
1/13

March 27, 2023

Rhadamanthys: The “Everything Bagel” Infostealer
research.checkpoint.com/2023/rhadamanthys-the-everything-bagel-infostealer/

Key Takeaways

Rhadamanthys is an advanced infostealer which debuted on the dark web in September of last year to a warm critical reception
by cybercriminals.
A maximalist approach to features: functionality is added for its own sake, never mind the effort required or expected payoff.
Campaigns by default target countries indiscriminately, excluding the commonwealth of independent states. This is typical of this
kind of malware.
Multiple-stage loader/shellcode execution has been researched in prior publications and has made it difficult to reach a proper
interactive disassembly workflow with the actual information-stealing logic.
We provide highlights of the Dark Web ‘buzz’ surrounding this malware.
We share telemetry insights which confirm that by the nature of how the malware is used, large orgs are also being subjected to
incidental drive-by attacks that have a theoretical potential to escalate.
We present a method of forensically resolving API calls of homebrew function tables in “orphaned” memory dumps from
concluded sandbox runs, using the in-memory addresses alone.
We use this method to convert a memory dump of Rhadamanthys information stealing code into a workable interactive
disassembly database with resolved API calls, and showcase the newly available level of analysis by presenting a step-by-step
disassembly breakdown of how the malware compiles its own database of stolen Google Chrome information in order to send
back to the C2 server.

Background

What causes a man to wake up one day and say, “I’m going to build my own malware and go sell it to cybercriminals on the dark
web”? After all, the market is saturated with competitors, and the product is judged on the one sole metric of how many victims it has
successfully parted with their funds and personal data. Statistically, during the past 5 years, someone must have created what would
have been the great malware strain to stun the entire industry, but the first two criminals to actually try out the thing had a weak spam
game, got weak results, and that was that.

All this must have been acutely clear to an individual who on September 24, 2022, under the alias “kingcrete2022”, posted the
following to the appropriate channels:

https://research.checkpoint.com/2023/rhadamanthys-the-everything-bagel-infostealer/

2/13

The author did not rush into this venture. They had already spent half a year lurking in the forum as “kingcrete2022”, and possibly
more than that under other aliases. Builds of the malware would later surface that were already polished enough to see the light of
day, yet had been compiled a full month before the official launch. It would not be surprising if this person had already spent a long
time operating in the cybercrime sphere, even before the debut of the “King Crete” persona – earlier this year Analyst1 published an
astoundingly in-depth report on the LockBit gang, with a repeated emphasis on how the ransomware-sphere was much smaller and
incestuous than people tend to assume; it’s easy to imagine the same incentives at work dictating that one does not go from being a
nobody to publishing an offering like the above after just six months of familiarity with the cybercrime landscape, and that this isn’t the
King’s first rodeo.

Following this announcement, KingCrete aggressively went to work, determined to prove that his was the superior product. Curious
would-be clients who nonchalantly remarked “seems interesting, I will check it out” earned an immediate response and a request to
post a review and follow up with comments. A manic stream of version updates checkered the forum thread for the coming months,
adding a very long litany of features, sub-features and sub-sub-features, and providing support in both English and Russian. One
update reads, “repaired major security vulnerability that the panel session is not affected by password modification”; just “security
vulnerability” alone would have technically sufficed, but it doesn’t project the same ruthless self-criticism and drive for excellence.

As luck would have it, the first few customers had their campaigns go as planned. “I like this stealer, rep++”, said one. “The stealer
rocks, stealer and support is just great”, said the other. Just between these few early adopters, the campaigns they set up racked up
thousands of compromised users, hundreds of thousands of compromised passwords and several hundred compromised
cryptocurrency wallets. Some prospective customers had trouble getting their operation running, and the author made sure not to
leave them behind, posting: “for those who have difficulties in purchasing VPS or servers, we provide turnkey solutions, please contact
us if you need”.

Interested?

Victimology

https://analyst1.com/ransomware-diaries-volume-1/

3/13

In theory, the author of Rhadamanthys isn’t concerned with what you do with the ill-gotten data handed to you by the stealer. Commit
fraud, sell the data, start a civil war, it’s all the same to him. In practice, the main customers for off-the-shelf malware like this are
opportunistic cybercriminals, who aim to infect whomever and whenever (“as long as the target is not located in the commonwealth of
independent states”, per the author, who certainly did not invent that practice). Campaign victims are therefore spread all around the
world, though some spikes are visible where a campaign particularly enjoyed success, and some operators will put their own twist on
where and how they aim the infection (one campaign disseminated samples under the guise of video editing software, such as OBS
studio, pushed to the crowd of unsuspecting streamers via Google ads).

