
1/19

Javier Vicente, Brett Stone-Gross, Nikolaos Pantazopoulos

Technical Analysis of Xloader’s Code Obfuscation in Version 4.3
zscaler.com/blogs/security-research/technical-analysis-xloaders-code-obfuscation-version-43

Key Points

Xloader is a popular information stealing malware family that is the successor to Formbook.
In early 2020, Formbook was rebranded as Xloader and the threat actors moved to a malware-as-a-
service (MaaS) business model, renting C2 infrastructure to customers.
Xloader implements different obfuscation methods and several encryption layers to protect critical parts
of code and data from analysis.
The developers behind this malware family continue to update the code with improved obfuscation and
encryption layers with each new version that is released.
In January 2023, Zscaler ThreatLabz identified a new variant of Xloader that identifies itself as version
4.3 with several modifications including additional obfuscation.

Introduction

Xloader is a rebranded version of the Formbook information stealing malware, which has been sold in
criminal forums since 2016. The threat actors behind this malware family have been updating and improving
the code regularly. In early 2020, the malware was rebranded as Xloader. In early 2022, the threat actors
released Xloader version 2.9, which introduced significant improvements to obfuscate the malware code and
data including the list of command-and-control (C2) servers. In October 2022, ThreatLabz identified a new
Xloader version labeled as 3.9. In January 2023, the threat actors released Xloader version 4.3. Across

https://www.zscaler.com/blogs/security-research/technical-analysis-xloaders-code-obfuscation-version-43

2/19

Xloader versions, the group has modified the malware’s obfuscation techniques including adding numerous
layers of encryption with code that recursively decrypts other blocks of code until reaching the core
functionality that decrypts the most sensitive data (also encrypted with multiple layers).

This blog post analyzes the encryption algorithms used by Xloader to decrypt the most critical parts of the
code and the most important parameters of the malware’s configuration. The analysis is performed on the
latest version of Xloader 4.3. ThreatLabz has also created an IDA Python script to decrypt Xloader’s code
and data to facilitate analysis.

Technical Analysis

Basic Algorithms and Structures

Formbook and Xloader have evolved along the years with new layers of obfuscation added in each new
version. However, there is a set of basic algorithms that have been used since the first versions of Formbook.
These algorithms are combined in different ways to decrypt other blocks of code and data. The primary
algorithms that are shared between different versions of Xloader are the following:

Custom RC4: an RC4-based algorithm with two additional layers based on subtraction operations.
Custom buffer decryption algorithm: a custom algorithm used by Xloader, mainly used to decrypt the
first encryption layer of the PUSHEBP data blocks (described in the following sections).
Custom SHA1: a SHA1 hash is calculated and the result is reversed DWORD by DWORD.

There is also a large global data structure that is used to store important information. When Xloader is
executed, this structure is allocated and initialized with information from PUSHEBP data blocks, or from
hardcoded values in the code. This structure contains data and encryption keys that are used by other parts
of the code. Previous blog posts have referred to this structure as the ConfigObj, with fields that are used to
store flags, encryption parameters, pointers, etc. The most important offsets in the ConfigObj structure are
identified in Table 1.

Offset Description Size

0x00 Value 0xffffffff 0x04

0x04 Pointer to a second PE header used for process injection (e.g., explorer.exe) 0x04

0x08 Result of RtlGetProcessHeaps() 0x04

0x48 Branch ID – XLNG (XORed with 0x3c) 0x04

0x90 Pointer to an extended config (located in memory following the ConfigObj structure) 0x04

0x2DC Decrypted content of the PUSHEBP block 2, which is an array of API hashes 0x220

0x510 Array of library and process names hashes 0x254

https://github.com/threatlabz/tools/tree/main/xloader/custom_rc4.py
https://github.com/threatlabz/tools/tree/main/xloader/custom_buffer_decryption_algorithm.py
https://github.com/threatlabz/tools/tree/main/xloader/custom_sha1.py

3/19

Offset Description Size

0x828 Seed of a random number generator (RNG) used by the malware 0x4

0x83C Flag indicating that Xloader has generated the parameters necessary for the
communications with the C2

0x4

0x970 The Xloader version number (XORed with 0x3c) 0x4

0x990 RC4 key used to decrypt other parameters 0x14

0x9A4 RC4 key used to decrypt other parameters (this key is the SHA1 of the decrypted content
of the PUSHEBP block 5)

0x14

0xCE8 RC4 key used to decrypt the C2s list 0x14

Table 1. Important Xloader 4.3 ConfigObj fields.

