Automating Qakbot decode at scale

Solution docs.velociraptor.app/blog/2023/2023-04-05-qakbot/

This is a technical post covering practical methodology to extract configuration data from recent Qakbot samples. In this blog, I will provide

Matt Green - @mgreen27 2023-04-05

some background on Qakbot, then walk through decode themes in an easy to visualize manner. I will then share a Velociraptor artifact to detect and automate the decode process at scale.

Qakbot or QBot, is a modular malware first observed in 2007 that has been historically known as a banking Trojan. Qbot is used to steal credentials, financial, or other endpoint data, and in recent years, regularly a loader for other malware leading to hands on keyboard ransomware.

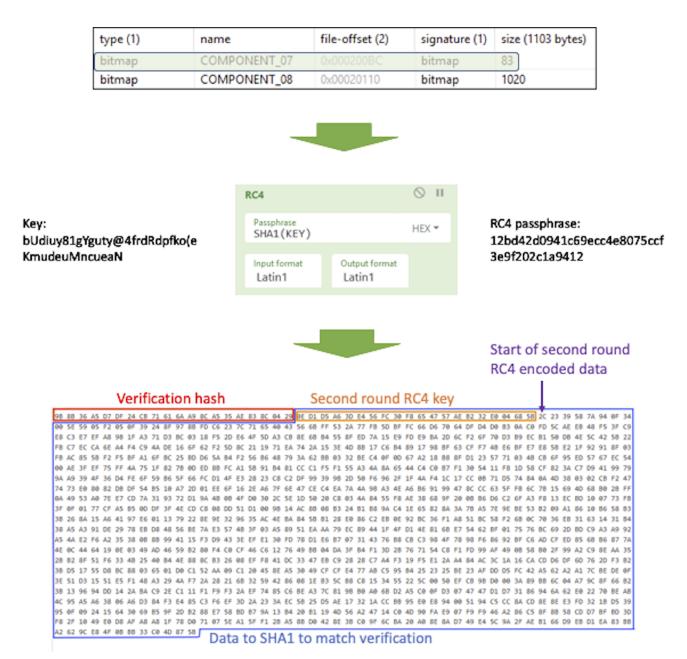
Typical delivery includes malicious emails as a zipped attachment, LNK, Javascript, Documents, or an embedded executable. The example shown in this post was delivered by an email with an attached pdf file:

An example Qakbot infection chain

Qakbot has some notable defense evasion capabilities including:

- 1. Checking for Windows Defender sandbox and terminating on discovery.
- 2. Checking for the presence of running anti-virus or analysis tools, then modifying its later stage behavior for evasion.
- 3. Dynamic corruption of payload on startup and rewrite on system shutdown.

Due to the commodity nature of delivery, capabilities and end game, it is worth extracting configuration from observed samples to scope impact from a given campaign. Hunting enterprise wide and finding a previously missed machine or discovering an ineffective control can be the difference in preventing a domain wide ransomware event, or a similar really bad day.


Configuration

Qakbot has an RC4 encoded configuration, located inside two resources of the unpacked payload binary. The decryption process has not changed significantly in recent times, but for some minor key changes. It uses a SHA1 of a hard coded key that can typically be extracted as an encoded string in the .data section of the payload binary. This key often remains static across campaigns, which can speed up analysis with the maintainance of a recent key list.

Current samples undergo two rounds of RC4 decryption with validation built in. The validation bytes dropped from the data for the second round.

After the first round:

- The first 20 bytes in hex is for validation and is compared with the SHA1 of the remaining decoded data
- Bytes [20:40] is the key used for the second round of decoding
- The Data to decode is byte [40:] onwards
- The same validation process occurs for the second round decoded data
 - Verification = data[:20]
 - DecodedData = data[20:]

First round of Qakbot decode and verification

Campaign information is located inside the smaller resource where, after this decoding and verification process, data is clear text.

10=BB16

Decoded campaign information

The larger resource stores Command and Control configuration. This is typically stored in netaddress format with varying separators. A common technique for finding the correct method is searching for common ports and separator patterns in the decoded data.

