
1/24

Snip3 Crypter Reveals New TTPs Over Time
zscaler.com/blogs/security-research/snip3-crypter-reveals-new-ttps-over-time

Zscaler ThreatLabz researchers observed multiple threat campaigns utilizing the Snip3
crypter, a multi-stage remote access trojan (RAT) loader with new TTPs and available since
2021 as a crypter-as-a-service offering.

The Snip3 Crypter service uses advanced evasion, obfuscation, and reflective code loading
techniques in its multi-stage infection chain, along with new Tactics, Techniques, and
Procedures (TTPs). As a crypter-as-a-service model, even less technically skilled threat
actors can obtain and utilize this service in their attack campaigns against organizations.
Due to the widespread use of the Snip3 Crypter, its developers provide frequent updates to
enhance the crypter with new sophisticated techniques that can evade detection and
effectively deploy the final Remote Access Trojan (RAT) payload on the targeted machines.

ThreatLabz has recently identified use of the crypter with new TTPs deploying RAT families
including DcRAT and QuasarRAT targeting victims across multiple industry verticals such
as healthcare, energy and utilities, and manufacturing via spear phishing emails with
subject lines related to “tax statements” in order to lure victims into execution.

Below are the takeaways from the team’s in-depth analysis of the Snip3 Crypter campaign
and the corresponding infection chain, which showcases the observed changes in the
TTPs.

Key Takeaways

Threat actors utilize spear phishing emails with subjects related to "tax statements"
as a bait to lure the victims into execution of the multi-staged infection chain.

The top 3 targeted industries are:

Healthcare
Energy, oil, and gas
Manufacturing

Snip3 Crypter operates with new TTPs to deliver remote access trojans like DcRAT
and QuasarRAT to targets.

https://www.zscaler.com/blogs/security-research/snip3-crypter-reveals-new-ttps-over-time

2/24

The following are the new techniques used in the Snip3 Crypter Infection chain:
Malicious strings are fetched from database servers via ADODB connections
AMSI bypass is performed by forcing an error
In-memory stages are decrypted using hardcoded keys with custom decryption
routines
The final Snip3 RAT loader is downloaded from the server along with the
corresponding user-agent containing system information
Commands are received from the download server to decide the flow of
execution for delivering the final RAT payload
Infrastructure is shifted periodically to evade malicious domain-based detections
URLs are shortened using TinyURL to download the Stage-2 and Stage-3 PS
script
User-agent changes are used to download the final stage and addition of
version variable ($VER = 'v0.2')in the Stage-3 PS Script

New Threat Campaign Analysis

ThreatLabz has observed multiple Snip3 campaigns in the Zscaler Cloud targeting a variety
of industry verticals. Healthcare emerged as the most targeted sector as shown in the graph
below. Other targeted sectors include energy, manufacturing, materials, finance, retail, and
technology. Organizations across these sectors should remain vigilant and deploy
advanced security measures to protect against Snip3 Crypter and other such threats.

Fig 1. Industry verticals targeted by the latest Snip3 crypter campaign(s)

Here, the initial VBS payloads with the file-name “Releve Fiscal” (tax relief) were
downloaded as an attachment via a phishing email with a subject line related to “tax
statements” across 2022.

3/24

Fig 2. The many observed Snip3 crypter campaigns and their dates

The Infection Chain

Fig 3. The Attack Chain

The ongoing Snip3 campaign constitutes a complex and multifaceted attack, which uses a
series of sophisticated evasion techniques and multiple obfuscated scripts. The latest
version of the Snip3 crypter is utilized to implement new tactics, techniques, and
procedures (TTPs), leading to the successful execution of the final payload and subsequent
system infection.

The attack is initiated through a spear phishing email that has the subject line "Download
your tax statement" or, in French, "Télécharger votre relevé fiscal." The emails are designed
to create a sense of urgency and importance, thereby enticing users to open the attached
files without much consideration. This marks the start of the infection chain.

