
1/30

Havoc Across the Cyberspace
zscaler.com/blogs/security-research/havoc-across-cyberspace

Zscaler ThreatLabz research team observed a new campaign targeting a Government
organization in which the threat actors utilized a new Command & Control (C2) framework
named Havoc. While C2 frameworks are prolific, the open-source Havoc framework is an
advanced post-exploitation command and control framework capable of bypassing the most
current and updated version of Windows 11 defender due to the implementation of
advanced evasion techniques such as indirect syscalls and sleep obfuscation.

The technical analysis that follows provides an overview of recently discovered attack
campaign targeting government organization using Havoc and reveals how it can be
leveraged by the threat actors in various campaigns.

Key Observations:

Observed New threat campaign leveraging the open-source Havoc C2 framework
targeting Government organization
Analysis of Havoc Demon - Implant generated via the Havoc framework

ShellCode Loader:
Disables the Event Tracing for Windows (ETW) to evade detection
mechanisms.
Decrypts and executes the shellcode via CreateThreadpoolWait()

KaynLdr Shellcode:
Reflectively loads the Havoc’s Demon DLL without the DOS and NT
headers to evade detection.
Performs API hashing routine to resolve virtual addresses of various
NTAPI's by using modified DJB2 hashing algorithm

https://www.zscaler.com/blogs/security-research/havoc-across-cyberspace
https://github.com/HavocFramework/Havoc

2/30

Demon DLL:
Parsing configuration files
Usage of Sleep Obfuscation Techniques
Communication with the CnC Server - CheckIn Request and Command
Execution
Performs In-Direct Syscalls and Return Address Stack Spoofing and more

Performed tracking of the threat actor based on infrastructure analysis and opsec
blunders where we gathered and analyzed the screenshots of the threat actors
machine from the CnC due to self-compromise.

Table Of Contents:

Campaign:

In the beginning of January, this year, we discovered an executable named “pics.exe” in the
Zscaler Cloud targeting a Government Organization. The executable was downloaded from
a remote server: “146[.]190[.]48[.]229” as shown in the screenshot below

Fig 1. Campaign - Zscaler Cloud

Let us now examine the infection chain used by the threat actors in the following campaign
to deliver the Havoc Demon on the target machine.

Infection Chain Analysis:

3/30

Fig 2. Infection chain

The infection chain utilized by the threat actors for delivering the Havoc Demon on the
target machines commences with a ZIP Archive named “ZeroTwo.zip” consisting of two files
“character.scr” and “Untitled Document.docx” as shown in the screenshot below.

Fig 3. ZIP Archive

Here the “Untitled Document.docx” is a document consisting of paragraphs regarding the
“ZeroTwo” which is a fictional character in the Japanese anime television series Darling in
the Franxx.

4/30

Fig 4. Contents of the Document bundled in the ZIP Archive

Further the screen saver file “character.scr” is basically a downloader commissioned to
download and execute the Havoc Demon Agent on the victim machine. The Downloader
binary is compiled using a BAT to EXE converter “BAT2EXE” which allows users to convert
Batch scripts into executables as shown in the screenshot below. The BAT2EXE argument
can be seen in the downloader binary.

Fig 5. BAT2EXE argument used in the downloader binary

Once executed the BAT2EXE compiled binary loads and decrypts the Batch Script from the
.rsrc section as shown in the screenshot below.

5/30

Fig 6. Decrypted BAT Script

The binary then writes and executes the decrypted BAT script from the Temp folder as
shown in the image below.

Fig 7. Decrypted BAT Script written in the Temp folder

The Decrypted BAT Script upon execution performs the following tasks:

Checks whether “teste.exe” exists in the Temp folder, if not, it downloads the final payload
from http[:]//146[.]190[.]48[.]229/pics.exe and saves it as “seethe.exe” in the Temp folder via
Invoke-WebRequest and then executes it using “start seethe.exe”

6/30

Fig 8. Downloads the final payload “pics.exe” from remote server via Invoke-WebRequest

Then it checks whether “testv.exe” exists in the Temp folder, if not, it downloads an image
from “https[:]//i[.]pinimg[.]com/originals/d4/20/66/d42066e9f8c4b75a0723b8778c370f1d.jpg”
and saves it as images.jpg in the Temp folder and opens it using images.jpg.

Fig 9. Downloads a JPG image from pinimg[.]com

The following image of the “Zero Two” character was downloaded from pinimg[.]com &
executed in order to conceal the actual execution and malicious activities performed by the
final payload.