01 bb 443 next previous all match case regexp by word					
Replace	replace all IP Port Seperator				
	bb 01 01 48 50 07 06 c3 53 01 01 52 7f cc 52 08 ae 01 01 31 af 48 38 01 bb 01 01 c9 f4 6c b7 03 e3 01 01 7a b8 8f 52 01 bb 00 bb 00 01 4a 3a 47 ed 01 bb 00 01 2f 15 33 8a 03 e3 01 01 4d 56 62 ec 01 bb 01 01 47 1f 65 b7 01 bb 01 01 88 e8 b8 86 03 e3 00				
01 56 e1 d6 8a 08	ae 01 01 5f f2 65 fb 03 e3 00 01 6d 0b af 2a 08 ae 01 01 5a 4e 8a d9 08 ae 01 01 b8 b0 23 df 08 ae 01 01 23 8f 61 91 03 e3 0				
	bb 01 01 72 4f b4 0e 03 e3 01 01 56 96 2f db 01 bb 00 01 b7 57 a3 a5 01 bb 01 01 32 44 ba c3 01 bb 01 01 be 4b 5f a4 08 ae 00 bb 01 01 43 0a af 2f 08 ae 01 01 47 d4 93 e0 08 ae 00 01 58 7e 5e 04 c3 50 01 01 67 8c ae 13 08 ae 00 01 67 e7 d8 ee 01 bb 03				
	e3 00 01 b4 97 6c 0e <mark>01 bb</mark> 01 01 50 2f 39 83 08 ae 00 01 c6 02 33 f2 03 e1 01 01 32 44 cc 47 03 e3 01 01 cd a4 e3 de 01 bb 0 bb 01 01 4d 7c 06 95 01 bb 01 01 31 f5 52 b2 08 ae 01 01 2e 0a c6 6b 01 bb 00 01 4c 50 b4 9a 03 e3 01 01 0c ac ad 52 7d 65 03				
01 44 96 12 a1 01	bb 01 01 44 ad aa 6e 20 fb 00 01 18 09 dc a7 01 bb 01 01 0c ac ad 52 08 27 01 01 32 44 cc 47 03 e1 01 06 b92 0c 1a 08 ac 0				
	ae 01 01 1b 00 30 e9 01 bb 01 01 45 85 a2 23 01 bb 01 01 3b 1c 54 41 01 bb 01 01 4c aa fc 99 03 e3 01 01 59 20 9f c0 03 e3 03 e3 01 01 49 4e d7 68 01 bb 01 01 b5 a4 d9 d3 01 bb 01 01 5c 61 cb 33 08 ae 00 01 74 4a a4 1a 01 bb 00 01 67 8d 32 66 03 e3 03				
	ae 01 01 74 48 fa 12 <mark>01 bb</mark> 01 01 7d 63 45 b2 <mark>01 bb</mark> 01 01 ca 8e 62 3e <mark>01 bb</mark> 01 01 43 3d 47 c9 <mark>01 bb</mark> 01 01 67 7b df a8 <mark>01 bb</mark> 00 ae 00 01 50 00 4a a5 01 bb 01 01 56 63 36 27 08 ae 00 01 d5 43 ff 39 08 ae 01 01 bb 08 e cf 3f 01 bb 01 01 32 43 11 5c 01 bb 00				
01 d9 a5 01 35 08	ae 01 01 46 40 4d 73 01 bb 01 01 02 32 2f 4a 01 bb 01 01 42 bf 45 12 03 e3 01 01 4b 8f ec 95 01 bb 01 01 c5 5c 88 7a 01 bb 0:				
	e3 01 01 32 44 cc 47 01 bb 01 01 0c ac ad 52 03 e3 01 01 46 4d 74 e9 01 bb 01 01 a2 f8 0e 6b 01 bb 01 01 4b 62 9a 13 01 bb 03 e3 01 01 b8 44 74 92 ef 12 01 01 29 63 32 4c 01 bb 00 01 b8 44 74 92 0d 3d 01 01 48 cb d8 62 08 ae 01 01 67 fc 07 e7 01 bb 03				
	51 01 01 46 a0 50 d2 01 bb 01 01 0c ac ad 52 01 d1 01 0c ac ad 52 00 15 01 01 2f 22 1e 85 01 bb 01 01 ca bb e8 a1 03 e3 0 bb 01 01 7c 7a 38 90 01 bb 01 01 4b 8d e3 a9 01 bb 01 01 67 90 c9 35 08 1e 01 01 ac f8 2a 7a 01 bb 01 01 0c ac ad 52 03 de 0				
01 18 ef 45 f4 01	bb 01 01 ad 12 7e 03 01 bb 01 01 49 a5 77 14 01 bb 01 01 0c ac ad 52 03 e3 01 01 5a 68 16 1c 08 ae 01 01 0e c0 f1 4c 03 e3 00				
01 4a 21 c4 72 01 01 68 23 18 9a 01	bb 01 01 4a 5d 94 61 03 e3 01 01 56 ca 30 8e 08 ae 01 01 ae 68 b8 95 01 bb 01 01 0c ac ad 52 00 14 01 01 6d 97 90 25 01 bb 00 bb 01 01 72 8f b0 ea 01 bb 01 01 54 23 1a 0e 03 e3 01 01 2d 32 e9 d6 01 bb 01 01 40 ed b9 3c 01 bb 01 01 49 a1 b0 da 01 bb 03				

