
1/9

Technical Analysis of Rhadamanthys Obfuscation
Techniques

zscaler.com/blogs/security-research/technical-analysis-rhadamanthys-obfuscation-techniques

Key Points

Rhadamanthys is an information stealer that consists of two components, the loader and
the main module (responsible for exfiltrating collected credentials).
The malware implements complex anti-analysis techniques by using a public open source
library.
Rhadamanthys is capable of extracting credentials of various applications such as
Keepass and cryptocurrency wallets.
One of the detected loaders uses a virtual machine (based on Quake III) in order to protect
several parts of its code.
Rhadamnthys uses a variation of the Hidden Bee format, which has been already
described to a great extent by Malwarebytes.
Rhadamnthys has its own file system, which includes an additional set of embedded
modules.
Both the loader and the main module network communications can be decrypted due to an
implementation flaw in their code.

Introduction

First observed in December of 2022, Rhadamanthys is a malicious information stealer written in
C++, which is being distributed mostly via malicious Google advertisements. The malware is
designed to steal credentials from web browsers, VPN clients, email clients and chat clients as
well as cryptocurrency wallets. Even though Rhadamanthys started to attract attention from the
community in late 2022, early samples started to appear in August 2022. In this blog, the
Rhadamanthys loader and main module are analyzed in detail including the virtual machine
obfuscation based on Quake III, a custom embedded file system, and a weakness in the
network encryption protocol.

Technical Analysis

The following subsections focus on the technical analysis of the Rhadamanthys components.

Loader

The loader consists of different stages until the actual loader starts its execution. We have
categorized these stages as follows:

https://www.zscaler.com/blogs/security-research/technical-analysis-rhadamanthys-obfuscation-techniques
https://elis531989.medium.com/dancing-with-shellcodes-analyzing-rhadamanthys-stealer-3c4986966a88
https://github.com/LordNoteworthy/al-khaser
https://github.com/jnz/q3vm
https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole

2/9

Initialization Phase
Decompression Phase
Loader Phase

Initialization Phase

During the initialization phase, Rhadamanthys main task is to decode an embedded block and
pass the execution there. In addition, it detects and passes to the next phase the following
information:

1. Encrypted configuration
2. A compressed blob that contains modules for assisting with code injection and the in-

memory loader

In general, we have identified two different types of loaders. Interestingly in one of them,
Rhadamanthys uses a virtual machine (Q3VM) in order to obfuscate its code and hide certain
code details.

Each virtualized block of the protected code is executed by passing an integer value as a
parameter to the interpreter of the virtual machine. The identified features of the protected code
are summarized in Table 1 below.

Parameter Code Description

0 Decodes the next phase using the Base32 algorithm with the custom charset A-
Z4-9=

1 Loads the Windows API functions GetProcAddress and VirtualProtect by using
the ROR-13 hashing technique.

2 Calls the loaded VirtualProtect Windows API function to prepare the shellcode
for execution.

3 Gets a set of strings and searches for them in the current’s process memory
space. These strings are:

i) avast.exe

ii) snxhk

 Table 1 - Rhadamanthys Virtualized functions

Additionally, we identified a sample, which includes a de-virtualized version of the last code
block (parameter 3) and the PDB path:

3/9

d:\debugInfo\rhadamanthys\debug\sandbox.pdb

NOTE: The magic bytes of the VM bytecodes have been modified by the threat actors as an
attempt to hide the usage of the tool that was used. Moreover, in more recent samples, they
have added the XTEA algorithm as an additional layer of encryption for the decoded payload.

Decompression Phase

In the second phase, the decoded shellcode loads dynamically a set of Windows API functions
and decompresses the loader’s code using the LZSS algorithm.

Loader Phase

In the final stage, the loader decrypts its configuration using the RC4 algorithm and proceeds
with the download process of the main module. The structure of the decrypted configuration is
the following:

struct config
 {

 unsigned int Magic;
 unsigned int Flag; // Used during command line parsing since version 0.4.1

 unsigned char Key_Salt[0x10]; // Used during the AES decryption of the downloaded
main module.

 unsigned char C2[]; // The URL path to download the main module. The main module
uses the same path for data exfiltration.

 };

It is worth to note that the final stage of the loader has its own header structure, which is
described below. The information derived from this structure is necessary for the loader in order
to apply necessary code relocations.

4/9

struct Loader_Header
{
 unsigned __int16 Magic; // Set to 52 53

 unsigned __int16 Characteristics;
 unsigned __int16 Sections_Number;

 unsigned __int16 Sizeof_Header;
 unsigned int Entry_Point_Offset;

 unsigned int Stager_Size;
 unsigned int Imports_Offset;

 unsigned int Imports_Size;
 unsigned int Unknown1;

 unsigned int Unknown2;
 unsigned int Relocation_Table_Offset;

 unsigned int Relocation_Table_Size;
 section Stager_Sections[5];

 };

struct section
 {

 unsigned int Disk_Section_Offset;
 unsigned int Rva_Section_Offset;
 unsigned int Section_Size;

 };

Embedded File System

When Rhadamnthys compromises a 64-bit host, the loader decompresses (LZMA) an
embedded file system. The embedded file system includes several modules that aim to assist
the execution process of the main module. The structure of the file system and its embedded
modules along with a description of them (Table 2) are mentioned below.