4/24

Fig.4 Spear phishing email with tax statement bait and corresponding attachments

The screenshot above shows that the email contains several attachments, including a
corrupted PDF file named "Info.pdf" and a corrupted CSV file named "ID102332541.csv."
These decoy files are included alongside the malicious script called "Votre Releve Fiscal-
6.vbs" in order to deceive the user into running it.

Stage-1: VBScript

When the Stage-1 VBScript is executed, it establishes a connection to a database by
creating an ADODB connection and record object. The details of the provider, including the
data source, user ID, and password, are decrypted using an encoding method that utilizes
the Chr and CLng functions, as illustrated in the screenshot below.

5/24

Fig.5 Stage-1 VBScript decoding the provider details using Chr and CLng functions

Decoding routine:

Chr(657040/CLng(“&H13fae”)) -> Chr(657040/81838) -> Character “P”
After decoding the provider details, the script proceeds to establish a connection to the
SQL8001.site4now.net data source using the decoded user ID and password. If the
connection is established successfully, it executes the following two database queries to
retrieve the relevant data from the table:

SELECT ID, NAME, AGE, PHONE From TBL_CUSTOMERS
SELECT * From TBL_PRODUCTS

The results of these queries are then processed using "SqlReader.Fields.Item[index_val]" to
extract the values from each column, and the values are concatenated together as shown in
the screenshot below.

Fig.6 Execution and parsing of database queries

The output from parsing and indexing the queries is saved into two variables named
"CustomerInfo" and "ProductInfo." The variables are populated with the following values
after the execution and query parsing:

CustomerInfo = "Wscript.Shell"
ProductInfo = "Powershell.exe -ExecutionPolicy RemoteSigned -Command"

This technique allows the script to avoid detection from static-string-based signatures for
the specific command lines, as the values are retrieved after execution in memory.

Following this, the script proceeds to decode a Downloader PowerShell script by replacing
the string "12BBf02emp410+]@Mdk!!#1022==" with a null value. The decoded script is then
saved into a variable named "Camtasia," as shown below.

6/24

Fig.7 Decoding Downloader PS script using Replace()

Below is the decoded Downloader PowerShell Script:

Fig.8 Downloader PowerShell script

The decoded PowerShell script is saved in the "Camtasia" variable and executed together
with the parsed database query response from the server. This creates a WScript.shell
object, which then runs the concatenated command "Powershell.exe -ExecutionPolicy
RemoteSigned -Command 'Decoded PowerShell Script'."

Fig.9 Execution of Downloader Powershell script

After executing the decoded downloader PowerShell script, the Stage-2 PowerShell script is
downloaded from https[:]pastetext.net/raw/lcscgt0mss using $Client.DownloadData in
byte format. The script is then converted to string format using UTF8.GetString() and
written to the disk at C:\Users\Public\lcscgt0mss.ps1. The downloaded Stage-2
PowerShell script is then executed using Invoke-Expression, with the execution policy set
as RemoteSigned. This allows the PowerShell interpreter to run unsigned scripts from the
local computer.

Stage-2: PasteText Downloaded PowerShell Script (lcscgt0mss.ps1)

The Stage-2 PowerShell script initially runs the "DroptoStartUp" function, which is illustrated
in the screenshot below.

7/24

Fig.10 Stage-2 PowerShell script DroptoStartUp function

Upon running the "DroptoStartUp" function, a byte stream is converted via GetString() to a
string and stored in the variable $startup. This string is then written to the Startup Folder
using the WriteAllText() function and is named as
"GoogleChromeUpdateHandlerx64.vbs". By doing this, the script is able to maintain
persistence as files in the Startup Folder are executed by the system whenever the user
logs on or starts Windows. The %FILE% argument is the $PSCommandPath environment
variable which corresponds to the full path and file name of the script that invoked the
current command.