7/30

Fig 10. Zero Two Image downloaded from pinimg[.]com

Before analyzing the final payload, let’s take a look at another similar Downloader compiled
via BAT2EXE named “ihatemylife.exe”, in this case, the decrypted Batch script downloads
the final payload from “https[:]//ttwweatterarartgea[.]ga/image[.]exe” using Invoke-
WebRequest alongside the payload it also downloads an image to conceal the malicious
activities as shown in the screenshot below.

8/30

Fig 11. Decrypted Batch scripts downloads the final payload from
https[:]//ttwweatterarartgea[.]ga

Fig 12. Image Downloaded by the Batch Script to conceal malicious activities

Now let’s analyze the final In-the-Wild “Havoc Demon” payload which was downloaded via
the Downloader named “character.scr” from http[:]//146[.]190[.]48[.]229/pics.exe as
explained previously.

Havoc Demon is the implant generated via the Havoc Framework - which is a modern and
malleable post-exploitation command and control framework created by @C5pider.

https://github.com/HavocFramework/Havoc

9/30

Fig 13. The Havoc Framework

Fig 14. Havoc Framework - Interface

Shellcode Loader:

The Downloaded payload “pics.exe” is the “Shellcode Loader” which is signed using
Microsoft’s Digital certificate as shown in the screenshot below

10/30

Fig 15. Microsoft Signed Executable

Upon execution the Shellcode Loader at first disables the Event Tracing for Windows (ETW)
by patching the WinApi “EtwEventWrite()” which is responsible for writing an event. ETW
Patching process:

Retrieves module handle of ntdll.dll via GetModuleHandleA
Retrieves address of EtwEventWrite via GetProcAddress

Fig 16. Fetches the address of EtwEventWrite

11/30

Further it changes the protection of the region via VirtualProtect and then overwrites
the first 4 bytes of the EtwEventWrite with following bytes: 0x48,0x33,0xc0,0xc3 (xor
rax,rax | ret)

Fig 17. Overwriting bytes to patch EtwEventWrite

By patching the EtwEventWrite function the ETW will not be able to write any events thus
disabling the ETW.

Then the payload AES decrypts the shellcode using CryptDecrypt() as shown in the
screenshot below - in this case the Algorithm ID used is “0x00006610” - AES256

12/30

Fig 18. AES Decrypts the Shellcode via CryptDecrypt

Once the Shellcode is decrypted, the Shellcode is executed via CreateThreadpoolWait()
where at first it creates an event object in a signaled state via CreateEventA(), then
allocates RWX memory via VirtualAlloc() and writes the Shellcode in the allocated memory.
Further it creates a wait object using CreateThreadpoolWait, here the first argument -
callback function is set to the address of the shellcode. Then it set’s the wait object via the
NtApi “TpSetWait” and at last calls the WaitForSingleObject which once executed checks if
the waitable object is in signaled state, as our event was created in signaled state the
callback function is been executed i.e the decrypted shellcode is been executed and the
control flow is been transferred to the shellcode.

Fig 19. Shellcode execution via CreateThreadpoolWait

KaynLdr - Shellcode

The Shellcode in this case is the “KaynLdr” which is commissioned to reflectively load the
Havoc’s Demon DLL implant by calling its entrypoint function. Once the Shellcode is
executed it retrieves the image base of the Demon DLL which is embedded in the shellcode
itself by executing the following inline assembly function called KaynCaller.

13/30

Fig 20. Retrieves the Image Base of the Embedded Demon DLL

Further the KaynLdr performs the API Hashing routine in order to resolve the virtual
addresses of various NTAPI’s by walking the export address table of the ntdll.dll (Function:
LdrFunctionAddr) and initially the virtual address of the NTDLL.dll is been retrieved by
walking the Process Environment Block (Function: LdrFunctionAddr) as shown in the
screenshot below

Fig 21. API Hashing Routine used by Havoc Demon

Here the hashing algorithm used is a modified version of “DJB2” algorithm based on the
constant “5381” or “0x1505” as shown in the screenshot below.

14/30

Fig 22. Modified DJB2 Hashing Algorithm used in the API Hashing Routine

Virtual Addresses for the following module and NTAPI’s are retrieved by using the API
Hashing routine where the hardcoded DJB2 hashes are compared with the dynamically
generated hash.

