
1/12

Using Memory Analysis to Detect EDR-Nullifying Malware
volexity.com/blog/2023/03/07/using-memory-analysis-to-detect-edr-nullifying-malware/

March 7, 2023

by Paul Rascagneres, Volexity Volcano Team

In the ever-changing cybersecurity landscape, threat actors are forced to evolve and
continually modify the tactics, techniques, and procedures (TTPs) they employ to launch and
sustain attacks successfully. They are continually modifying their malware and command-
execution methods to evade detection. The attackers in these cases are attempting to get a
step ahead of security software at the most basic level.

However, some techniques take a different approach, aiming further up the stack and directly
taking on security software. The most brazen methods involve leveraging various tools that
directly terminate or shutdown security software. If successful, this method is effective at
giving an attacker free reign on a system. However, it comes at the potential cost of alerting
users or administrators that the software unexpectedly stopped reporting or was shut off.
What about a technique that potentially flies a bit more under the radar?

In November 2022, Trend Micro published a blog post related a Chinese APT threat actor
they called “Earth Longzhi”, and that Volexity tracks as “SnakeCharmer”. One tool Trend
Micro described, dubbed “AVBurner”, used a technique to patch process-creation callbacks
in kernel memory to nullify security software running on a victim system. The end result: the
security software would appear to be running fine, but in reality, it was neutered and

https://www.volexity.com/blog/2023/03/07/using-memory-analysis-to-detect-edr-nullifying-malware/
https://www.volexity.com/wp-content/uploads/2023/03/Volexity-Memory-Analysis-AVBurner-Header-Graphic.png
https://www.trendmicro.com/en_us/research/22/k/hack-the-real-box-apt41-new-subgroup-earth-longzhi.html


2/12

rendered useless. When successful, this approach allows an attacker to carry on their
operations with little risk of being detected as a result of the security software. While there
are several documented cases of attackers patching these callbacks, this particular
technique leveraged by SnakeCharmer and others lends itself to specific methods of
detection by way of memory analysis.

Volexity conducted research and testing to determine ways this technique of attacking
endpoint detection and response (EDR) and antivirus (AV) software could reliably be
detected through memory analysis. This blog:

Examines the technique used by AVBurner, building upon the Trend Micro blog.
Provides a refresher on the internal mechanism of the Windows callbacks and how
AVBurner disables functionality of security products.
Explains how memory analysis can identify manipulated EDR callbacks, such as those
employed by AVBurner, using either via Volatility 3 or Volexity Volcano.

Kernel Process Callbacks

In order to function, both EDR and AV solutions must effectively monitor process creation.
When a process is created, security products can block it from starting or inject a library into
it to monitor its behavior. To do so, most security products use a driver to register a kernel
callback, most commonly using the PsSetCreateProcessNotifyRoutine() API.

Figure 1 shows the pseudocode of this function.

Figure 1. PsSetCreateProcessNotifyRoutine() pseudocode

As can be seen, this function’s sole purpose is to execute another function,
PspSetCreateProcessNotifyRoutine(). This API is not documented by Microsoft, but it can be
understood by examining its disassembly pseudocode.

https://github.com/volatilityfoundation/volatility3
https://www.volexity.com/products-overview/volcano/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutine


3/12

Figure 2. PspSetCreateProcessNotifyRoutine() pseudocode

Figure 2 shows the pseudocode of this function when the second argument is true (i.e., when
a callback is to be removed).

Lines 19 and 44 of this pseudocode show a loop that increments the v9 variable from
“0” to “0x40”. This variable is an index for the PspCreateProcessNotifyRoutine This
array is used as a first argument to the ExDerefenceCallBackBlock() function and
contains the callbacks. A maximum of “0x40” (64) callbacks can be defined.
Lines 32 and 34 show two interesting variables:
PspCreateProcessNotifyRoutineExCount and PspCreateProcessNotifyRoutineCount. If
a callback is removed, one of these variables is decremented. The sum of these two
variables is the number of defined callbacks.



4/12

The ExCompareExchangeCallBack() API shows a mask (“0xFFFFFFFF`FFFFFFF0”)
must be applied to the address stored in the PspCreateProcessNotifyRoutine

WinDBG can be used to confirm these conclusions. Figure 3 shows the
PspCreateProcessNotifyRoutineExCount and PspCreateProcessNotifyRoutineCount values.

Figure 3. The count of defined callbacks

In this example, there are 13 callbacks defined on this system.

