looking junk which was difficult to analyse - so I
decided to take a slightly different approach.

25/52

Viewing a suspicious function using Ghidra
I checked the number of cross references on the FUN_00414550 function. A high number of
cross references would indicate that the function is responsible for decoding more than just
this encoded string.

If the same function is used for all string related decryption, then perhaps a debugger and a
breakpoint is the better approach.

At minimum - a debugger will at least confirm the theory that this function is related to string
decryption.

String Decryption Via X32dbg

I decided to investigate the string decryption using X32dbg.

To do this - I would need to set a breakpoint on the function that I suspected was responsible
for string decryption.

Attempting to copy-and-paste the address directly from Ghidra will likely result in an error as
the addresses may not align.

Syncing Addresses with Ghidra and X32dbg

26/52

To Sync the Addresses between Ghidra and X32dbg. We need to find the base of our current
file. This can be found in the memory map and in this case is 003e0000. Although it may be
different for you.

How to identify a base address in a debugger (x32dbg)
From here we can select the memory map within Ghidra.

How to use Ghidra to Sync a Memory Address
Then select the Home button

Using Ghidra to Sync memory address with x32dbg
and set the base address according to what was obtained with x32dbg.

27/52

Using Ghidra to sync a memory address with x32dbg
From here, the address of the suspected-string-decryption function will be updated
accordingly and be in-sync with x32dbg.

String Decryption Function in Ghidra with Updated Memory Address
The new function address is 003f4550 . This value can be used to create a breakpoint inside
of x32dbg.

Updated Memory Address in Ghidra

28/52

Command for

creating a breakpoint on a known suspicious function
The breakpoint is then hit with an argument of j hl#A

Beginning of a suspicious function in x32dbg
Allowing the malware to Execute Until Return will retrieve the result of the function. In this
case it was a large hex string that was pretty uninteresting.

End of a suspicious function - viewing the returned value - possible decoded string
However, Clicking F9 or Continue will cause the Decryption code to be hit again.

Sadly, this again revealed some largely uninteresting strings

29/52

I eventually realised that this function was not used to decode the final strings. But was
rather to obtain copies of the same base64 obfuscated strings that were previously found.

At this point I experimented with the Suspicious imports, but could not reliably trace them
back to a function that would obtain the decrypted c2's .

However - I did get lucky and was able to locate an interesting function towards the main
malware function of the code.

This function was located at 003d29b0.

Locating Main

I was able to locate main by browsing to the EntryPoint.

30/52

Attempting to locate the main function in Ghidra - Starting from Entry Point

Attempting to locate the main function using Ghidra

31/52

Successfully finding the main function within Ghidra

Identifying a possible string decryption function in Ghidra
When this function is executed - a base64 encoded value is passed as an argument.

32/52

Base64 Function Arguments viewed in a debugger.
Executing until the end of the function - A value is obtained which the malware used to
create a folder in the users temp directory.

Obtaining a decoded value using x32dbg
The next call to this function - took a base64 encoded argument and returned a file name
that the malware was copied into.

A second encoded value in eax- viewed in x32dbg

33/52

A decoded filename - located using return addresses in x32dbg
At a location of 003e9870 - was a function responsible for checking the location of the current
running file.

If the location did not match C:\\users\\
<user>\\appdata\\local\\temp\\595f021478\\oneetx.exe - then the malware would
terminate.

Here we can see the return value from the function.

As well as the outgoing function calls in the Ghidra Function Tree.

34/52

Viewing the Function Tree Using Ghidra
After the directory check is performed - the malware enters FUN_003e7b70 attempts to
creates a mutex with a value of 006700e5a2ab05704bbb0c589b88924d

35/52

36/52

By breaking on CreateMutexA - The value of 006700e5a2ab05704bbb0c589b88924d can be seen
as an argument.

If the mutex creation returned a value of 0xb7 (Already Exists) - then the malware would
terminate itself.

Bypassing Anti-Something Checks

These two checks on the file path and Mutex can function as pseudo anti-debug checks. In
order to continue analysis, they needed to either be patched or bypassed.

In order to bypass the file path check - I allowed the malware to execute inside the analysis
VM and copy itself to the correct folder. I then opened the new file inside the debugger.

Alternatively - You could have patched or nop'd the function. but I found that just moving it to
the expected folder worked fine.

