
1/4

OALABS Research March 30, 2023

3CX Supply Chain Attack
research.openanalysis.net/3cx/northkorea/apt/triage/2023/03/30/3cx-malware.html

Overview

From the Volexity post

CrowdStrike identified signed 3CX installation files as being malicious and reported
that customers were seeing malicious activity emanating from the “3CXDesktopApp”.

https://research.openanalysis.net/3cx/northkorea/apt/triage/2023/03/30/3cx-malware.html#Functionality
https://www.volexity.com/blog/2023/03/30/3cx-supply-chain-compromise-leads-to-iconic-incident/


2/4

3CX is client software for VOIP phones, that was delivered to targets with a backdoor. The
backdoored application was delivered in an MSI 3CXDesktopApp-18.12.416.msi which is
signed by a valid certificate belonging to 3Cx Ltd.

References

Samples

3CXDesktopApp-18.12.416.msi

59e1edf4d82fae4978e97512b0331b7eb21dd4b838b850ba46794d9c7a2c0983
icon15.ico

f47c883f59a4802514c57680de3f41f690871e26f250c6e890651ba71027e4d3

Analysis

Let's take a look at the .msi and see what is in there, we can just use 7zip to unzip it. Inside
the .msi we have a backdoored file ffmpeg.dll

Stage 1 ffmpeg.dll

Artifacts

ffmpeg.dll

7986bbaee8940da11ce089383521ab420c443ab7b15ed42aed91fd31ce833896
d3dcompiler_47.dll

11be1803e2e307b647a8a7e02d128335c448ff741bf06bf52b332e0bbf423b03

Functionality

Uses CreateEventW with the string AVMonitorRefreshEvent like a mutex to ensure it is
only running once
Gets its process path (file location) to locate d3dcompiler_47.dll which it expects to
be in the same directory
Scans d3dcompiler_47.dll for the magic hex bytes 0xFEEDFACE
The magic bytes 0xFEEDFACE occur twice in a row
All the file data following the magic bytes is decrypted with RC4 using the hard coded
key 3jB(2bsG#@c7
Once decrypted the data contains shellcode followed by an embedded PE file (Stage
2) which is loaded into memory and executed

Signed DLL

https://tria.ge/230330-3nzfjshc2s
https://malshare.com/sample.php?action=detail&hash=f47c883f59a4802514c57680de3f41f690871e26f250c6e890651ba71027e4d3
https://malshare.com/sample.php?action=detail&hash=7986bbaee8940da11ce089383521ab420c443ab7b15ed42aed91fd31ce833896
https://malshare.com/sample.php?action=detail&hash=11be1803e2e307b647a8a7e02d128335c448ff741bf06bf52b332e0bbf423b03


3/4

The d3dcompiler_47.dll DLL is signed by Microsoft. The 0xFEEDFACE magic bytes suggest
that the open source tool SigFlip was used to patch the authenticode signed PE file without
breaking the signature.

Stage 2

Artifacts

Shellcode with stage 2 PE attached
b56279136d816a11cf4db9fc1b249da04b3fa3aef4ba709b20cdfbe572394812

Functionality

Creates a file called manifest in the directory from which the process was launched
The manifest file is used to maintain a delay timer value for the malware
The delay is calculated by adding 7 days to a randomly generated value between 0
days and 20 days, 20 hours for a total potential delay of between 7 days, and 20 days
20 hours
When the malware executes this value is read from the manifest file and checked
against the system time, if the time has not expired the malware will simply sleep
The MachineGuid key value is read from the registry key
Software\\Microsoft\\Cryptography then transformed into the following "cookie"
value to be used in future C2 requests

_tutma=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx

A random number generator is used to build a variation of the following URL with an
icon file between icon1.ico and icon16.ico (either I'm not reading the code right or
this is an off-by-one error as the icon files are number 0-15?)

https[:]//raw.githubusercontent[.]com/IconStorages/images/main/icon%d.ico

The icon file is downloaded from GitHub and parsed to extract encoded data that is
appended to the file
The appended data is preceded by a $ which the malware uses as a marker to identify
it
The following is an example of the bas64 encoded data in icon15.ico

`KQAAAGVhV4u+Eo4SGUuZypP8kNOkwQWzha6sxQrtzFo3oPSejc470WC47cKqv12+CshijG0HCfex40WinKat
68EHqq8i6lHiifZpsxN3lxBRabtJ`

The data is then base64 decoded and passed through an unidentified generator used
to create a key for the data
The key is then used to decrypt the remaining data using AES

https://github.com/med0x2e/SigFlip
https://malshare.com/sample.php?action=detail&hash=b56279136d816a11cf4db9fc1b249da04b3fa3aef4ba709b20cdfbe572394812


4/4

Once decrypted the data reveals the stage2 C2 URL
https[:]//pbxsources[.]com/exchange, each icon file contains a different URL
A request is then sent to the C2 using the _tutma cookie described above and stage 3
is downloaded

Stage 3 was not recovered