Figure 5 – Two sample campaign heatmaps shared on the forums. The

perpetrator of the second campaign, which netted 600,000+ passwords and 900+ cryptocurrency wallet contents, is the one who wrote
“I like this stealer, rep++”, to which the author responded, “What a great New Year’s gift!”
Common wisdom says people who operate this sort of malware are typically not too concerned with “big game hunting” the way the
big ransomware gangs are. To them it’s a numbers game: rake in many victims and monetize them wholesale. Think of your favorite
hack of the past decade, and chances are at no point it came to light that actually the initial breach was due to a trigger-happy
cybercriminal spamming Emotet maldocs in every direction, who then suddenly realized one of their twenty thousand victims was a
lucrative target. Still, these indiscriminate attacks do end up aimed at major organizations, by sheer statistics; via our telemetry we
were able to confirm an attempted Rhadamanthys infection of a government agency in Canada, as well as an energy company in
India’s infrastructure sector. We like to imagine that even if these attempts had succeeded, they would have led to just two more
people having a bad day and canceling their credit cards, and not the more troubling scenario of a hefty sum exchanging hands
followed by a champagne bottle being opened someplace geopolitically hostile to India; but there is certainly no guarantee of it.

Functionality Overview

In the award-winning film Everything Everywhere All At Once, antagonist Jobu Tupaki delivers the following monologue:

I got bored one day, and I put everything on a bagel. Everything. All my hopes and dreams, my old report cards, every breed of
dog, every last personal ad on craigslist. Sesame Poppy seed. Salt. And it collapsed in on itself. Because, you see, when you
really put everything on a bagel, it becomes this. The truth. [..] Nothing matters. Feels nice, doesn’t it? If nothing matters, then all
the pain and guilt you feel for making nothing of your life, it goes away. Sucked into a bagel.

Having read that, you now understand Rhadamanthys stealer’s design philosophy. The mind-numbing list of features included in the
initial release speaks plenty for itself already, but we would be remiss not to emphasize the inclusion of – for instance – capabilities for
stealing information from KMeleon and Pale Moon web browsers, which each possess a market share imperceptible to the naked

https://twitter.com/1ZRR4H/status/1614728368334716932

4/13

eye; or stealing cryptocurrency from the Firefox Auvitas Wallet browser extension, which, as of the writing of these words, has
exactly one user. Rhadamanthys’ feature list was not hand-picked to maximize return on developer time investment. It resulted from
one simple guiding principle: “Add it in! Add it all in!”.

Figure 6 – It’s too late. You can’t look away from

it now.
Maybe you are here for the actual list of things that King Crete had put on the bagel. In that pathological case, the list follows below,
without bulleted list format so as not to consume too much vertical real estate. Rhadamanthys’ feature list includes stealing the victim’s
system information – Computer name, username, ram capacity, CPU cores, screen
resolution, timezone, geoip, environment, installed software, screenshots, cookies, history, autofill, saved credit
cards, downloads, favorites and extensions; it steals credentials from FTP clients – Cyberduck, FTP
Navigator, FTPRush, FlashFXP, Smartftp, TotalCommander, Winscp, Ws_ftp and Coreftp; and from Mail
clients CheckMail, Clawsmail, GmailNotifierPro, Mailbird, Outlook, PostboxApp, Thebat!, Thunderbird, TrulyMail, eM and Foxmail;
It steals credentials from 2FA applications and password managers RoboForm, RinAuth, Authy and KeePass; VPN services
including AzrieVPN, NordVPN, OpenVPN, PrivateVPN_Global_AB, ProtonVPN and WindscribeVPN; Note-taking applications
including NoteFly, Notezilla, Simple Stick Notes and Windows Sticky notes; Message history from messenger applications
including Psi+, Pidgin, tox, Discord and Telegram; also, it steals victim credentials for Steam, TeamViewer and SecureCRT.