Fig.11 Stage-2 GoogleChromeUpdateHandlerx64.vbs dropped in the startup folder

On every system startup, the “GoogleChromeUpdateHandlerx64.vbs” script is executed
from the startup folder, which initializes the WScript.Shell object and the Powershell
execution policy with the RemoteSigned parameter to execute an unsigned Stage-2
Powershell script from the specified path. Therefore, the Stage-2 script, lcscgt0mss.ps1, is
executed every time the system is restarted by dropping the script and setting the
$PSCommandPath to the file name of the script that invoked the current command at
runtime.

The second part of the Stage-2 script decrypts another PowerShell script in-memory and
executes it, as shown in the screenshot below.

8/24

Fig.12 Stage-2 Decryption (in-memory) of Stage-3 Powershell script

The script begins by initializing an encrypted integer stream called $rawData, which is
passed on to a function called "IntegerToBytes()" along with the string argument $sKey
"Qoepl10Msple1VCmle". Inside the function, a $dataBuffer is initialized to store the
decrypted output, and a decryption loop is performed as follows below.

Decryption logic:

The Decryption loop sets up a counter variable $i=0 and increments it to the length of the
$rawData stream (3473) by 1 upon completion of each loop. This is the decryption logic:

The first character of the $sKey, i.e., Q is converted to its corresponding character
code using AscW($sKey) and stored in $ascwKey = “81”, only this is used for
decryption
Then, the encrypted integer stream is accessed one digit at a time and divided by the
key length multiplied by 128 = $iData[$i] / ($sKey.Length * 128) and saved into the
$deBuff variable
This $deBuff variable is then subtracted from the $ascwKey i.e “81” and stored in the
$decData variable. The $decData variable is the decrypted byte which is added into
the $dataBuffer till the completion of the loop

Once the loop is completed, the script converts the $dataBuffer to ArrayList object in proper
sequence by using the $dataBuffer.ToArray() function and returns the final value. The final
array is then converted to string using UTF8.GetString(final_value) and then stored in a
variable $PDF which is another powershell script.

Finally, the Stage-2 PowerShell Script executes and loads the decrypted Stage-3
PowerShell Script into memory using Invoke-Expression.

Stage-3: In-memory decrypted Powershell script

Upon execution, the Stage-3 PowerShell script is decrypted with a key and run via Invoke-
Expression. Subsequently, the script generates an XMLHTTP object to send arbitrary HTTP
requests and receive their responses.

9/24

Additionally, the script initializes the following configurations related to the download server:

$IP = “185[.]81[.]157[.]59”
$Port = “3333”
$Splitter = “|V|”
$ErrorActionPreference = “Silently Continue

Fig.13 Stage-3 In-memory decrypted Powershell script download server configuration

The "DropToStartUp()" function is executed by the Stage-3 PowerShell script after
initialization. This function is the same one used in the Stage-2 script, which converts the
byte stream to a string and writes it to the startup folder with the name
GoogleChromeUpdateHandler.vbs. Consequently, when the system reboots, the
GoogleChromeUpdateHandler.vbs script automatically executes the Stage-3 PowerShell
script by initializing the Wscript.Shell object. The $PSCommandPath variable, which
contains the path of the invoking script, is already concatenated into the script at runtime.

Fig.14 GoogleChromeUpdateHandler.vbs dropped in the startup folder for persistence

The "INF()" function is used to gather system information in the Stage-3 PowerShell script.
Firstly, it retrieves the universally unique identifier (UUID) of the system by passing the
computer name through the $env:computername environment variable to the "HWID()"
function. The "HWID()" function executes a WMI Object query ("get-wmiobject
Win32_ComputerSystemProduct | Select-Object -ExpandProperty UUID") to fetch the

10/24

UUID and converts it into a string using the "ToString()" method. Next, the UUID is parsed
to concatenate only the first two values while removing the "-" splitter from the identifier.
Finally, the concatenated UUID is returned.