0x70e61753 ntdll.dll

0x9e456a43 LdrLoadDll

0xf783b8ec NtAllocateVirtualMemory

0x50e92888 NtProtectVirtualMemory

Further the Embedded Demon DLL is memory mapped and the base relocations are
calculated if required in an allocated memory page procured by calling the
NtAllocateVirtualMemory(). Also the page protections are changed via multiple calls to
NtProtectVirtualMemory as shown below.

15/30

Fig 23. Memory Mapping of the embedded Demon DLL

The Demon DLL is memory mapped in the Allocated memory without the DOS and NT
Headers in order to evade detection mechanisms.

16/30

Fig 24. Demon DLL is memory mapped without DOS and NT Headers

Now once the Demon DLL is memory mapped the KaynDllMain i.e the entrypoint of the DLL
is executed by the KaynLdr as shown below, from there on the control is transferred to the
Havoc Demon DLL Implant.

17/30

Fig 25. Entrypoint of the Demon DLL is been executed by the KaynLdr

Analysis of Havoc Demon DLL:

The entrypoint of the Havoc Demon DLL is executed by the KaynLdr as discussed
previously. Now as the Havoc Demon has many features, we will only focus on a few of
them in the following blog, as the features can be deduced from its source at:
https://github.com/HavocFramework/Havoc

So once the Havoc Demon is been executed there are four functions which are been
executed by the DemonMain():

DemonInit
DemonMetaData
DemonConfig
DemonRoutine

The DemonInit is the initialization function which

Retrieves the virtual addresses of functions from modules such as ntdll.dll/kernel32.dll
by calling the API Hashing Routine discussed previously.
Retrevies Syscall stubs for various NTAPI’s
Loads various Modules via walking the PEB with stacked strings
Initialize Session and Config Objects such as Demon AgentID, ProcessArch etc.

Now let’s understand how the Configuration is being parsed via the DemonConfig()
function.

The Demon’s Configuration is been stored in the .data section as shown in the screenshot
below

https://github.com/HavocFramework/Havoc

18/30

Fig 26. Demon Configuration stored in the .data section

The DemonConfig function parses the configuration by indexing the various required values
from the config. Following is the configuration for the Demon DLL used in the campaign.

Configuration:

Sleep: 2 (0x2)
Injection:

Allocate: Native/Syscall (0x2)
Execute: Native/Syscall (0x2)

Spawn:
x64: C:\Windows\System32\notepad.exe
x86: C:\Windows\SysWOW64\notepad.exe

Sleep Obfuscation Technique: Ekko (0x2)
Method: POST
Host: 146[.]190[.]48[.]229
Transport Secure: TRUE
UserAgent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537/36 (KHTML, like
Gecko) Chrome/96.0.4664.110 Safari/537.36

19/30

Fig 27. Demon Configuration - Host (CnC) and UserAgent parsed

The DemonRoutine() function is the main loop for the malware, it is responsible for
connecting to the command and control (C2) server, waiting for tasks from the server,
executing those tasks, and then waiting again for more tasks and running indefinitely. It
does the following things:

First, it checks if it is connected to the C2 server. If not, it calls TransportInit() to
connect to the server.
If the connection is successful, it enters the CommandDispatcher() function, which is
responsible for a task routine which parses the tasks and executes them until there
are no more tasks in the queue.
If the malware is unable to connect to the C2 server, it will keep trying to connect to
the server again

Now let’s understand how it connects to the TransportInit function:

TransportInit() is responsible for connecting to the C2 server and establishing a session. It
first sends the AES encrypted MetaData packet i.e the Check-in request generated via the
DemonMetaData() function through the PackageTransmit() function, which could be
sending data over HTTP or SMB, depending on the value of the TRANSPORT_HTTP or
TRANSPORT_SMB macro. If the transmission is successful, it then decrypts the received
data using AES encryption with a given key and initialization vector on the TeamServer. The
decrypted data is then checked against the agent's ID, and if they match, the session is
marked as connected and the function returns true.

Fig 28. Metadata Structure - CheckIn Request

20/30

TransportSend() is used to send data to the C2 server. It takes a pointer to the data and its
size as input, and optionally returns received data and its size.It then creates a buffer with
the data to be sent, and depending on the transport method, it either sends the data over
HTTP or SMB.

Fig 29. TransportSend Function Arguments With Encrypted Data of the Check In request

On the Teamserver end the CheckIn request with the metadata packet is been decrypted
and showcased on the terminal with both encrypted and decrypted details of packets sent
and received

21/30

Fig 30. Check In Request - Metadata packet parsed by the Team Server

Command Execution:

22/30

After the demon is deployed successfully on the target’s machine, the server is able to
execute various commands on the target system. If the command "whoami" is issued to the
payload, it would trigger the execution of the command and display the current user running
the session.The server logs the command and its response upon execution.