Easy to spot C2 patterns: port 443

Encoded strings

Qakbot stores blobs of xor encoded strings inside the .data section of its payload binary. The current methodology is to extract blobs of key and data from the referenced key offset which similarly is reused across samples.

Current samples start at offset 0x50, with an xor key, followed by a separator of 0x0000 before encoded data. In recent samples I have observed more than one string blob and these have occurred in the same format after the separator.

0.55	~ ~	~ 1	~ ~	~ ~	~ •	~ -	~ ~	~ ~	~ ~	~ ~	~ 7	~ ~	~~	~ ~	~ ~	~ -	
Offset(h)	00	01	02	03	04	05	06	07	08	09	UA	0B	00	OD	0E	0F.	Decoded text
00000000	04	04	00	00	09	00	00	00	05	00	00	00	FF	FF	FF	FF	ÿÿÿÿ
00000010	06	00	00	00	FF	FF	FF	FF	07	00	00	00	FF	FF	FF	FF	····ÿÿÿÿ····ÿÿÿÿ
00000020	9F	45	19	00	99	45	19	00	76	98	00	00	00	00	00	00	ŸE™Ev~
00000030	DF	B0	08	99	00	00	00	00	00	00	00	00	00	00	00	00	β°.™
00000040	01	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000050	CD	BC	EC	F3	C1	83	F4	4D	C2	46	4C	ЗF	9D	F9	74	F5	Í4ìóÁfôMÂFL?.ùtõ
Start offset	CD	C4	94	20	AF			41			69	₫ 9	D6	2C	14	53	ÍÄ″ [—] .ØA@áiÙÖ , .S
00000070	09	A 8	B1	5B	CF	X	OF	K k	ey	1 1	1F	5A	44	52	FB	03	."±[Ïc0&.ZDRû.
0800000	06	5A	3F	62	5F	43	25	D5	50		31	54	C7	54	1A	F3	.Z?b_C%ÕPelTÇT.ó
00000090	34	4B	6B	8D	C2	32	06	DE	11	63	5F	58	C3	9D	A1	16	4Kk.Â2.Þ.c_XÃ.;.
0A000000	F9	BA	Α4	40	9B	9C	F8	E8	B 3	42	45	BE	14	06	20	25	ù°¤@>œøè³BE¾ %
00000B0	C2	AF	43	FF	C0	8F	F7	EC	58	33	CE	7D	6F	FC	50	DO	CÿÀ.÷ìX3Î}oüPĐ
00000000	C2	33	D1	FA	C0	8E	C4	37	A 8	28	5E	Al	09	EA	18	1C	Â3ÑúÀŽÄ7¨(^;.ê
Separator	00	00	00	00	00	00	00	00	A3	DЭ	98	80	B5	E2	80	6D	£Ù″€µâ€m
000000E0	EF	28	2D	50	9D	BA	1B	98	BD	AB	FA	45	C1	7C	87	71	ï(-P.°.″¾«úEÁ ‡q
000000F0	77	El	0A	B4	B2	02	71	2B	6C				EF	10	55	7F	wá.´゚.q+l^ž8ï.U.
