
1/5

February 9, 2023

Defeating VMProtect’s Latest Tricks
cyber.wtf/2023/02/09/defeating-vmprotects-latest-tricks/

A colleague of mine recently came across a SystemBC sample that is protected with
VMProtect 3.6 or higher. VMProtect is a commercial packer that comes with advanced anti-
debugging and VM detection capabilities. It also employs code virtualization – a technique
where normal machine code is translated into a proprietary bytecode language that is
interpreted at runtime – which makes it very hard to determine the exact logic implemented
by the code. ScyllaHide, our anti-anti-debug tool of choice, was not up to the task of hiding
the debugger from the packer, so we dove into the unexpectedly deep rabbit hole of figuring
out what is going on.

Kernel mode tooling such as TitanHide/HyperHide would probably have been up to the task
of defeating most of the checks, but we prefer user mode tooling, since it is much less
complicated to use and easier to debug.

Debugger checks

On the face of it, VMProtect’s debugger checks don’t use any exotic techniques. We have
seen the following checks, all of which Scylla has long since had support for:

PEB.BeingDebugged
ProcessDebugPort
ProcessDebugObjectHandle
NtSetInformationThread ThreadHideFromDebugger
CloseHandle with invalid handle value
Non-zero debug registers in CONTEXT when catching exceptions

If you’d like to get a deeper understanding of these techniques, please refer to Check Point
Research’s excellent Anti-Debug Tricks page.

The first problem we encountered is that when debugging a 32-bit executable on a 64-bit
system, it is possible for the executable to hide code from the debugger by doing a far jump
into the 64-bit segment 0x33 (also dubbed “Heaven’s Gate“). In particular, most of the anti-
debug checks will be executed in 64-bit mode. x32dbg/x64dbg can only debug their
respective bitness, but not both at once. The only debugger we know of that can achieve
such a feat is WinDbg, but its interface is rather unpleasant to deal with. So we switched to a
native 32-bit system for this sample.

https://cyber.wtf/2023/02/09/defeating-vmprotects-latest-tricks/
https://github.com/x64dbg/ScyllaHide
https://anti-debug.checkpoint.com/
https://www.malwaretech.com/2014/02/the-0x33-segment-selector-heavens-gate.html

2/5

The next problem is that VMProtect has built-in syscall tables for the most common Windows
builds. If it finds that it runs on a known system version, it uses the sysenter instruction to
directly call into kernel mode for its checks, bypassing any user mode hooks (there is
ProcessInstrumentationCallback, but it has limits – the callback is triggered after a syscall
has executed but before it returns, which means we cannot prevent changes such as setting
the ThreadHideFromDebugger flag). The obvious approach to deal with this is to change the
build number to a fake number everywhere, so that the packer has no choice but to call the
APIs the regular way.

Enter the myriad ways of obtaining the Windows build number these days.

ScyllaHide already supports patching the OsBuildNumber field in the PEB (Process
Environment Block), which is also what APIs such as GetVersion/GetVersionEx read:

 if (flags & PEB_PATCH_OsBuildNumber)
 {
 peb->OSBuildNumber++;
 }

Doing a simple increment comes with a little caveat. What if you happen to be on a recent
Windows 10 build such as 19043 or 19044? 19044/19045 are both valid builds. Oops.

In a ScyllaHide issue, Mattiwatti, who is one of the maintainers of ScyllaHide, already
outlined the next technique that VMProtect uses on modern Windows versions.
KUSER_SHARED_DATA is a read-only page that is mapped into every Windows process. It
allows quick access to many commonly needed values, such as versions, current tick count,
current time, and much more. APIs such as GetTickCount access this page in order to avoid
a context switch to the kernel. Since Windows 10 the structure also contains the build
number. This is unfortunate because ScyllaHide cannot modify this value. But it is possible to
set an access hardware breakpoint and change the value in the register after VMProtect has
read it. Alternatively, Windows 8.1 or older can be used.

If these ways have proven unfruitful for obtaining a known build number, VMProtect will
suspect that we’re up to no good and starts inspecting system library versions. It will parse
NTDLL’s version resource, which contains plenty occurrences of the build number.
ScyllaHide patches one of them (the FileVersion string), which apparently was sufficient at
some point in the past. Not anymore. Nowadays, VMProtect inspects all four build numbers
(two in binary form, two in strings). So we adjusted ScyllaHide to set all of them to a fake
version.