Fig.15 Fetches system UUID via WMI object queries

Additionally, in the Stage-3 Powershell script, the operating system's name, version, and
architecture (32-bit or 64-bit) are collected using the following WMI object queries: Get-
WMIObject Win32_OperatingSystem.Name (which splits the output string via “|”) and
Get-WMIObject Win32_OperatingSystem.OSArchitecture. The script also collects the
computer name and username of the system. Once all of the necessary information is
collected, it is arranged and concatenated with specific constant strings in a particular order,
as displayed in the screenshot below.

Fig.16 System information gathering and concatenation

After gathering system information, the Stage-3 Powershell script arranges the data and
stores it in the $INFO variable in the following format:

Novo_<UUID><Computer_name><UserName><OS_Version_Architecture>\Windows
Defender\Yes\Yes\FALSE\

Next, the script calls the HTTP() function to download the Stage-4 Powershell script from
the Download Server. The HTTP() function takes two arguments: the first is set to “Vre” and
the second is null, as shown in the screenshot below.

Fig.17 “Vre” parameter passed on to the HTTP function

The HTTP() Function then sends across a HTTP request via the XMLHttpRequest.Open()
with following parameters:

11/24

- Method: POST
- Url: http://$IP:Port/Vre (Download Server IP and Port)

Where in this case $IP = “185[.]81[.]157[.]59” and $Port = “3333”

Note: The value of the $IP and $Port keeps on changing as per the final payload to be
executed on the infected machine
Further, it sets up the user-agent via the XMLHttpRequest.setRequestHeader() with the
$INFO variable, which was assigned to the formatted version of the gathered system
information defined previously. Then, the POST request is sent across with the required
parameters to the download server in order to download the next stage, the Stage-4
Powershell script. The response is then encapsulated and converted into string and
returned to the previous function for parsing as shown in the screenshot below.

 Fig.18 Downloads the Stage-4 Powershell script from the download server

The following request is then sent to the download server:

Fig.19 Request to the download server

Further, the downloaded data, i.e., the Stage-4 Powershell script, is passed to the Split()
function along with the separator $Splitter = “|V|'' which was initialized before. The Split()
function then separates the downloaded data into two parts:

 “TR|V|Add-Type -AssemblyName System.Windows.FormsAdd-Type -AssemblyName..”

12/24

The split function then separates the script in two parts. One is “TR”, which is the command
from the downloader server, and second is the Stage-4 Powershell script. The first part,
i.e., index “0”, the command from the downloader server, is then passed on to the switch
statement which consists of three conditions as shown in the screenshot below.

switch($command){

<condition_1> if $command = “TR” - Perform the Malicious Routine
<condition_2> if $command = “Cl” - Exit the code

 <condition_2> if $command = “Un” - Exit the code

}

Fig.20 Switch statement as per the command input

Therefore, if the command from the download server equals “TR” after splitting the
complete downloaded data into two parts, the malicious code routine is executed.

This code routine initially generates a random GUID using the NewGuid function then
removes the ‘-’ from the Guid and concatenates it with “.PS1”. This becomes the FileName
for the Stage-4 Powershell script eg. 0d0c2fb5b767451788a2751ca5ebea2a.PS1. The
Filename is then concatenated with the system’s temp path which becomes the file path for
the Powershell script, and then the Stage-4 Powershell script is written using WriteAllText()
function at the temp path.

Further, in order to maintain persistence, the same technique used in the previous
“DropToStartUp()” function is implemented where the byte stream is converted to string and
then written in the startup folder with the file named as WinLogonUpdate.vbs in this case.
Therefore whenever the system is restarted, the Stage-4 Powershell script is executed
automatically by the system using the WinLogonUpdate.vbs script by initially creating an
Wscript.Shell Object. Then the Stage-4 Powershell Script, as the Temp File path of the
Powershell script, is updated at runtime while dropping the script as shown in the
screenshot below.