5/9

struct loader_embedded_vfs
{
 unsigned char hardcoded_value; // Set to 0xB

 unsigned char num_of_modules;
 unsigned __int16 base_Address;
 module_info modules[num_of_modules];

 };

struct module_info
 {

 unsigned int module_hash; // MurmurHash. Used to detect the module.
 unsigned char module_size_offset; // The byte is left shifted with the value 0xc.

 };

Module
Name

Description

prepare.bin Applies relocations and dynamic API loading.

dfdll.dll Executable file written on disk. It loads and executes the downloaded payload.

unhook.bin Detects if specified Windows API functions of NTDLL library have been
hooked.

phexec.bin Injects code by using the SYSENTER command while calling Windows API
functions.

 Table 2 - Identified embedded modules

NOTE: In case of a 32-bit compromised host, none of the above modules are required. Instead,
Rhadamanthys generates a key by doing a bitwise XOR operation of the first byte of the
downloaded module with the hard-coded byte value 0x21. The output is used as an XOR key to
decrypt the first 108 bytes (header) of the downloaded payload

Main module

Similarly with the loader component, the main module has its own set of modules and
components. As can be seen in Table 3, the main module has a variety of embedded
components.

Module Name Description

6/9

KeePassHax C# module to exfiltrate credentials of password management software
KeePass.

Stubmod Assists with communication between modules and Coredll by using a
named PIPE.

Stub Loads and executes the main module from disk.

Coredll Main orchestrator.

Preload Executes Coredll.

Runtime C# module to execute PowerShell scripts.

Stubexec Module, which injects code to another process (regsvr32).

/etc/license.key Unknown. Potentially related to a license key.

/etc/puk.key Elliptic Curve (NIST P-256) public key

/extension/%08x.lua A set of LUA scripts, which are used for extracting credentials.

 Table 3 - Main module embedded components

Furthermore, instead of using hardcoded offsets to detect and extract them, Rhadamanthys
uses the MPQ hashing algorithm to hash the name of the embedded component and generate a
set of hashes. Then, it uses these hashes to scan its own memory in order to detect the
appropriate component.

Network Communication

In both the main module and the loader, the network communication is encrypted. This is
achieved by generating at runtime a private/public pair of Elliptic Curve keys (NIST P-256 curve)
and sending the public key to the command-and-control server. In the case of the loader, the
public key is appended to the ‘Cookie’ and ‘CSRF-TOKEN’ headers. On the other hand, the
main module uses the Websocket protocol. In that case, the main module sends the public key
as soon as the communication has switched the protocol.

In addition to the above, in recent versions, the loader uses as a ‘Host’ header the domain
catalog.s.download.windowsupdate.com.

https://github.com/ladislav-zezula/StormLib/blob/master/src/SBaseCommon.cpp#L274

7/9

Once the loader has sent the HTTP request to download the main module, the command-and-
control server replies with a JPEG image, which contains the (encrypted) main module. The
structure of the received image is the following:

struct Downloaded_Payload
 {

 unsigned char JFIF_Header[0x14];
 unsigned int Encrypted_Payload_Size;

 unsigned char Expected_SHA1[0x14]; // Expected SHA-1 value once payload is
decrypted.

 unsigned char Key_Salt[0x20]; // Used for deriving the RC4 key
 unsigned char public_key[0x40];

 unsigned __int16 Marker; // 0xFFDB
 };

The encrypted payload, which is located after the image data, has two layers of encryption. In
the first layer, the derived shared secret and the key salt are hashed (SHA-1) and the output is
used as an RC4 key. The decrypted output reveals a new structure that matches the Hidden
Bee format shown below:

struct payload_layer_1
 {

 unsigned int magic; // set to !Rex
 unsigned int module_size;

 unsigned int module_data_offset;
 unsigned char module_loader_shellcode[];

 unsigned char module[module_size];
 };

Lastly, Rhadamanthys executes the main module’s shellcode loader, which derives an AES key
from the public key along with the salt value of the configuration structure and decrypts the last
layer of the main module. The decrypted output is then decompressed with the LZSS algortihm.

NOTE: The expected decrypted output should start with the string ‘!HADES’

It should be noted that despite using a secure encryption algorithm to safeguard the network
communications, the procedure that Rhadamanthys uses to generate the Elliptic Curve keys
suffers from a serious bug.

Upon execution, it calls the C function time to get the current epoch time of the compromised
machine followed by a call to the srand function with the epoch time as a seed. Finally, it
generates the secret scalar value by calling the C function rand.

As a result, we can brute-force the generated keys if we have a network capture of the first
request to the server, which contains both the public key and the epoch time.

8/9

Cloud Sandbox Detection

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects
indicators related to Rhadamanthys at various levels with the following threat names:

WIN32.PWS.Rhadamanthys

Indicators of Compromise

Host Indicators

SHA256 Hash Description

3300206b9867c6d9515ad09191e7bf793ad1b42d688b2dbd73ce8d900477392e Rhadamanthys
Loader

aebb1578371dbf62e37c8202d0a3b1e0ecbce8dd8ca3065ab26946e8449d60ae Rhadamanthys
Loader

9917b5f66784e134129291999ae0d33dcd80930a0a70a4fbada1a3b70a53ba91 Rhadamanthys
Loader

Network Indicators

https://threatlibrary.zscaler.com/threats/ce9156e7-af2a-43e7-b1df-ff85d7b41b66

9/9

IOC Description

hxxp://45[.]66.151.81/blob/xxx.png Command-and-Control server

hxxp://141[.]98.82.254/blob/is4mlw.suqp Command-and-Control server

hxxp://85[.]208.136.26/blob/vpuu9i.7b4x Command-and-Control server