00000100	90	65	70	37	E	10	od	ed	st	rin	gs	: 1	67	43	00	A6	.ep74=•fh.`RgC.¦
00000110	70	39	13	70	E2	27	ЗA	CE	14	17	37	Dl	E0	17	75	82	p9.pâ':Î7Ñà.u,
00000120	4D	ЗF	03	63	E3	BB	81	32	DC	C9	F8	62	9B	F2	9D	9C	M?.cã≫.2ÜÉøb>ò.œ
00000130	93	31	2D	DF	66	63	20	46	F8	F3	13	8D	AF	E8	85	8D	"1-Bfc Føó., è
00000140	35	77	AF	09	0E	FC	03	95	8E	75	8E	AE	85	DD	90	68	5wü.•ŽuŽ⊗…Ý.h
		-					45				6 P	1.0		-	~ 4		
00000690	DA	CE	7F	79	2B	61	4B	7D	Fl	96	9E	10	3E	ED	04	BA	ÚÎ.y+aK}ñ-ž.>í.°
000006A0	9F	70	25	11	A9	87	90	C2	2B	08	5B	1A	67	2F	FE	00	Ÿp%.©‡.Â+.[.g/þ.
000006B0	E3	25	7B	9F	33		FE	33	33		_	81	27	39	_	B0	ã%{Ÿ3öþ33)'9'°
000006C0	1B	2D	4F	BF		100					Igs		69	83		46	O¿<-Sý.+Ï»ifNF
000006D0	1E	D7	DD	52	E6	1B	DB	71		21		DB		A9			.×ÝRæ.ÛqÃ!áÛj©¶f
000006E0	32		60			F5										00	
000006F0	08	33	FF	44	C8	4C	78	DA	6D	C1	F7	B3	F8	EA		29	.3ÿDÈLxÚmÁ÷³øê.)
00000700	DD	41	D6	CD					9D					AB		4A	ÝAÖÍýa.≪.ÿß§s≪2J
00000710	CE	OF			61				ey		60	89	B2	8E		32	Î.¿∢as` Ó.`‰°Ž%2
00000720	8E	D1			58	B4	Dl	5D	E4	B8	90	02	A6	6C	Fl	E7	ŽÑjÂX´Ñ]ä,¦lñç
00000730	49	F5	F8	C3	18	6D	DC	8B	8C	82	C3	51	5C	ЗA	6D	7A	IõøÃ.mÜ<Œ,ÃQ\:mz
00000740	Εİ			17		77	82		5E							67	áŠþ.©w,°^Y0†¤+Jg
00000750									67								I.å'ÖMÜ5g´``{álw
00000760									_							A1	Hü"rÉzù Ø.Ò'. x;
Separator																B6	₽.";0'∇]
00000780									B2								>¤…Å`‰õaf2¢ã~.d.
00000790									9D								Κ±Ó.ÅW&.{Þÿ%Ù
000007A0																38	
000007B0																E2	^ù÷gÈ.ß,1.Ã.}."â
000007C0	E2	E7	AF	02	28	5B	19	1	82	CF	90	70	C0	19	E7	E9	âç.([,Ï.pÀ.çé
Encoded strip	200	dat	~														-

Encoded strings .data

Next steps are splitting on separators, decode expected blob pairs and drop any non printable. Results are fairly obvious when decoding is successful as Qakbot produces clean strings. I typically have seen two well defined groups with strings aligning to Qakbot capabilities.