37/52

Once the new file was loaded - I updated the base address in Ghidra to match the new
address in x32dbg.

Once I updated the base address - I set a breakpoint on CreateMutexA and the suspected
decryption function FUN_XXXX29b0

Once I hit the breakpoint on CreateMutexA - I stepped out of the function using Execute
Until Return and then Step Over twice.

This allowed me to see the return value of b7 from the GetLastError function. When I
allowed the malware to continue to run - it quickly terminated itself without hitting the
decryption breakpoint.

To fix this - I used Edit to patch the return value to be B6 instead.

38/52

Patching a return value using X32dbg
Upon running the malware - The decryption function was hit again.

Following the return of the decryption function using Exeute Until Return revealed a pretty
boring \\ character.

But allowing it to hit a few more times - it eventually returned a value of Startup which was
pretty interesting.

Hitting again revealed a registry path of

SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\User Shell Folders

Eventually some more interesting values were returned. Including a partial command likely
used to create persistence.

39/52

As well as some possible signs of enumeration

Eventually - The names of some security products was also observed. Likely the malware
was scanning for the presence of these tools.

C2 Information

Allowing the decryption function to continue to execute and hit our breakpoint. We can
eventually observe C2 information.

Automating the Decryption - Kinda

40/52

Eventually the constant breakpoint + execute until return combination got tiring. So I decided
to try and automate it using a Conditional Breakpoint and Log.

To do this - I allowed the malware to execute until the end of a decryption function.

And then created a Conditional Breakpoint that would log any string contained at eax, then
continue execution.

Settiing a Conditional Breakpoint (and logging a value) using X32dbg
Allowing the malware to continue to execute. I could observe the decoded values printed to
the log menu of x32dbg.

41/52

Successfully using conditional breakpoints to decode a malware sample.
This revealed some c2 information - referencing an IP with 1/87 detections as of 2023/04/10

The full list of decoded strings can be found here.

42/52

&"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\User Shell Folders"
&"SYSTEM\\CurrentControlSet\\Control\\ComputerName\\ComputerName"
&"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion"
&"abcdefghijklmnopqrstuvwxyz0123456789-_"
&"/Create /SC MINUTE /MO 1 /TN "
&"/plays/chapter/index.php"
&"GetNativeSystemInfo"
&"cred.dll|clip.dll|"
"77[.]91[.]124[.]207"
"Panda Security"
"AVAST Software"
"Kaspersky Lab"
"ProgramData\\"
"ComputerName"
"CurrentBuild"
"kernel32.dll"
"Bitdefender"
"Doctor Web"
"https://"
"Plugins/"
"SCHTASKS"
"http://"
" /TR \""
"Startup"
"Comodo"
"Sophos"
"Norton"
"Avira"
"\" /F"
L"\\¬="
"POST"
"&vs="
"3.70"
"&sd="
"&os="
"&bi="
"&ar="
"&pc="
"&un="
"&dm="
"&av="
"&lv="
"&og="
"ESET"
"dll"
"<c>"
"id="
"AVG"
???

Bonus: Utilising Decrypted Strings To Identify the Malware Family

43/52

This section was not in the original blog, but was later added when I was informed by
another researcher that the malware might not be Redline.

I then revisited my analysis and determined that the sample was Amadey Bot.

I was able to determine this mostly by researching (googling) the decrypted strings.

I thought it would be useful for others to see what this process looked like :)

Decrypted strings are not just useful for C2 information. They are equally as useful for
identifying the malware that you are analyzing.

Unless you are analyzing the latest and greatest APT malware, your sample has likely been
analyzed and publically documented before. You'd be surprised how much you can
determine using Google and the "intext" operator. (Essentially it forces all search results to
contain your query string, significantly reducing unrelated content)

From decrypted strings, try to pick something specific.

For example, the following decrypted string &"cred.dll|clip.dll|" can be used to craft a
Google query of intext:clip.dll intext:cred.dll malware.

This returns 7 results that reference a combination of Redline Stealer and Amadey Bot.

The first link contains IOC's from an Amadey Bot sample, which align closely with the sample
analysed in this blog.

https://www.googleguide.com/advanced_operators_reference.html?ref=embee-research.ghost.io

44/52

In the second link - An additional Amadey sample is analysed with the exact same filename
as this one. Albeit with a different C2 server.