Encrypted PUSHEBP Data Blocks

Throughout the Xloader code there is a set of encrypted data blocks with the structure shown in Figure 1.

Figure 1. Xloader PUSHEBP encrypted block

This structure is designed to resemble the beginning of a function, but are in fact blocks of encrypted data
such as encryption keys and encrypted strings. These data blocks are decrypted using a custom buffer
decryption algorithm. Table 2 shows the PUSHEBP encrypted blocks that were found in Xloader 4.3.

PUSHEBP Block Number Description Size

PUSHEBP Block 1 Encrypted strings 0xA82

PUSHEBP Block 2 API CRCs 0x222

PUSHEBP Block 3 Encryption key involved in C2 communications 0x15

4/19

PUSHEBP Block Number Description Size

PUSHEBP Block 4 Encryption key used to decrypt other data 0x14

PUSHEBP Block 5 Hardcoded C2 0x78

PUSHEBP Block 6 API CRCs 0x310

Table 2. PUSHEBP encrypted block contents

Encrypted PUSHEBP Functions

Formbook and Xloader also contain functions that decrypt code. An example function to decrypt code (prior
to Xloader 2.9) is shown in Figure 2.

Figure 2. Encrypted code in earlier versions of Xloader and Formbook

This code starts with the well-known function preamble push ebp / mov ebp, esp, followed by a tag identifying
the encrypted code (0x49909090 in Figure 2), the encrypted code, and an ending tag 0x90909090.

In older versions, the code was decrypted using a custom RC4 algorithm with a key stored in the ConfigObj
structure. In Xloader version 2.9, the code retained the custom RC4 algorithm and added a layer of
encryption with a second key built on the stack, as shown in Figure 3.

5/19

Figure 3. Decryptor of the PUSHEBP functions in Xloader version 2.9

In Xloader version 4.3, there are still PUSHEBP encrypted functions. However, the tags identifying the start
and the end of the encrypted code have changed, and now they appear to be random bytes. Figure 4 shows
an example of an encrypted function in Xloader 4.3.

Figure 4. Encrypted PUSHEBP function (Xloader version 4.3)

Figure 5 shows the code that decrypts a PUSHEBP function (e.g., the
function DecryptCriticalCodeType1_Set_909090909090), which accepts two encrypted tags and an ID value.
Inside the decryptor, another 0x14 byte key is constructed dynamically in the sub-
function init_key_encrypted_funcs, XORed with a DWORD (XOR key 1) and XORed again with the ID value
passed as an argument and another hardcoded DWORD (XOR key 2). The resulting 0x14 byte key will be
used to decrypt the encrypted code using Xloader’s custom RC4 algorithm. The same RC4 key is also used
to decrypt the encrypted TAG1 and TAG2, which are passed as arguments to the decryptor to derive the
starting and ending tags that delimit the encrypted PUSHEBP function.

6/19

Figure 5. PUSHEBP function decryption code (Xloader version 4.3)

After the code is decrypted, the delimiter tags are replaced by 90 90 90 90 90 90 (NOP) opcodes. Figure 6
shows an encrypted function before and after being decrypted.

7/19

Figure 6. Example PUSHEBP function decrypted (Xloader version 4.3)

Encrypted NO-PUSHEBP Functions

In Xloader version 4.3, a new type of encrypted function without the push ebp / mov ebp esp preamble has
also been introduced. The limits of the encrypted code are located by searching for two tags that identify the
start and the end of the block. Figure 7 shows the code responsible for determining the limits of a NO-
PUSHEBP encrypted function.