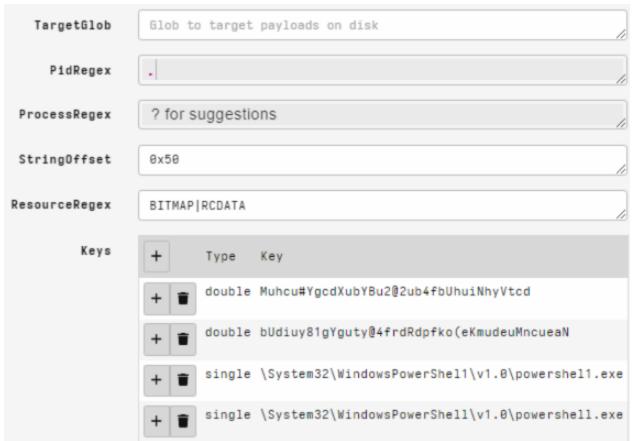
Decoded strings: RC4 key highlighted

Payload

Qakbot samples are typically packed and need execution or manual unpacking to retrieve the payload for analysis. Its very difficult to obtain this payload remotely at scale, in practice the easiest way is to execute the sample in a VM or sandbox that enables extracting the payload with correct PE offsets.

When executing locally Qakbot typically injects its payload into a Windows process, and can be detected with yara targeting the process for an unbacked section with PAGE_EXECUTE_READWRITE protections.

Below is an example of running PE-Sieve / Hollows Hunter tool from Hasherezade. This helpful tool enables detection of several types of process injection, and the dumping of injected sections with appropriately aligned headers. In this case, the injected process is wermgr.exe but it's worth to note, depending on variant and process footprint, your injected process may vary.


C:\Users\REM\Desktop>pe-sieve64.exe /pid 39092 PID: 39092 Output filter: no filter: dump everything (default)	
Dump mode: autodetect (default)	
[*] Using raw process!	
[*] Scanning: C:\Windows\SysWOW64\wermgr.exe	
Scanning workingset: 345 memory regions.	
[*] Workingset scanned in 156 ms	
[+] Report dumped to: process_39092	
[*] Dumped module to: C:\Users\REM\Desktop\\process_39092\a60000.wermgr.ex	
[*] Dumped module to: C:\Users\REM\Desktop\\process_39092\120000.dll as REA	ALIGNED
[+] Dumped modified to: process_39092	
<pre>[+] Report dumped to: process_39092</pre>	
PID: 39092	
P10. 39092	
SUMMARY:	
Total scanned: 57	
Skipped: 0	
-	
Hooked: 1	
Replaced: 0	
Hdrs Modified: 0	
IAT Hooks: 0	
Implanted: 1	
Implanted PE: 1	
Implanted shc: 0	
Unreachable files: 0	
Other: 0	
-	
Total suspicious: 2	

Dumping Qakbot payload using pe-sieve

Doing it at scale

Now I have explained the decode process, time to enable both detection and decode automation in Velociraptor.

I have recently released <u>Windows.Carving.Qakbot</u> which leverages a PE dump capability in Velociraptor 0.6.8 to enable live memory analysis. The goal of the artifact was to automate my decoding workflow for a generic Qakbot parser and save time for a common analysis. I also wanted an easy to update parser to add additional keys or decode nuances when changes are discovered.

Windows.Carving.Qakbot: parameters

This artifact uses Yara to detect an injected Qakbot payload, then attempts to parse the payload configuration and strings. Some of the features in the artifact cover changes observed in the past in the decryption process to allow a simplified extraction workflow:

- Automatic PE extraction and offset alignment for memory detections.
- StringOffset the offset of the string xor key and encoded strings is reused regularly.
- PE resource type: the RC4 encoded configuration is typically inside 2 resources, I've observed BITMAP and RCDATA
- Unescaped key string: this field is typically reused over samples.
- Type of encoding: single or double, double being the more recent.
- Hidden TargetBytes parameter to enable piping payload in for analysis.
- Worker threads: for bulk analysis / research use cases.