Figure 7 – Exfiltrated Filezilla FTP credentials as they appear on the attacker’s end.
The author put a particular emphasis on features related to stealing cryptocurrency; in one version update, which featured 9 new
features, 4 of these were enhancements to exfiltrating and cracking cryptocurrency wallets. The list of supported wallets in the initial
release is truly unwieldy, and includes Auvitas, BitApp, Crocobit, Exodus, Finnie, GuildWallet, ICONex, Jaxx, Keplr, Liquality,
MTV, Metamask, Mobox, Nifty, Oxygen, Phantom, Rabet, Ronin, Slope, Sollet, Starcoin, Swash, Terra, Station, Tron, XinPay,
Yoroi, ZilPay, Coin98, Armory, AtomicWallet, Atomicdex, Binance, Bisq, BitcoinCore, BitcoinGold, Bytecoin, coinomi,
DashCore, DeFi, Dogecoin, Electron, Electrum, Ethereum, Exodus, Frame, Guarda, Jaxx, LitecoinCore, Monero, MyCrypto,
MyMonero, Safepay, Solar, Tokenpocket, WalletWasabi, Zap, Zcash and Zecwallet. We wouldn’t blame the reader for wondering
how many of these are actually Pokemon that we had covertly added to the list as a practical joke.

All of these stealing actions are performed automatically upon infection. If the attacker decides to get more hands-on with the infected
machine, they can push a new configuration to the “file grabbing” module, which will exfiltrate all files matching a windows search
query; or, for the true power user, push hand-crafted powershell to be executed on the victim machine.

https://addons.mozilla.org/en-US/firefox/addon/auvitas/

5/13

Figure 8 – Exfiltrated environment variables as they

appear on the attacker’s end.

Figure 9 – Files

exfiltrated by the “file grab” module as they appear on the attacker’s end.

Technical Analysis Highlights

Preliminary execution flow

In this detailed and instructive write-up, Eli Salem punches with determination through each of the half-dozen execution stages
(droppers, shellcodes, installers, …) that this malware goes through before it gets to the information-stealing functionality.

When analyzing Rhadamanthys, we have observed differences between the logic of the analyzed sample and the logic detailed in the
above write-up, which testify to the malware’s constant development and flexible build process. Most notable was the behavior of the
NSIS loader DLL, which in the execution flow we analyzed, creates a suspended process
from C:\\Windows\\Microsoft.Net\\Framework\\v4.0.30319\\AppLaunch.exe then replaces the suspended process’ sections one-
by-one with injected malicious code.

As described in the above-mentioned write-up, the injected code then proceeds to load several execution stages in sequence, one of
which attempts many VM evasions taken from the Al-Khaser project and then unhooks functions in ntdll.dll in an attempt to avoid
detection. Finally, it resolves an internally obfuscated C2 address and, from there, downloads the final stage containing the actual
information-stealing functionality.

Analyzing an Orphaned Memory Dump

Analyzing the actual stealing logic is not so straightforward. Without access to a live C2 server, at this point an analyst has two
options. Either they go chasing a brand new execution chain, doing the hard work debugging all the stages and hoping to catch a live
C2 server which won’t filter them out using god knows how many heuristics; or else working with a dump in an unreadable state,

https://elis531989.medium.com/dancing-with-shellcodes-analyzing-rhadamanthys-stealer-3c4986966a88
https://github.com/LordNoteworthy/al-khaser

6/13

obtained from a sandbox run that happened when the C2 was still live. In this particular case the memory dump contains many telling
strings that telegraph what the malware does in broad strokes, but there are many obstacles before proper interactive disassembly
can take place.

The first and most major obstacle is the lack of resolution for API calls. Opening the dump in a disassembler and following the function
calls, one very quickly runs across what must be a homebrew import table of dynamically resolved functions. The dump is an artifact of
a sandbox run that has long since concluded and these addresses seem to be meaningless now. We were able to resolve nearly
every function using a method that will be explained below.

First, we know that these addresses, during the sandbox run, pointed to DLLs that were loaded into memory. Second, we know in
what environment the execution took place: a tria.ge environment with the code name Win10v2004-20220812-en. We upload our own
dummy executable to the sandbox, make sure that we choose the same environment used in the original sandbox run, then look at a
DLL of our choice and recover the DLL version.

https://tria.ge/221227-vprhbsae8t/behavioral2#report
http://tria.ge/

7/13

Unfortunately, even if we do have the DLL version, Microsoft is not so generous with offering historical versions of DLLs for download.
There are various workarounds for this sort of issue (e.g. you might want to consult winbindex). We opted to use an esoteric feature
of tria.ge sandbox: many users had asked for functionality to manually dump files generated during an execution flow. As a
workaround, the sandbox introduced a feature allowing users to dump any file they wish, as long as they open windows File Explorer
and delete the file there manually. Well, if we try deleting kernel32.dll from its residing place in C:\windows\system32 the OS won’t
allow it (and justifiably so), but nothing prevents us from copying the file somewhere else, then deleting the copy. The same DLL
loaded into memory during the original sandbox run is now available from the “downloads” section of the analysis report once the
analysis is terminated.