At this point - I would have moderate confidence that the sample is Amadey Bot.

For additional confirmation, I would typically google this family and see if any TTP's are the
same or at least similar.

I googled Amadey Bot Analysis and discovered this blog from AhnLab.com.

https://asec.ahnlab.com/en/36634/?ref=embee-research.ghost.io

45/52

The Ahnsec blog details an extremely similar installation path and strings.

The Ahnsec Blog also references a list of AV products that are enumerated by Amadey Bot.

https://asec.ahnlab.com/en/36634/?ref=embee-research.ghost.io

46/52

Coincidentally, almost all of those strings were contained in our sample

47/52

The Ahnsec blog also references specific parameters that are sent in POST requests made
by Amadey Bot.

https://asec.ahnlab.com/en/36634/?ref=embee-research.ghost.io

48/52

Coincidentally, almost all of those same fields (first column) are referenced in our decrypted
strings.

Since POST request parameters are pretty specific - Was confident my sample was actually
Amadey bot.

49/52

At this point, I also reviewed a second blog from Blackberry. Which confirmed much of the
same analysis as AhnSec.

At this point, I was comfortable re-classifying the malware as Amadey bot.

(I also learned not to blindly follow tags from Malware Reps)

Conclusion and Recommendations

At this point I'm going to conclude the analysis as we have successfully located the C2
information and identified the malware family. In a real life situation, this analysis could serve
multiple purposes.

Decrypted strings can be googled to aid in malware identification.
Decrypted strings contain commands and process names that can be used for
process-based hunting
Decrypted Strings contain URL structure which can used to hunt or develop detection
rules for proxy logs.
Decrypted Strings contain an IP that could be used to identify infected machines.
Decrypted Strings can be used to enhance a Ghidra or IDA database - enhancing the
decompiler output and leading to better RE analysis.

https://blogs.blackberry.com/en/2020/01/threat-spotlight-amadey-bot?ref=embee-research.ghost.io
https://asec.ahnlab.com/en/36634/?ref=embee-research.ghost.io

50/52

Better automation could be used to make a config extractor - useful for a threat
intel/analysis pipeline. (Replacing x32dbg with Dumpulator would be a great way to do
this)
+ lots of fun :D

Virustotal

At the time of this analysis (2023/04/10) - There is only 1/87 detections for the C2 on
Virustotal

Decoded Strings

A full list of strings obtained using the log function of x32dbg.
 (Noting that these are in order of length and not location of occurrence.)

51/52

&"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\User Shell Folders"
&"SYSTEM\\CurrentControlSet\\Control\\ComputerName\\ComputerName"
&"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion"
&"abcdefghijklmnopqrstuvwxyz0123456789-_"
&"/Create /SC MINUTE /MO 1 /TN "
&"/plays/chapter/index.php"
&"GetNativeSystemInfo"
&"cred.dll|clip.dll|"
"77[.]91[.]124[.]207"
"Panda Security"
"AVAST Software"
"Kaspersky Lab"
"ProgramData\\"
"ComputerName"
"CurrentBuild"
"kernel32.dll"
"Bitdefender"
"Doctor Web"
"https://"
"Plugins/"
"SCHTASKS"
"http://"
" /TR \""
"Startup"
"Comodo"
"Sophos"
"Norton"
"Avira"
"\" /F"
L"\\¬="
"POST"
"&vs="
"3.70"
"&sd="
"&os="
"&bi="
"&ar="
"&pc="
"&un="
"&dm="
"&av="
"&lv="
"&og="
"ESET"
"dll"
"<c>"
"id="
"AVG"
???

Useful Links

52/52

AhnSec Labs - Blog on Amadey Stealer
Blackberry Blog - Amadey Bot Analysis
Mandiant - Repo for Flare VM Install
X32dbg Documentation - Conditional Breakpoints in X32dbg

https://asec.ahnlab.com/en/36634/?ref=embee-research.ghost.io
https://blogs.blackberry.com/en/2020/01/threat-spotlight-amadey-bot?ref=embee-research.ghost.io
https://github.com/mandiant/flare-vm?ref=embee-research.ghost.io
https://help.x64dbg.com/en/latest/introduction/ConditionalBreakpoint.html?ref=embee-research.ghost.io