Figure 4 shows the PspCreateProcessNotifyRoutine array (13 callbacks) and the called
functions for the first three callbacks.

Figure 4. 13 defined callbacks and the definition of the first three

In this example, each time a process is created, nt!ViCreateProcessCallback(),
cng!CngCreateProcessNotifyRoutine(), ksecdd!KsecCreateProcessNotifyRoutine(), and the
10 others are called.

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools


5/12

Armed with this knowledge, one can further analyze AVBurner and its approach to tampering
with these callbacks.

 AVBurner Kernel Process Callback Bypass

Name(s) execute.exe

Size 158.0KB (161792 Bytes)

File Type Win64 EXE

MD5 494cc48a9856cf5b46fb13bcd68c256f

SHA1 39727e755b2806fc2ed5204dae4572a14b2d43d1

SHA256 4b1b1a1293ccd2c0fd51075de9376ebb55ab64972da785153fcb0a4eb523a5eb

AVBurner is designed to disable callbacks from the kernel space. A userland application
cannot modify kernel memory, so the malware authors include a vulnerable driver,
RTCore64.sys, to read and write into this protected memory space. This driver has been
previously reported as being used for the same purpose by ransomware groups. The threat
actor in this case is not a ransomware attacker.

This technique of using an older, vulnerable driver to load malicious code was famously used
by Turla for the purposes of loading a malicious rootkit. A public GitHub repository, KDU,
owned by hFiref0x, documents a list of drivers that can be abused for this “Bring Your Own
Vulnerable Driver” (BYOVD) technique.

AVBurner follows the same logic outlined in the Kernel Process Callbacks section to identify
the callback array and disable specific callbacks. Specifically, it has the following workflow:

Check the OS version, as this is required for the next step.
Abuse RTCore64.sys to identify the PspCreateProcessNotifyRoutine array. The
identification of this array is based on a byte pattern, which differs according to the OS
version (hence the requirement for the previous step).
Abuse RTCore64.sys to parse the array in order to get the list of currently defined
callbacks.
For each registered callback address, gets the location of any SYS file in the directory
C:\Windows\ or its subdirectories. If the SYS file is not located in this directory it is
skipped.
Checks the metadata of the SYS file to see if the file matches specific criteria. This is to
identify whether or not the callback must be removed.

https://www.picussecurity.com/resource/blog/blackbyte-ransomware-bypasses-edr-products-via-rtcore64.sys-abuse#:~:text=sys.-,RTCore64.,graphic%20cards%20on%20the%20system.
https://www.virusbulletin.com/virusbulletin/2014/05/anatomy-turla-exploits/
https://github.com/hfiref0x/KDU


6/12

If the callback is identified as one that should be removed, AVBurner abuses
RTCore64.sys to replace the callback address with “0x00000000`00000000” which
effectively disables the callback.

This specific sample of AVBurner targets any drivers with the string “360” in their metadata
description, meaning it was almost certainly configured to prevent security products by Qihoo
360 from functioning correctly. Figure 5 summarizes AVBurner’s workflow.

Figure 5. AVBurner workflow

Since the Qihoo 360 security product cannot be downloaded and installed for free, for the
purposes of demonstration in this report Volexity patched AVBurner to target the free version
of Immunet, which embeds Cisco AMP. Note that the approach employed by AVBurner could
be used to target any security product using the same APIs, and the use of Cisco AMP in
this post is simply for illustrative purposes. Some products may have anti-tampering
mechanisms to prevent or detect this style of attack.

Figure 6 shows the callback array before and after AVBurner execution.

https://www.immunet.com/index
https://www.cisco.com/c/en_uk/products/security/advanced-malware-protection/index.html


7/12

Figure 6. Callback array before AVBurner execution (left) and after (right)

Two callbacks are removed from the list and the address is replaced by
“0x00000000`00000000”. Figure 7 shows the values before the AVBurner execution; as
expected, these callbacks are related to AMP.

Figure 7. Callback before AVBurner execution

This post is limited to process creation monitoring, but AVBurner also supports manipulation
of additional callbacks, such as thread creation and image load callbacks.

Detecting Disappearing Callbacks with Volatility 3

Volatility 3 natively lists the currently registered callbacks with the windows.callbacks
command. Figure 8 shows the command’s output before and after the execution of
AVBurner; as expected, the two Cisco AMP callbacks disappear.