In this way we download many DLLs that are the “usual suspects” that malware, or any software really, would want to resolve APIs
from – such as advapi32.dll, user32.dll, msvcrt.dll, ws2_32.dll and so on. Now we can open each of these in a disassembler,
which manually loads the file and assigns virtual addresses to each of the DLL functions. Sadly we are far from done because we still
do not know the base address of the DLL when it was loaded originally, or even what particular DLL contains the function that some
memory address refers to.

Not even knowing which is the relevant DLL can be mitigated to some degree by plain observation – for example, in the below image,
the function qword_c5c08 (pointer value 0x7ffbf1bd5f20) is taking a registry key as an argument, and so is highly likely to have come
from advapi32.dll. But this won’t work for every DLL – we won’t always be lucky enough to find a function that the malware feeds
such an incriminating hardcoded string as a parameter. More crucially, even if we somehow knew the correct DLL for every function
address, this still wouldn’t tell us the original address the DLL was loaded at during the original sandbox run, necessary to calculate
the rebase delta between the function addresses that were loaded then into memory (which we are trying to resolve) and the labeled
function addresses in the loaded, annotated DLL that we have open in the disassembler.

Figure 15 – qword_c5c08 is

probably a function that interacts with the Windows registry in some way.
To get past this hurdle we note that the function addresses in the sandbox dump are probably divided into contiguous sequences that
were each imported from the same DLL. This means if we take 10 qword pointers from the table and get lucky enough that they were
all resolved from the same DLL, then in that DLL when loaded into memory, these 10 functions will exist with the
same differences between their addresses. To show the key insight here we will use a toy example: suppose our list of 10 addresses
to resolve begins with some address AX then proceeds with AX+0x300, AX+0x500, AX+0x930, and so on six other addresses;
suppose further that in one of the loaded and annotated DLLs we find that for some address AY it happens
that AY+0x300, AY+0x500, AY+0x930 and so on and so on are all addresses of functions. This is a very lucky coincidence to have
happened on its own, and in all probability, the original address AX in the original sandbox run resolved to the function that is in AY in
our annotated file. It is possible to further sanity-check the match by looking at the 10 function names that match the addresses on the
list and verifying that they seem like a reasonable list to have been required by the software that had been run in the sandbox.

The following IDAPython code, when run in a loaded DLL database, will automate the task of finding matches of function address
sequences:

https://winbindex.m417z.com/
http://tria.ge/
https://hatching.io/blog/dropped-files-ui/#dump-deleted-files

8/13

exports = list(Functions(0x0000000000000000,0xFFFFFFFFFFFFFFFF))

def dll_match(imports):
 result = []
 import_anchor = imports[0]
 for anchor in exports:
 if all([anchor+(_import-import_anchor) in exports for _import in imports]):
 result.append({_import:get_func_name(anchor+(_import-import_anchor)) for _import in imports})
 return result

For example, the address seen in the above image (the one we suspect to have been resolved from advapi32.dll) appears in the
following sequence of 10 addresses:

[0x7ffbf1bd5950, 0x7ffbf1bd5f20, 0x7ffbf1bd6a80, 0x7ffbf1bd5f90, 0x7ffbf1bd6830, 0x7ffbf1bee0c0, 0x7ffbf1bee120,
0x7ffbf1bc42d0, 0x7ffbf1bdb970, 0x7ffbf1bd6780, 0x7ffbf1bd6c50, 0x7ffbf1bd69d0, 0x7ffbf1bd6490, 0x7ffbf1bd5f40,
0x7ffbf1bd7580, 0x7ffbf1bd7530, 0x7ffbf1bd6a20]

We open an annotated idb of the advapi32.dll file we dumped from the sandbox, load the above IDA script and run the
function dll_match with this list of addresses as input. As output we receive the correct resolution for each of these function
addresses.

It turns out that the above-mentioned function that had been loaded to the address 0x7ffbf1bd5f20 during the sandbox run
is RegQueryValueExW. Using this method, it is easy to go “shopping” and try running the same script against various DLLs to see what
matches are obtained, and how feasible they are. While that specific workflow doesn’t scale very well, it’s not too difficult to see how
the process can be streamlined, if need be (for instance, by keeping a precomputed database of function address differences of many
DLL versions, and making all the difference comparisons against it).