13/24

Fig.21 Dropping of Stage-4 Powershell script in the temp path along with persistence

Once the persistence is laid out, the Stage-4 Powershell script from the download server is
executed from the temp path via invocation of Powershell.exe with hidden window style and
the execution policy is set to RemoteSigned. At the end, Stage-3 Powershell script sleeps
for “3000” milliseconds and then closes off.

Stage-4 - The Final Stage - RAT Loader

The Stage-4 Powershell script is the “Final Stage - RAT Loader” and has been used
effectively by the “Snip3 Crypter crew” as the final loader in the infection chain which
delivers and executes numerous RAT families onto target machines. The loader compiles
the RunPE source code at runtime which is embedded in the Powershell script as a
compressed GZIP byte stream in order to perform Process Hollowing to execute the
RAT. Implementing this technique allows the loader to stay under the radar and evade
detection mechanisms in place.

The loader initially executes the INSTALL function which is the same as the
“DropToStartUp()” function explained previously. The function writes the following VBS
script in the startUp folder by first converting the byte stream into string and then writing it
using WriteAllText() and concatenating the Snip3 Crypter File path at runtime.

Fig.22 VBS script dropped in startup folder in order to maintain persistence

Further, the most important function of the Snip3 Crypter, the CodeDom(),is executed. The
CodeDom function takes three arguments. The first one is the GZIP compress RUNPE
code in byte format, the second is the type object, “Git.Repository”, where Git is the
namespace and Repository is the class name, and the third, “Execute”, is the method to be
invoked after sleeping for 2000 milliseconds as shown in the screenshot below.

14/24

Fig.23 Execution of the CodeDom() function

Upon being executed, the CodeDom function initializes the CodeDom compiler. a .NET API
which allows devs to programmatically compile code using the .NET compilers where the
version is set to v4 in this case. Along with the version, the compiler parameters such as
CompilerOptions and IncludeDebugInformation are initiated during the compilation process
shown in the screenshot below

Fig.24 CodeDom compiler initialization

Post-initialization of the CodeDom Compiler the GZIP compressed RunPE byte stream is
decompressed via the Decompress($RunPE) function. This uses the
System.IO.Compression.GzipStream with the “Decompress” parameters with input as the
GZIP compressed RunPE byte stream, as shown below.

Fig.25 GZIP Decompression of RunPE Byte Stream

15/24

Once the RunPE Byte Stream is decompressed, it’s then compiled dynamically at runtime
using CompileAssemblyFromSource via the CodeDom API, where the argument to the
functions is the Decompressed RunPE Byte stream. During the compilation, the CSC.exe,
i.e., the C# command line compiler process, is spawned, and the compiler creates a
temporary CS source code file in the temp directory. After analyzing the dropped source
code file, the ThreatLabz team was able to formulate that “RunPE” technique is been used
in order to inject the final RAT payload into remote process via process hollowing,as shown
in the following screenshot.

Fig.26 Runtime compilation of RunPe source code using CodeDom

Fig.27 Command line compiler process being spawned

Further, the decoding routine of the final RAT payload takes place where fthe URL encoded
payload was decoded to a byte array using the UrlDecodeToBytes() function. Then, the
output is passed on to the Decompress() function where the URL-decoded byte array is
GZIP decompressed. The GZIP decompressed file is the final executable RAT file with the
“MZ” header, as shown in the following screenshot.

Fig.28 Runtime compilation of RunPe source code using CodeDom

16/24

Once the RunPE source has been dynamically compiled and the RAT payload has been
decoded, the Snip3 Crypter reflectively loads the compiled RunPE loader in-memory via an
Invoke() function where the executed method is “execute” and the arguments are the path
to AppLaunch.exe gathered via GetRuntimeDirectory().

