
1/7

March 29, 2023

BumbleBee notes 🐝
blog.krakz.fr/articles/bumblebee/

BumbleBee is categorized as a Loader, the malware is used by Initial Access Brokers to
gain access in targeted companies. This article aims to summarizing the different TTPs
observed in campaigns distributing BumbleBee and provides a script to extract its
configuration.

TL;DR BumbleBee #

The loader delivers diverse payloads (e.g: Cobalt Strike, ransomware, etc), the operators of
BumbleBee have been named EXOTIC LILY by the TAG in a report published in March
2022. Google TAG article mentionned BumbleBee Loader (e.g: The user-agent set to bumblebee, hence
dubbed BUMBLEBEE. https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/
Moreover, similarities with other loaders in terms of operation have been noticed notably with
IcedID and Emotet. Code similarty (hook installation) with Trickbot have been observed and
explained in the post The chronicles of Bumblebee: The Hook, the Bee, and the Trickbot
connection. The malware is well documented by now (March 2023) as evidenced by the
number of reports on malpedia.

BumbleBee capabilities #

The malware has a custom unpacking mechanism, it manipulates hooks to setup its
execution chain, the loader uses multiple environment detection techniques because of the
complete integration of the project al-khaser al-khaser is a PoC “malware” application with good
intentions that aims to stress your anti-malware system. It performs a bunch of common malware tricks
with the goal of seeing if you stay under the radar. . It communicates with its command and control
over HTTP. Since August 2022 the malware embeds a list of IP addresses in its
configuration, some of them are legitimate IP addresses, this technique is also used by other
malware such as Emotet and Trickbot.

https://blog.krakz.fr/articles/bumblebee/
https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/
https://elis531989.medium.com/the-chronicles-of-bumblebee-the-hook-the-bee-and-the-trickbot-connection-686379311056
https://malpedia.caad.fkie.fraunhofer.de/details/win.bumblebee
https://github.com/LordNoteworthy/al-khaser

2/7

BumbleBee command and control IP addresses, port and the bot (or botnet) identifier are
stored in the .data section, obfuscated with the RC4 encryption algorithm. A script to extract
and deobfuscate them is provided at the end of this post.

Campaigns file format #

First malspam campaign which delivered BumbleBee contains a web link to a protected ZIP
archive.

1. The archive contains an ISO file;
2. The ISO contains a LNK file and a DLL file;
3. The LNK executes rundll32.exe to invoke the embedded DLL;

Figure 1: BumbleBee infection chain with ISO file

This model of campaign was used for months. During the summer of 2022, actors updated
the disk image format from ISO to VHD. Content of disk image (VHD) changed too, the DLL
is no more stored as a file, but it is embed obfuscated in a PowerShell script. The script is
executed by the LNK with the execution policy set to bypass. The BumbleBee’s DLL is
stored in the PowerShell script in obfuscated strings (e.g:
$elem30=$elem30.$casda.Invoke(0,"H")). After strings replacement, the base64 encoded
variable is decoded, decrompressed (ungzip) and invoked (e.g: scriptPath | iex).

3/7

Figure 2: BumbleBee infection chain with VHD file

NB: File sharing service used to deliver BumbleBee change regulary e.g.: WeTransfer,
Onedrive, Smash, etc. Details of a campaign using onedrive file sharing website are written
in the article: Bumblebee DocuSign Campaign.

Examples IOCs:

ISO: SHA-256:
8695f4936f2942d322e2936106f78144f91602c7acace080e48c97e97b888377
VHD: SHA-256:
e9a1ce3417838013412f81425ef74a37608754586722e00cacb333ba88eb9aa7

Configuration extractor #

As introduced above, the configuration is stored encrypted with the RC4 algorithm. RC4:
Rivest Cipher 4, also known as ARC4: https://en.wikipedia.org/wiki/RC4 The key is in cleartext in the
binary and its length is repeatedly (for BumbleBee case) fixed to 10 characters.

Here is the two functions that implement RC4 algorithm in BumbleBee:

https://0xtoxin-labs.gitbook.io/malware-analysis/malware-analysis/bumblebee-docusign-campaign
https://bazaar.abuse.ch/sample/8695f4936f2942d322e2936106f78144f91602c7acace080e48c97e97b888377/
https://bazaar.abuse.ch/sample/e9a1ce3417838013412f81425ef74a37608754586722e00cacb333ba88eb9aa7
https://en.wikipedia.org/wiki/RC4

4/7

Figure 3: BumbleBee implemenation of PRGA of RC4 algorithm

Figure 4: BumbleBee implementation of KSA of RC4 algorithm

The key is stored at the end of the blob of data containing the encrypted list of IP addresses.
After analysing few samples of BumbleBee, it appears that the blob of data containing the IP
addresses is always 4105 bytes long (plus one null byte) which is a pattern to look for in the
DLL for a C2 extractor.

5/7

Figure 5: Location of the blob and the RC4 key

The script below attempts to loop over data until a blob matches the blob size, then it
extracts the RC4 key (the last 10 bytes of the blob) to finally decrypt the data.

from cryptography.hazmat.primitives.ciphers import Cipher
from cryptography.hazmat.primitives.ciphers.algorithms import ARC4

def decrypt_rc4(key: bytes, ciphertext: bytes) -> bytes:
 """Decrypt RC4 encrypt data, `pip install cryptography`"""

 algorithm = ARC4(key)
 cipher = Cipher(algorithm, mode=None)
 decryptor = cipher.decryptor()
 cleartext = decryptor.update(ciphertext)

 return cleartext

def get_bumblebee_c2(data: bytes) -> bytes:
 """
 Command and Control are stored at the end of the .data section,
 the configuration of the obfuscated C2 and its associated RC4
 are stored in the same blob with a fixed lenght of
 4105 plus one null byte (4106).

!\xac\xd2\xfe=;\x87\x94\xebP\x8e@\x08}\x00/^I\xd4\x86\xaf\xd2\x14-
 \x16\x89A\xa9uT\x00\xbduC\xb7\x9e~\x19\xac\x9f\xb4\x0f\xae>\xcc

\x96S]\xb56\x93C\x9d*p\xed\xc9\x04:Oew\xc3*X`:a\xe0T\x8e\x93>\xf9

\xf8\xe2\x17Q\x15b,8\xa8[\xf5N\x93\xffMM]\x8d\xec\xde\x13\x95z\xc3
 ...
 ...
 ... <redatacted> ...

\xd4\x00\xa1xZ:\x1e\x90\x00X\xea\xca\x0c\'\xee\xffOR5tw\xc0I\x86R"!
 \xf8\xa3\x87\xc8\x16Mo_5\x82_\x81\x9f<RC4 key composed by 10
bytes>
 """

 c2 = b""

 for blob in map(lambda x: x.strip(b"\x00"), data.split(b"\x00" *
4)):
 if len(blob) == 4106:

6/7

 key = blob[-10:]
 ciphertext = blob[:-10]
 c2 = decrypt_rc4(key, ciphertext)
 c2 = c2.replace(b"\x00", b"")
 print(f"BumbleBee Command and Control IoCs: {c2}")

 return c2

if __name__ == "__main__":
 import sys

 with open(sys.argv[1], "rb") as f:
 get_bumblebee_c2(f.read())

7/7

Code Snippet 1: BumbleBee C2 extractor

PS: Tested with the package cryptography with the version: 3.4.8.

Go head and re-use, adapt the script for your needs!

Resources #