cessInfo	DecodedStrings	Campaign	C2				
	- [] -	₹ {					
"ProcessCreateTime" : "2023-03-06T00:00:26.7481723Z	• 0 : [] 1 :	"Timestamp": "2023-02-22T06:21:	▼ [57Z" 0:				
"Pid" : 39092	► [0 - 100]	"Name" : "BB16"	"47.21.51.138:4				
"ProcessName" : <mark>"wermgr.exe</mark> "]*	}	1 :				
"Exe" :	100 : "%u.%u.%u.%u.%u.%u.%04x"		"72.80.7.6:5000				
"C:\Windows\SysWOW64\wermgr.e	e" 101 : "Win32_Product"		2:				
"CommandLine" :	102 : "%SystemRoot%\System32\wermgr.exe"		"82.127.204.82: 2"				
"C:\WINDOWS\SysWOW64\wermgr.e	103: "fmon.exe"		3 :				
"Username" : "DESKTOP-2C3IQHO\	REM" 104 : "LocalLow"		"49.175.72.56:4				
"Offset" : 1179648	105 : "%SystemRoot%\SysWOW64\msra.exe"		4 :				
"PayloadSize" : 143360	106 : "Packages"						
	107 : "WBJ_IGNORE"		95"				
	108 : "%SystemRoot%\SysWOW64\SearchIndexer.	exe"	5:				
	109 : "image/jpeg"		"122.184.143.82				
	110 : "t=%s time=[%02d:%02d-%02d/%02d/	%d]"	6:				
	111 : "ccSvcHst.exe;NortonSecurity.exe;nsWs	-	"102.156.253.86				
	112 : "SpyNetReporting"	65VC.exe	3"				
	113 : "CSFalconService.exe;CSFalconContaine	n ovo"	7:				
	114 : "%SystemRoot%\SysWOW64\grpconv.exe"	r.exe	"74.58.71.237:4				
	115 : "S:(ML;;NW;;;LW)"		8 :				
			"47.21.51.138:9				
	<pre>116 : "%SystemRoot%\explorer.exe" 117 : "Name"</pre>		9:				
			"77.86.98.236:4				
	118 : "Caption,Description,DeviceID,Manufacturer	Name PNPDevic	10: "71.31.101.183:				
	eID, Service, Status"	,	"				
	119 : "APPDATA"		11 :				
	120 : "MsMpEng.exe"		"136.232.184.13				
	121 : "%SystemRoot%\System32\OneDriveSetup.	exe"	95"				
	122 : "urlmon.dll"		12 :				
	123 : "SOFTWARE\Microsoft\Windows\CurrentVe	noion\Dun"	"86.225.214.138 22"				

Windows.Carving.Qakbot: live decode

Research

The Qakbot parser can also be leveraged for research and run bulk analysis. One caveat is the content requires payload files that have been dumped with offsets intact. This typically requires some post collection filtering or PE offset realignment but enables Velociraptor notebook to manipulate post processed data.

Some techniques I have used to bulk collect samples:

- Sandbox with PE dumping features: api based collection
- Virustotal search: crowdsourced_yara_rule:0083a00b09|win_qakbot_auto AND tag:pedll AND NOT tag:corrupt (note: this will collect some broken payloads)

FirstCampaignTime	LastCampaignTime	IP	CampaignNames	Ports	Total
2022-11-28T09:42:44Z	2023-03-23T07:33:58Z	12.172.173.82	• []	• []	482
2022-11-28T09:42:44Z	2023-03-23T07:33:58Z	50.68.204.71	• []	• []	161
2023-02-01T08:41:31Z	2023-02-09T09:10:35Z	24.64.112.40	<pre> [0 : "BB12" 1 : "BB14" 2 : "obama235" 3 : "obama236" 4 : "obama239"]</pre>	•[]	80
2023-01-31T10:31:56Z	2023-03-23T07:33:58Z	202.142.98.62	• []	• []	77
2023-01-31T10:31:56Z	2023-03-09T07:14:51Z	47.21.51.138	• []	<pre>▼ [0 : "443" 1 : "995"</pre>	68
2022-11-28T09:42:44Z	2023-03-23T07:33:58Z	174.104.184.149	▶[]	• []	59
2022-11-28T09:42:44Z	2023-03-23T07:33:58Z	81.229.117.95	▶[]	• []	58
2022-11-28T09:42:44Z	2023-03-23T07:33:58Z	75.143.236.149	▶[]	• []	58
2022-11-28T09:42:44Z	2023-03-23T07:33:58Z	90.104.22.28	• []	• []	55
2022-12-13T07:59:10Z	2023-03-15T14:19:18Z	72.80.7.6	▶[]	• []	55
2022-11-30T07:40:48Z	2023-03-23T07:33:58Z	47.34.30.133	▶[]	• []	54
2022-11-28T09:42:44Z	2023-03-23T07:33:58Z	98.145.23.67	▶[]	• []	54
2022-11-28T09:42:44Z	2023-03-23T07:33:58Z	86.225.214.138	▶[]	• []	53
2022-11-28T09:42:44Z	2023-03-23T07:33:58Z	76.80.180.154	• []	• []	53