8/19

Figure 7. NO-PUSHEBP decryption code limit identification and layer 1 decryption (Xloader version 4.3)

The custom Xloader RC4 algorithm is again used to decrypt the encrypted code with two layers and two
different keys. The encryption key for the first layer is calculated in another function and stored in the global
structure ConfigObj (the value is the result of Xloader’s custom SHA1 algorithm of the decrypted content of
the PUSHEBP data block number 5). The encryption key for the second layer is built on the fly: an initial key
is built on the stack and XORed with a DWORD (XOR key), producing the final key (Xloader never hardcodes
exact values including for encryption keys and delimiter tags). Figure 8 shows the code involved in the
decryption of the second layer for one of the encrypted NO-PUSHEBP functions.

Figure 8. NO-PUSHEBP layer 2 decryption (Xloader version 4.3)

After the code is decrypted, the tag before the encrypted code is replaced by the opcodes EC 8B 55 (push
ebp / mov ebp esp function preamble). The tag after the encrypted code is replaced by 90 90 90 90 (NOP)
opcodes.

9/19

Encrypted Configuration

The most important parameters of Xloader’s configuration are stored in the PUSHEBP encrypted data blocks
or calculated from hardcoded constants (that are also obfuscated).

Encrypted Strings

The encrypted strings in Xloader are stored in the PUSHEBP data block 1. All the PUSHEBP data blocks
have to be decrypted with the custom buffer decryption algorithm as explained before. Once the block is
decrypted, the result is a sequential list of items that have the following format:

struct encrypted_string {
 BYTE length;
 BYTE content[length];
}

Each string is decrypted with the custom Xloader RC4 algorithm and an encryption key stored at offset 0x990
in the ConfigObj. This RC4 key is generated in the function shown in Figure 9.

Figure 9. Generation of the RC4 key for encrypted strings (Xloader version 4.3)

ThreatLabz has reproduced this algorithm to decrypt the encrypted strings in Xloader 4.3 in Python. The
code is available in our GitHub repository here.

Encrypted C2s

The Xloader configuration contains a C2 that is stored separately from another list of C2 domains. The C2
that is stored separately was thought to be Xloader’s real C2 and the other C2s were used as decoys.
However, in more recent versions of Xloader, real C2s are likely hidden among the list of decoy C2s. In fact,
the author behind Xloader has made significant efforts to protect the list of C2s that were previously thought
to be decoys.

Hardcoded C2

The code shown in Figure 10 is responsible for decrypting the hardcoded Xloader C2.

https://github.com/threatlabz/tools/tree/main/xloader/decrypt_strings.py
https://www.zscaler.com/blogs/security-research/analysis-xloaders-c2-network-encryption
https://research.checkpoint.com/2022/xloader-botnet-find-me-if-you-can/

10/19

Figure 10. Hardcoded C2 decryption (Xloader version 4.3)

The code in Figure 10 combines a set of operations based on Xloader’s various encryption algorithms and
the data stored in the PUSHEBP data blocks to generate the encryption key necessary to decrypt the
hardcoded C2 (which is stored in the PUSHEBP data block 5).

C2 List

As previously mentioned, there is another list of C2s that may contain decoy C2s and real C2s. In Formbook
and in earlier versions of Xloader, these were stored as an encrypted string with no additional layers of
encryption. In Xloader 2.9, the developers introduced an additional custom RC4 layer and Base64 encoding
for the C2 list as shown in Figure 11.

11/19

Figure 11. Additional encryption layer for the C2 list (Xloader version 2.9)

In Figure 11, the function StringsDecryptor2 decrypts the first layer of the encrypted strings. In version 2.9, an
additional Base64 layer is decoded followed by a layer of custom RC4 decryption. In Xloader version 4.3,
they have added an additional encryption layer to this C2 list. Figure 12 shows the code responsible for
decrypting these new layers.