Fig.29 Reflective loading of the compiled RunPE payload alongside the arguments

The reflectively loaded RunPE payload then processes the following two arguments
provided by the Snip3 Crypter:

Path to AppLaunch.exe: Target process for process hollowing
RAT payload: The final RAT executable

Fig.30 Arguments to the reflectively loaded RunPE Payload

Further, the RunPE payload then performs process hollowing in order to inject the RAT
payload into the remote process “AppLaunch.exe” by creating the target process via
CreateProcessA() in a suspended state

The payload then unmaps or empties out the target process memory via
ZwUnMapViewOfSection()

17/24

Then, memory is allocated in the remote target process depending on the size of the
payload via VirtualAllocEx(), then the Final RAT Payload is written at the allocated memory
location via WriteProcessMemory().

Towards the end of the process hollowing, the threat context is reconfigured via
GetThreadContext() and SetThreatContext() and the SetThreadContext() post
reconfiguration points to the beginning of the malicious code.

At last, the RunPE payload simply resumes the thread and the final RAT payload is
executed in the remote process “AppLaunch.exe” injected via process hollowing.

Fig.31 Process Hollowing the RAT in the Remote Process “AppLaunch.exe”

Further, the ThreatLabz team dumped the RAT payload from the remote process
“AppLaunch.exe” then extracted the configuration as shown in the following screenshot. By
analyzing the configuration, they were able to attribute the malware as “DcRat” as per the
mutex value: DcRatMutex_qwqdanchun and the certificate information: DcRAT Server as
seen in the extracted configuration.

18/24

Command and control for DcRAT = crazydns[.]linkpc[.]net:5900

Fig.32 DcRAT Extracted Configuration

The ThreatLabz team analyzed multiple different Snip3 Crypter’s delivering DcRAT where
the loader was almost similar and found that the changes were made only in the case of the
target process selected for hollowing such as “RegSvcs.exe”/“InstallUtil.exe”/”RegAsm.exe”.
In some cases, the RAT decoding routine consists of the StrReverse() function along with
the URL UrlDecodeToBytes() function, which would first reverse the URL-encoded string
and then URl decode it in order to deliver the final DcRAT payload.

Fig.33 StrReverse() and different Injection target Process been used for delivering the
DcRAT

Further, the ThreatLabz team also came across samples leveraging the Snip3 crypter with
new TTPs in order to deliver “QuasarRAT” on the targeted systems with the similar
infection chain as explained before.

In this case, the final Snip3 crypter RAT loader is downloaded from a different download
server: 185[.]81[.]157[.]172:6594/Vre

19/24

Fig.34 Download server for QuasarRAT delivery

The downloaded Snip3 RAT loader is exactly the same as the previous ones including their
respective decryption and loader routines. Here, only the target process for hollowing is
“RegAsm.exe” as shown in the screenshot below.

Fig.35 Snip3 RAT loader for executingQuasarRAT

Post this the QuasarRAT payload is injected into the “RegAsm.exe” using the Dynamically
compiled RunPE code which internally uses Process Hollowing as a Process Injection
mechanism.

Fig.36 Snip3 RAT Loader for execution of QuasarRAT

Further, the ThreatLabz team dumped the RAT payload from “RegAsm.exe” and extracted
the configuration which helped them in the Attribution by analyzing the Mutex value:
“QSR_MUTEX_M611SwpmZ8q66BUDI” and the autorun_regkey_name: “Quasar Client
Startup” leading to the conclusion that the Snip3 Crypter was being leveraged in order to
deliver QuasarRAT on the targeted machines.

Command and control server for QuasarRAT: 185[.]81[.]157[.]203:1111

20/24

Fig.37 QuasarRAT configuration

Tracking the Snip3 crypter - New TTPs Over Time:

Over the course of several months, the ThreatLabz team has been tracking the Snip3
crypter infection chain and has observed changes in the group's tactics, techniques, and
procedures (TTPs). The following modifications were identified:

The DB server used to fetch malicious strings by the initial VBScript was periodically
changed, moving from SQL8001[.]site4now[.]net to SQL8003[.]site4now[.]net and
then to SQL8004[.]site4now[.]net. This approach helps the group evade domain-
based detections.
The Snip3 crew began using TinyURL to shorten URLs for downloading the Stage-2
or Stage-3 PowerShell scripts. These URLs were redirected to toptal[.]com, which
hosted the next PS stage.