Bulk collection: IPs seen across multiple campaign names and ports Some findings from a small data set ~60 samples:

- Named campaigns are typically short and not longer than a few samples over a few days.
- IP addresses are regularly reused and shared across campaigns
- Most prevalent campaigns are **BB** and **obama** prefixed
- Minor campaigns observed: azd, tok and rds with only one or two observed payload samples each.

Strings analysis can also provide insights to sample behavior over time to assist analysis. A great example is the adding to process name list for anti-analysis checks.

EarliestCampaignTime	LatestCampaignTime	String
2022-11-28T09:42:44Z	2023-02- 22T06:21:57Z	frida-winjector-helper-32.exe;frida-winjector-helper- 64.exe;tcpdump.exe;windump.exe;ethereal.exe;wireshark.exe;ettercap.exe;rtsniff.exe;packetcapture.exe;capturenet.ex e;qak_proxy;dumpcap.exe;CFF Explorer.exe;not_rundl132.exe;ProcessHacker.exe;tcpview.exe;filemon.exe;procmon.exe;idaq64.exe;loaddl132.exe;PEToo 1s.exe;ImportREC.exe;LordPE.exe;SysInspector.exe;proc_analyzer.exe;sysAnalyzer.exe;sniff_hit.exe;joeboxcontrol.exe ;joeboxserver.exe;ResourceHacker.exe;x64dbg.exe;Fiddler.exe;sniff_hit.exe;sysAnalyzer.exe
2023-02-27T09:37:23Z	2023-03- 23T07:33:58Z	<pre>frida-winjector-helper-32.exe;frida-winjector-helper- 64.exe;tcpdump.exe;windump.exe;ethereal.exe;wireshark.exe;ettercap.exe;rtsniff.exe;packetcapture.exe;capturenet.ex e;qak_proxy;dumpcap.exe;CFF Explorer.exe;not_rundl132.exe;ProcesHacker.exe;tcpview.exe;filemon.exe;procmon.exe;idaq64.exe;loadd1132.exe;PEToo ls.exe;ImportREC.exe;LordPE.exe;SysInspector.exe;proc_analyzer.exe;sysAnalyzer.exe;sniff_hit.exe;joeboxcontrol.exe ;joeboxserver.exe;ResourceHacker.exe;x64dbg.exe;Fiddler.exe;sniff_hit.exe;sysAnalyzer.exe;BehaviorDumper.exe;proce ssdumperx64.exe;anti-virus.EXE;sysinfoX64.exe;sctoolswrapper.exe;sysinfoX64.exe;FakeExplorer.exe;apimonitor- x86.exe;idaq.exe</pre>

Bulk collection: Strings highlighting anti-analysis check additions over time

Conclusion

During this post I have explained the Qakbot decoding process and introduced an exciting new feature in Velociraptor. PE dumping is a useful capability and enables advanced capability at enterprise scale, not even available in expensive paid tools. For widespread threats like Qakbot, this kind of content can significantly improve response for the blue team, or even provide insights into threats when analyzed in bulk. In the coming months the Velociraptor team will be publishing a series of similar blog posts, offering a sneak peek at some of the types of memory analysis enabled by Velociraptor and incorporated into our training courses.

I also would like to thank some of Rapid7's great analysts - Jakob Denlinger and James Dunne for bouncing some ideas when writing this post.

References