12/19

Figure 12. New encryption layer for Xloader’s C2 list (Xloader version 4.3)

In the new version, the C2 list is first Base64 decoded and a custom RC4 layer is decrypted. A table of 4 byte
keys is built on the stack. Each position of the table corresponds to a C2. Once decrypted, this custom RC4
layer is Base64 encoded again. After the new additional decryption layer is complete, Xloader decrypts the
same layers as version 2.9: decoding the Base64 layer again and decrypting an additional custom RC4 layer
with a key stored in a sub-structure of the ConfigObj. The way that this key (for the last RC4 layer) is
generated has also changed in Xloader 4.3. Figure 13 shows the code generating the RC4 key for the last
encryption layer of the C2 list.

Figure 13. Key generation for the final encryption layer of the C2 list (Xloader version 4.3)

As shown in Figure 13, the key is built on the stack and it is XORed with a value from the ConfigObj that was
initialized previously in a different part of the code. Once this last layer is decrypted, the plaintext C2s are
obtained.

13/19

Branch ID and Version Number

In previous versions, the Xloader branch ID and version number were sent in the registration packet to the
C2. The format of the registration packet (before the last two RC4 layers) was the following:

XLNG Bot ID Version Number Operating System Base64(Username)

XLNG is the tag for the Xloader branch (FBNG was the branch ID for Formbook).

In Xloader version 4.3, the registration packet sent to the C2 includes an additional encryption layer as
shown in Figure 14.

Figure 14. Xloader 4.3 Registration packet with additional PKT2 layer

This new encryption layer is marked with the tag PKT2. Communications are performed in the context
of explorer.exe (previously injected). However, this registration packet is built in the first injected process (a
hollow process) and copied to the context of explorer together with the rest of the injected code. That first
injected process exits after injecting into explorer, so the registration packet under the last encryption layer
marked with the PKT2 tag is no longer in plaintext after the first injected process terminates.

The PKT2 packet is built in one of the NO-PUSHEBP encrypted functions. That function is decrypted and
executed in the context of the first injected process. The code first builds a string with the same format as the
registration packet in previous Xloader versions as shown in Figure 15.

Figure 15. Registration packet with the new PKT2 encryption layer

However, as we can see in Figure 15, Xloader 4.3 introduces a NULL character separating the bot ID and the
malware version number. This added NULL byte is likely a coding error.

Figure 16 shows how the first registration packet is constructed (marked with XLNG tag) and encrypted with
RC4 and encoded with Base64, and then concatenated to the PKT2 tag to generate the final registration
packet.

14/19

Figure 16. Xloader version 4.3 registration packet construction

However, because of the coding error previously mentioned (an extra NULL character after the bot ID) the
final registration data contains just two fields for the XLNG branch and bot ID as shown below:

XLNG Bot ID

The PKT2 tag is then prepended with the RC4 and Base64 encoded data as follows:

PKT2 RC4_BASE64(registration_data)

As a result, the version_number, operating_system and user_name is never sent to the C2. This bug will
likely be fixed in future versions of the malware.

15/19

Figure 16 also shows that the branch ID and version number are no longer hardcoded unlike previous
versions, with the encrypted version number and branch ID decrypted with an XOR key (0x3c).

Tools

Zscaler ThreatLabz has developed an IDA script to decrypt the Xloader’s encrypted code. The code is
available in our GitHub tools repository here.

Conclusion

Since its inception, the Formbook and Xloader malware families has been a prominent threat. The threat
actors behind it continue to update and improve the malware code in an effort to hinder analysis. In the most
recent version, the threat actors increased the level of complexity yet again with additional layers of
encryption for critical parts of the code and important data. However, Zscaler researchers have been able to
unravel these obfuscation layers and analyze the key components of the malware code.