21/24

Fig.38 Usage of TinyURLs to download the next PS stage

Changes were made to the Stage-3 PS script, including alterations to the user-agent
from "Novo_" to "New_" and the initialization of a new version variable [String] $VER =
'v0.2' in the PS script.

Fig.39 Implementing a new user-agent

An AMSI bypass was discovered in the initial PowerShell script, decoded via the
VBScript. This bypass involved setting the AmsiContext to "0," which causes
AmsiScanBuffer/AmsiScanString to return E_INVALIDARG, effectively bypassing
AMSI. ThreatLabz also came across an AMSI bypass implemented in the Initial PS
Script (decoded via the VBScript). Here, the AmsiContext is set to “0” which makes
the AmsiScanBuffer/AmsiScanString to return E_INVALIDARG, which in turn
bypasses the AMSI.

22/24

Fig.40 AMSI Bypass

By constantly evolving their TTPs, the Snip3 crypter threat actors can successfully deliver
remote access trojans such as DcRAT and QuasarRAT on target machines using a multi-
staged infection chain. The ThreatLabz team is committed to monitoring these attacks and
providing timely updates.

Zscaler Sandbox Coverage:

Figure 41: The Zscaler Cloud Sandbox successfully detected the crypter

VBS.Downloader.DCRat

Conclusion: In conclusion, the Snip3 crypter is a threat that continues to evolve with new
techniques of obfuscation and evasion. The as-a-service model allows threat actors with
limited technical abilities to obtain and use the crypter in their attacks. The multi-stage

https://threatlibrary.zscaler.com/threats/061ac608-dd60-44bc-bec9-e3a24d4ecc0f

23/24

infection chain, combined with the use of new tactics, makes it a formidable threat that can
compromise organizations' systems. The Zscaler ThreatLabz team is actively monitoring
these attacks and will continue to work to help protect its customers from this and other
emerging threats. It is important for organizations to remain vigilant and adopt robust
security measures to safeguard their systems and data from such threats.

Indicators of Compromise (IoCs):

1.Stage-1 VBScript:

bd23ae38590d87243af890505d6fbeec
a41de1ef870e970e265cc35b766a5ec8
SQL8001[.]site4now[.]net - Downloads Malicious strings
SQL8003[.]site4now[.]net - Downloads Malicious strings
SQL8004[.]site4now[.]net - Downloads Malicious strings
pastetext[.]net/raw/lcscgt0mss - Stage-2 Downloader URL
toptal[.]com/developers/hastebin/raw/buliforayu - Stage-3 Downloader URL

2. Stage-2 Powershell:

a5b76ca780ddff061db6f86f03d3b120

3. Stage-3 Powershell:

b78c9bb6070340bb4d352c712a0a28b7

4. Final RAT Loader Downloader IPs:

185[.]81[.]157[.]59
185[.]81[.]157[.]172
185[.]81[.]157[.]136
185[.]81[.]157[.]117

5. Snip3 Final RAT Loader:

DcRAT Loader: 923f46f8a9adfd7a48536de6f851d0f7
QuasarRAT Loader: dda2ba195c9ebc9f169770290cd9f68a

6. Final RAT Payloads:

DcRAT: ef2236c85f915cae6380c64cc0b3472a
QuasarRAT: 0bbc89719ff3c4a90331288482c95eac

7. RAT Command & Control:

24/24

DcRAT: crazydns[.]linkpc[.]net:5900
QuasarRAT: 185[.]81[.]157[.]203:1111