8/12

Figure 8. Volatility 3 windows.callback output

Two approaches can be used to identify the callback anomaly:

Get the count of callbacks (see next section for details on how to do this) and compare
the value with the windows.callbacks output.
Maintain a list of EDR or AV modules that register process creation callbacks, and
check if the driver is loaded but a callback that should be registered is missing.

Volshell: Getting the Count of Callbacks

Volatility 3 provides a shell that supports symbols to query the kernel objects. The following
code shows how to get the values for PspCreateProcessNotifyRoutineExCount and
PspCreateProcessNotifyRoutineCount (Figure 9). Note that color has been added for
emphasis.



9/12

Figure 9. Highlighted example command-line output showing the number of callbacks that
should exist

The offsets of the variables, PspCreateProcessNotifyRoutineExCount and
PspCreateProcessNotifyRoutineCount, (denoted in purple and gold) match what is shown in
Figure 9; the sum is 13. However, there are only 11 defined callbacks shown when listing
them using windows.callbacks (Figure 10).

Figure 10. Highlighted Volatility output showing only 11 callbacks are still defined

Detecting Tampered EDR Callbacks with Volexity Volcano

Although these malicious modifications are possible to detect with Volatility, many analysts
prefer a more robust, out-of-the-box solution, especially in time-sensitive engagements.
Volexity Volcano can help assess if systems are trustworthy, even if AV and EDR products
report being healthy and fully operational. Figure 11 shows a summary of some of the IOCs
that triggered on the AVBurner memory sample. It points out that two kernel modules,
CiscoAMPCEFWDriver.sys and CiscoAMP.sys, are affected by the malware.

Figure 11. Volcano IOC summary includes two Disabled AV/EDR Callbacks



10/12

In addition to the IOC summary, Volcano offers more specific details on the artifacts
themselves (including the full path on disk to the kernel module) and an explanation of
exactly what functionality has been disabled. Color-coded labels and associated notes are
automatically added to the artifacts to bring these alerts to the analyst’s attention.

Figure 12. Zooming in on specific details for CiscoSAM.sys

Another valuable feature of Volcano that defenders can leverage against the previously
described BYOVD technique is listing recently unloaded kernel modules. In most cases,
malware will not need a vulnerable driver in the long term. It will load the driver, use it, then
unload it quickly to avoid further detection. For debugging purposes, Windows stores unload
events in memory, which Volcano can query. Although the vulnerable driver was referred to
by its original name, RTCore64.sys, the malware drops it to disk as a.sys. Figure 13 shows
how Volcano preserves this activity for forensic purposes and provides an unload timestamp
for incorporation into timelines.



11/12

Figure 13. Volcano showing details of unloaded Kernel modules

Conclusion

This blog posts describes how process creation callbacks work on Windows, and how
AVBurner can bypass modern EDR and AV solutions by patching kernel memory. In this
case, the malware was only used to disable monitoring process creation, but the same
approach can be used to disable other callbacks used for events like thread creation and
image loading.

Having detection capabilities related to AVBurner is useful. However, it is even better to have
robust techniques for broadly detecting whether or not security products have been
tampered with in this manner. Callback manipulation can be identified by analyzing the
memory of the system, either through automated detections in Volexity Volcano, or through
use of Volatility 3 and Volshell.

To generically identify BYOVD related attacks, Volexity recommends the following:

Monitor for creation of the file RTCore64.sys and the other vulnerable drivers listed in
the KDU project, as they are commonly used by threat actors.
If possible, consider enforcing the mitigations recommended by Microsoft here.

To detect the specific malware referenced in this blog post, Volexity recommends the
following:

Use the YARA rule available on GitHub to identify instances of AVBurner.

https://github.com/hfiref0x/KDU
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-driver-block-rules
https://github.com/volexity/threat-intel/blob/main/2023/2023-03-07%20AVBurner/yara.yar


12/12

Volexity's Threat Intelligence research, such as the content from this blog, is published to
customers via its Threat Intelligence service and was covered by in MAR-20230112 and
original activity related to this threat actor was discussed in TIB-20211124. 

Volexity's leading memory analysis product, Volexity Volcano, detects the EDR and AV
evasion technique discussed in this post through the “Disabled AV/EDR Callbacks” indicator.

If you are interested in learning more about these products and services, please do not
hesitate to contact us.

https://www.volexity.com/services-overview/threat-intelligence/
https://www.volexity.com/products-overview/volcano/
https://www.volexity.com/company/contact/