Cloud of Sandbox Detection

Zscaler's multilayered cloud security platform detects Xloader and Formbook indicators at various levels, as
shown below:

Indicators of Compromise

Variant Version SHA256 Botnet

XLoader 4.3 9e1b4f2d408e187ca641c0c16269069d0acabe5ae15514418726fbc720b33731 6qne

https://github.com/threatlabz/tools/tree/main/xloader

16/19

Variant Version SHA256 Botnet

XLoader 4.3 f55ce0741ed4615bae5646c644b3a971323ac344b12693495d5749c688d5d489 6qne

XLoader 4.3 3bd86f3906f59f627bf65664d2bfacf37a29dbaafeae601baf5eeb544396f26c 6qne

XLoader 3.9 8e12b85676aaf45a93c91e2db2065151e19f184907da6d85701ac3b13d0e6052 nvp4

XLoader 3.9 6a726fb5c93adbae0f3061b40b19745587c0114deb86bd72c90acdd69242cbe0 nvp4

Network Indicators

Type Domain

Harcoded C2 domain jourmoe[.]com

C2 list domain 060jinbo[.]com

C2 list domain 10086253[.]vip

C2 list domain 117ygh9x[.]com

C2 list domain 365-8119[.]com

C2 list domain 365heji[.]com

C2 list domain 4tx[.]ru

C2 list domain 667fm[.]com

C2 list domain 991-touring[.]info

C2 list domain abttt[.]win

C2 list domain adacaranya[.]com

C2 list domain allforfun[.]online

C2 list domain allison2patrick[.]online

C2 list domain applicationsdown[.]store

17/19

Type Domain

C2 list domain apsocreto[.]online

C2 list domain avdeeva[.]info

C2 list domain betfury-platform[.]net

C2 list domain bilpoinsaat[.]net

C2 list domain bocc[.]live

C2 list domain bookinbournemouth[.]co[.]uk

C2 list domain botanica-online[.]ru

C2 list domain byfuture[.]biz

C2 list domain canlicerrahi[.]xyz

C2 list domain ceu84g[.]com

C2 list domain chiyiqian[.]net

C2 list domain christmatoy[.]com

C2 list domain cinemamaxz[.]com

C2 list domain coffeelectro[.]online

C2 list domain dedmorozvidos[.]store

C2 list domain difozaa[.]life

C2 list domain dugebitv4[.]xyz

C2 list domain eatgre[.]wiki

C2 list domain expertponto[.]com

C2 list domain farmanow[.]xyz

18/19

Type Domain

C2 list domain flippingfrenzy[.]com

C2 list domain g2fm[.]co[.]uk

C2 list domain ginaandhipa[.]com

C2 list domain graciesvoice[.]info

C2 list domain guzmanmodels[.]com

C2 list domain habka[.]online

C2 list domain hal-skincare[.]com

C2 list domain hiufouwnwk[.]shop

C2 list domain hjiqa[.]com

C2 list domain huifeng-tech[.]com

C2 list domain identowel[.]com

C2 list domain inigrey[.]com

C2 list domain ituyiut[.]wang

C2 list domain jimtrosper[.]com

C2 list domain kajainterior[.]com

C2 list domain loaddown[.]vip

C2 list domain mgconsultantlogistics[.]com

C2 list domain myif471ok9ipidk2kkl[.]xyz

C2 list domain najdlegend1[.]com

C2 list domain nnhuigou[.]com

19/19

Type Domain

C2 list domain ogei[.]app

C2 list domain poweroffer[.]net

C2 list domain realtxt[.]co[.]uk

C2 list domain seeword[.]site

C2 list domain solutionsquik[.]net

C2 list domain themas5erofssuepnse[.]cyou

C2 list domain uevj[.]win

C2 list domain vowlashes[.]co[.]uk

C2 list domain wanknumbers[.]co[.]uk

C2 list domain wsavxrg[.]shop

C2 list domain zzaen[.]com

References

Get the latest Zscaler blog updates in your inbox

By submitting the form, you are agreeing to our privacy policy.

https://www.zscaler.com/privacy/company-privacy-policy