Fig 31. Command execution using Havoc GUI

Once the command is executed on the victim machine, the command output is AES
Encrypted and then sent to the CnC server, which is then decrypted by the TeamServer as
shown in the screenshot below.

23/30

Fig 32. Command Output Logs parsed by the TeamServer

List Of Commands:

The specific commands available in Havoc will depend on the version and configuration of
the framework, but some common commands that are often included in C2 frameworks
include:

24/30

Fig 33. Commands List

Further the Demon implements various techniques mentioned below which can be analyzed
from the source:

Return Address Stack Spoofing
In-Direct Syscalls
Sleep Masking Techniques

Ekko
FOLIAGE
WaitForSingleObjectEx

Tracking the threat actor - Infrastructure and Opsec blunders:

The domain name “ttwweatterarartgea[.]ga” from where the final havoc demon payload
“image.exe” is downloaded in this case resolves to the IP Address “146[.]190[.]48[.]229” -
which is the IP address from where the final payload “pics.exe” was downloaded via the
URL: http[:]//146[.]190[.]48[.]229/pics.exe previously. Whilst performing the infrastructure
analysis we came across an open-directory on the server “ttwweatterarartgea[.]ga” where
multiple demon & metasploit payloads along with internal logs and screenshots were hosted
as shown in the screenshot below.

https://github.com/HavocFramework/Havoc

25/30

Fig 34. Open Directory - “ttwweatterarartgea[.]ga”

While examining the files on the open directory, we stumbled upon a HTML file named
“NFcmoOSI.html”. The file displayed a screenshot of the threat actor’s machine as
illustrated below.

26/30

Fig 35. Tracking the threat actor - Metasploit Screenshare

Based on our analysis, the threat actor detonated the meterpreter payload on its own
machine and then used the CnC Server to initiate the Metasploit screenshare
command.This action generated a file named "NFcmoOSI.html" on the server which
contained a screenshot of the machine being shared along with the Target IP, Start Time
and status of the screenshare.

Further we were able to gather following information from the threat actors machine
screenshot as highlighted below where the initial payload used in our campaign was
present on the TAs machine along with the Havoc Demon implant and much more.

27/30

Fig 36. Tracking the threat actor - Machine Screenshot

Now based on the Target IP (i.e the threat actors IP) the location of that IP seems to be in
New York, USA. Additionally, the temperature at the time of the screenshot: 1/12/2023
7:28PM was 50° Fahrenheit (Cloudy), after mapping the historical weather data of New York
at that specific time we found that the average temperature was approx close to 50°
degrees Fahrenheit during that time period.

Fig 37. Tracking the threat actor - Temperature

Alongside, we came across a log file named “wget-log” which consists of the wget log
where the Document lure “Untitled-document.docx” was downloaded from the DropBox
URL: “https://www.dropbox.com/scl/fi/hnlvrwbl9v2zadl356mt3/Untitled-document.docx”

28/30

Fig 38. Tracking the threat actor - wget logs

Also the HTML pages “index.nginx-debian.html” and “login.nginx-debian.html” are under-
development Twitter phishing pages as shown in the screenshot below.

Fig 39. Twitter Phishing Pages hosted on “ttwweatterarartgea[.]ga”

Zscaler Cloud Sandbox Report:

29/30

Fig 40. Cloud Sandbox Report

Zscaler's multilayered cloud security platform detects indicators, as shown below:

Win64.Backdoor.HavocC2

Conclusion:

The Havoc C2 framework campaign highlights the importance of proper cybersecurity
measures in today's digital world. The use of payloads and CnC servers to execute
malicious commands and gather sensitive information showcases the ever-present threat of
cyber attacks. The scenario described in the blog demonstrates the capabilities of such
campaigns and the need for organizations to stay vigilant and protect their systems. With
the rise of technology, the need for robust security solutions becomes increasingly vital, and
organizations must take proactive steps to ensure the safety of their systems and data.

Indicators Of Compromise:

Havoc CnC:

IP: 146[.]190[.]48[.]229

https://threatlibrary.zscaler.com/threats/3e991d3d-0ad0-4188-9315-acca9e3baf4c

30/30

Domain: ttwweatterarartgea[.]ga

Hashes:

Pics.exe - 5be4e5115cdf225871a66899b7bc5861

Image.exe - bfa5f1d8df27248d840d1d86121f2169