Memory breakpoints on other libraries’ resource sections have not been hit, so that should
suffice for fooling the packer, right? Right?! Nope. You can imagine that at this point we were
quite confused how it still managed to find the correct version.

https://github.com/x64dbg/ScyllaHide/issues/53#issuecomment-373646762
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/ntexapi_x/kuser_shared_data/index.htm

3/5

After some more tracing, we found the call sequence NtQueryVirtualMemory (to get
NTDLL’s full path on disk) → NtOpenFile → NtCreateSection → NtMapViewOfSection. This
maps a fresh copy of the NTDLL image into memory. Oh, well. They call APIs, we hook APIs.
One somewhat mean detail is that NtCreateSection is called with the flag
SEC_IMAGE_NO_EXECUTE. This prevents image load notify routines and debugger events from
being raised when the image is loaded, however the flag is only supported since Windows 8.
As a result, anything packed with this VMProtect version will not run on Windows beta builds
from before Windows 8, and incidentally this also comes to bite us when faking the version
on a Windows 7 system – VMProtect knows the usual build numbers of Windows 7
(7600/7601) and it would ordinarily never take this code path. Since we’re hooking anyway,
we change this value to SEC_IMAGE when detecting an older OS and everyone is happy.

If you thought we’re finally rid of the direct syscalls now, think again. VMProtect has one final
trick up its sleeve: it tries to extract syscall numbers from the library code. We expected this
all along, but it makes sense that it only happens on the fresh mapping from disk. This way,
the packer can avoid any hooks and other code patches placed on the regular NTDLL image
in memory. That is, until we come in and deliberately destroy some API entrypoints in the
mapping (smile). The packer expects the first instruction to be mov eax, CallNumber, and
if it cannot find that, it finally gives up and calls the regular NTDLL API export.

VM Checks

Overview of VM checks:

cpuid hypervisor bit & hypervisor vendor
Trap Flag tricks in combination with forced VM exit via rdtsc/cpuid

4/5

NtQuerySystemInformation with SystemFirmwareTableInformation, TableIDs FIRM and
RSMB
(presence of sbiedll.dll in process, for Sandboxie detection)

For further reading about these checks, please refer to Check Point Research’s Evasion
techniques page (particularly, the “CPU” and “Firmware tables” sections).

The first is relatively easy to mitigate by disabling paravirtualization, which will remove any
hypervisor information from cpuid.

The second trick is somewhat mean and took us a while to figure out. Consider the following
code block:

<prepare flags value with TF bit (0x100) on stack>
popfd ; apply flag change
cpuid ; force VM exit
nop ; filler for EIP check
push ebx ; next regular instruction

The Trap Flag provides single stepping functionality for debuggers. If you set it, the
processor will raise an interrupt after executing the following instruction. So we expect the
instruction pointer in the exception that the OS gives us to be at the nop. As it turns out, older
VirtualBox versions will rat you out, because they have a bug that causes EIP to be at the
push instead. This is fixed in version 7.0.4, which was pretty recent at the time of writing.

Finally, VMProtect will inspect some firmware bits. The RSMB provider is used to obtain raw
SMBIOS values such as BIOS vendor, BIOS version, system family, system UUID, etc.
VirtualBox also has custom OEM fields for “VBoxRev” and “VBoxVer”. It is possible to
change all of these through VM configuration changes (VBoxManage setextradata). The
FIRM provider is a different story. It allows reading 128K at physical addresses 0xC0000 and
0xE0000, respectively. These ranges contain BIOS Option ROM code, which may contain
some strings that give away that virtualization is in use. This cannot be helped without
modifying and recompiling the VM software.

What we can do is hook NtQuerySystemInformation and return empty data. Since
ScyllaHide hooks that API anyway, we simply integrated a code path for the
SystemFirmwareTableInformation class.

Conclusion

With the aforementioned counter-measures (or rather, counter-measures for the counter-
measures) in place, we can finally debug and unpack the sample. Fun fact: The sample is
packed twice, so after VMProtect has finished initialization, another layer of packer code runs

https://evasions.checkpoint.com/

5/5

and unpacks the final SystemBC malware. This is not very smart, because this nullifies the
effects of VMProtect’s import protection, making it trivial to obtain a fully functional dump.
Malware packers often lack the sophistication of commercial grade packers.

We’ve committed all ScyllaHide code changes to GitHub and are currently waiting for them to
be accepted upstream.

IoCs

e21f50a1794acd0a585c86a157e8f70b044adcc860d6d0648d874deccd7ba653 (SystemBC
sample)