Interactive Disassembly of a Sample Functionality: Stealing Chrome Information

Even with the API calls resolved, the database is still very large and spans over 2500 functions. Many of these are library functions
from 3rd party libraries such as sqlite3 and lua_cjson; this introduces a further hassle in that resolving these functions requires us to
compile our own annotated version of these libraries and then perform a bindiff (or somesuch) to label the functions used by
Rhadamanthys. This is an infamously finicky process, and many of the labels are not of very much use before being verified manually.

With all that said, the state of the database is more palatable now and allows us to analyze the execution flow in a way we couldn’t
before. As an example we will focus on the malware’s capability of stealing stored login credentials, cookies and so on from Google
Chrome, which includes three stages:

Searching for the correct directory containing all the data
Reading raw data out of files of interest containing cookies, login data, and so on
Based on whether the data is in JSON or SQL database format, using 3rd-party library logic to parse the data

The malware first performs a recursive search of the victim filesystem for a file named “web data” in order to navigate
to %LOCALAPPDATA%\\Google\\Chrome\\User Data\\default, then traverses the tree to look for other artifacts such as “Cookies” or
“Login Data” and collects each match into a binary bitfield; if this bitfield is sufficiently nonzero, the malware is then satisfied that it has
located the Chrome directory correctly.

https://github.com/mpx/lua-cjson/blob/e8972ac754788d3ef10a57a36016d6c3e85ba20d/lua_cjson.c

9/13

10/13

The malware then accesses files of interest, such as login data. Some of these files are SQL databases, in which case the malware
initializes a SQL database from the file contents in-memory, then obtains the desired data by issuing a SELECT statement. In contrast,
others are in JSON format, and so the malware instead calls a function to parse the JSON and extract the value associated with a
certain key:

11/13

12/13

With the information parsed into plaintext format, it can now be appended to the database of stolen information that is eventually
reported back to the attacker, and the stealing functionality for this specific target (Chrome) is concluded. Most of Rhadamanthys’ code
base is composed of an entirely too large amount of variations on this same idea, each targeting a different piece of data as laid out in
the earlier description of the malware’s feature set.

Conclusion

Rhadamanthys represents a step in the emerging tradition of malware that tries to do as much as possible, and also a demonstration
that in the malware business, having a strong brand is everything. Some readers may recall the odd tale of Godzilla loader, which tried
to undercut Emotet by retailing for a quarter of the price and boasted a set of features so different from its competitor that a proper
comparison between the two was impossible. This was a stark demonstration that cybercriminals don’t make explicit calculations of
which feature-sets will net them a higher amount of victims – they rely on a fuzzy feeling of how well they trust the developer, the
brand and the sound of the feature list; and, failing that, on trial and error. Any developer can write a piece of malware, and some
developers can even write a decent piece of malware with useful features, but it takes a cunning mind in tune with the market to come
out swinging like the author of this malware did, shouting “I have all the features, I have the best features” and fostering a successful
relationship with a base of early adopters.

Should we be worried? It is tempting to quietly classify malware like Rhadamanthys in the “nuisance” drawer. An uninvited credit card
charge of $2,000 doesn’t seem like much compared to ransomware and the existential threat it poses to entire organizations. It’s easy
to forget the process by which the $2,000 charge happens – the malware doesn’t just steal your credit card details, it steals everything.
It is a relief that employees in government agencies and energy companies who get hit with this kind of malware are typically treated
the same by attackers as any other victim, but we would do well to remember that this is not a law of nature.

https://research.checkpoint.com/2018/godzilla-loader-and-the-long-tail-of-malware/

13/13

We would also do well to dwell on the technical demands such malware poses to us on the defensive side. It used to be a quaint sport
to sidestep sandboxes and frustrate analysts who are trying to properly disassemble, debug, analyze the API call log of some
malware. For how long can the analysis be delayed? An hour? A day? God forbid, a week? But nowadays, there seems to be a
sinister shift where malware authors have gotten more ambitious and are saying, let’s see how close I can get to the whole analysis
just not happening. While we are still quite far off from that scary scenario, malicious instruments that inch us closer there are being
thought of all the time, and the unexplored and under-explored space of such instruments is well and truly frightening. As an industry, it
is paramount that we create new tools and protocols to meet these instruments with equal and opposite force when they arrive.

GO UP
BACK TO ALL POSTS

https://research.checkpoint.com/latest-publications/

